摘 要: 旨在探討FKBP5在綿羊卵巢顆粒細(xì)胞(GCs)中的潛在功能。本研究從烏魯木齊市華凌屠宰場(chǎng)的20個(gè)2歲左右處于性成熟階段的阿勒泰羊卵巢中分離GCs。將試驗(yàn)分為4組:GC(空白對(duì)照)、GC+NC(轉(zhuǎn)染siRNA-NC)、GC+ siFKBP5(轉(zhuǎn)染siRNA-FKBP5)、GC+ siFKBP5+LH(促黃體生成素處理轉(zhuǎn)染siRNA-FKBP5)。利用細(xì)胞免疫熒光檢測(cè)FKBP5蛋白在GCs中的定位。通過(guò)EdU、Tunel和Western blot檢測(cè)其對(duì)細(xì)胞增殖、凋亡的影響;通過(guò)Western blot檢測(cè)其對(duì)AKT和ERK信號(hào)通路的影響;通過(guò)ELISA檢測(cè)其對(duì)E2、P4水平的影響。結(jié)果表明,F(xiàn)KBP5表達(dá)于GCs細(xì)胞質(zhì)中。FKBP5表達(dá)量隨著LH濃度不斷升高;5 IU·mL-1 LH作用4 h,F(xiàn)KBP5表達(dá)較高(Plt;0.001)。干擾FKBP5后顯著抑制了細(xì)胞增殖,并顯著降低PCNA蛋白表達(dá)量(Plt;0.001);顯著促進(jìn)了細(xì)胞凋亡,增加了BAX的表達(dá)并減少了Bcl-2的表達(dá)(Plt;0.001);顯著抑制了GCs中AKT和ERK信號(hào)通路的激活以及E2和P4的分泌(Plt;0.001)。LH處理部分改善了干擾FKBP5對(duì)GCs的影響(Plt;0.05)。本研究結(jié)果表明,F(xiàn)KBP5影響綿羊GCs的增殖、凋亡、AKT和ERK信號(hào)通路以及E2和P4的分泌,其功能受LH的影響。這些結(jié)果為進(jìn)一步研究FKBP5在綿羊卵泡發(fā)育中的作用提供了理論依據(jù)。
關(guān)鍵詞: FKBP5;顆粒細(xì)胞;細(xì)胞增殖凋亡;AKT和ERK信號(hào)通路;類(lèi)固醇
中圖分類(lèi)號(hào):S826.2
文獻(xiàn)標(biāo)志碼:A 文章編號(hào): 0366-6964(2024)09-3947-10
Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells
GULIMIRE·AbudureYimu "ZHANG" Xinru "WU" Yangsheng "CHEN" Ying
WANG" Liqin "XU" Xinming "HUANG" Juncheng "LIN" Jiapeng 3*
(1.Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock of
Ministry of Agriculture and Rural Affairs, Urumqi 830011," China;
2.Key Laboratory of
Animal Biotechnology of Xinjiang, Urumqi 830011," China;
3.Institute of Biotechnology, Xinjiang Academy of Animal
Sciences, Urumqi 830011," China)
Abstract:" This study aimed to investigate the potential function of FKBP5 in ovine ovarian granulosa cells (GCs). GCs were isolated from the ovaries of twenty approximately 2-year-old sexually mature Altay sheep obtained from the Hualing slaughterhouse in Urumqi. The experiment was divided into 4 groups: GC (blank control), GC+NC (transfected with siRNA-NC), GC+siFKBP5 (transfected with siRNA-FKBP5), and GC+siFKBP5+LH (treated with luteinizing hormone and transfected with siRNA-FKBP5). Immunofluorescence was used to detect the localization of FKBP5 protein in GCs. Its effects on cell proliferation and apoptosis were examined using EdU, Tunel assays, and Western Blot analysis. Its impacts on the AKT and ERK signaling pathways were assessed by Western blot, while the levels of E2 and P4 were measured by ELISA. FKBP5 was found to be expressed in the cytoplasm of GCs. Its expression increased with the increasing concentration of LH, reaching a peak at 5 IU·mL-1 LH after 4 h of treatment (Plt;0.001). Knockdown of FKBP5 significantly inhibited cell proliferation, as evidenced by a reduction in PCNA protein expression (Plt;0.001). It also significantly promoted cell apoptosis, with an increase in BAX expression and a decrease in Bcl-2 expression (Plt;0.001). Additionally, FKBP5 knockdown markedly suppressed the activation of the AKT and ERK signaling pathways and the secretion of E2 and P4 (Plt;0.001). LH treatment partially mitigated the effects of FKBP5 knockdown on GCs (Plt;0.05). The results indicate that FKBP5 influences the proliferation and apoptosis of ovine GCs, as well as the activation of the AKT and ERK signaling pathways and the secretion of E2 and P4. Its function is modulated by LH. These findings provide a theoretical basis for further research on the role of FKBP5 in ovine follicular development.
Key words: FKBP5; granulosa cells; cell proliferation and apoptosis; AKT and ERK signaling pathways; steroids
*Corresponding authors:LIN Jiapeng, E-mail:linjiapeng5188@163.com;HUANG" Juncheng,E-mail:h_jc@sina.com
哺乳動(dòng)物的卵巢被單層扁平或長(zhǎng)方體細(xì)胞覆蓋,卵巢間質(zhì)可細(xì)分為皮層和髓質(zhì),卵泡位于皮層[1]。卵泡是卵巢的基本功能單位,由一層或幾層體細(xì)胞包圍的卵母細(xì)胞組成,包括顆粒細(xì)胞(GCs)和膜細(xì)胞(TCs),GCs在卵泡發(fā)育的每一階段都發(fā)揮了不同的功能[2]。
FK506結(jié)合蛋白5(FKBP5)是免疫親和蛋白家族的一員,參與多種生物過(guò)程,包括免疫調(diào)節(jié)、蛋白質(zhì)折疊和轉(zhuǎn)運(yùn)[3-5]。FKBP5作為糖皮質(zhì)激素受體(GR)的共同伴侶,同時(shí)還與Hsp90一起參與GR功能的調(diào)節(jié)[6-8],是一個(gè)調(diào)節(jié)類(lèi)固醇激素的分子標(biāo)記[9]。另外,人FKBP5基因的多個(gè)SNPs位點(diǎn)及其甲基化與應(yīng)激反應(yīng)、抑郁癥、焦慮癥和多囊卵巢綜合征均存在相關(guān)性,表明FKBP5可能是參與應(yīng)激反應(yīng)的一個(gè)關(guān)鍵基因[10-16]。此外,F(xiàn)KBP5在肌肉和脂肪組織中高表達(dá),并且人FKBP5與2型糖尿病以及胰島素抵抗和肥胖的標(biāo)志物相關(guān)[17-19]。Hu等[20]研究發(fā)現(xiàn),F(xiàn)KBP5基因在不同天數(shù)番鴨的胚胎組織中高表達(dá),而關(guān)聯(lián)分析結(jié)果顯示,F(xiàn)KBP5基因的3個(gè)SNPs位點(diǎn)與番鴨體重相關(guān),說(shuō)明FKBP5可作為番鴨早期標(biāo)記輔助選擇肌肉發(fā)育性狀的分子標(biāo)記。但FKBP5基因?qū)d羊GCs的增殖和凋亡、分子功能等生物學(xué)過(guò)程的調(diào)節(jié)機(jī)制還不清楚。
近年來(lái),F(xiàn)KBP5基因在牛和羊等家畜中的研究逐漸引起關(guān)注。在牛中,研究表明FKBP5與類(lèi)固醇激素的調(diào)節(jié)密切相關(guān),這對(duì)牛的生殖健康有重要影響。具體而言,F(xiàn)KBP5在牛的生殖組織中表達(dá),并可能通過(guò)調(diào)節(jié)糖皮質(zhì)激素受體功能影響卵巢功能[21]。在一項(xiàng)FKBP5基因在牛不同生殖階段(如卵泡期和黃體期)中表達(dá)變化的研究中,進(jìn)一步發(fā)現(xiàn)其在牛生殖中有著重要作用[22]。在羊中,F(xiàn)KBP5基因的研究同樣顯示出其在生殖健康中的潛在作用。研究表明,F(xiàn)KBP5基因在綿羊卵巢顆粒細(xì)胞中的表達(dá)受到促黃體生成素(LH)的調(diào)節(jié),這表明FKBP5可能通過(guò)LH途徑參與調(diào)控卵巢功能[23-24]。此外,F(xiàn)KBP5還可能通過(guò)調(diào)控GCs的增殖和凋亡過(guò)程,對(duì)卵泡的發(fā)育產(chǎn)生影響[25]。在家畜中,F(xiàn)KBP5基因的研究不僅限于其在卵巢中的作用。研究發(fā)現(xiàn),F(xiàn)KBP5在牛和羊的其他組織(如肌肉和脂肪)中也有高表達(dá),并與這些組織的生長(zhǎng)和發(fā)育有關(guān)。例如,F(xiàn)KBP5在牛的肌肉組織中表達(dá),與肌肉的生長(zhǎng)和分化相關(guān),可能成為提高肉牛生產(chǎn)性能的分子標(biāo)記[26]。
本研究以體外培養(yǎng)的阿勒泰羊卵巢GCs為研究對(duì)象,檢測(cè)FKBP5在GCs中的表達(dá)及細(xì)胞定位情況,探討LH誘導(dǎo)綿羊GCs中FKBP5基因表達(dá)的分子調(diào)控機(jī)制,揭示FKBP5對(duì)GCs增殖、凋亡以及對(duì)其分子功能的影響,為進(jìn)一步研究FKBP5在綿羊卵巢GCs中的功能作用奠定試驗(yàn)基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)材料
本試驗(yàn)所用樣本采自烏魯木齊市華凌屠宰場(chǎng)的阿勒泰羊卵巢。試驗(yàn)羊?yàn)榻】党赡昴秆?,年齡在2歲左右,處于性成熟階段,體重在45~50 kg之間。將采集的20個(gè)卵巢置于裝有37℃生理鹽水的保溫杯內(nèi),確保在3 h內(nèi)送回實(shí)驗(yàn)室,以保證卵巢樣本的新鮮度和活性。
1.2 主要試劑
RNA 提取試劑(Trizol)、反轉(zhuǎn)錄試劑(2×RT OR-EasyTM MIX)和定量試劑(SYBR Pre mix Ex TaTMII)均購(gòu)自成都福際;黃體生成素(LH)購(gòu)自三生制藥;FKBP5、AKT、p-AKT、ERK1/2、p-ERK1/2、PCNA、β-actin和特異性二抗購(gòu)自武漢愛(ài)博泰克生物科技;EDU試劑盒、Tunel試劑盒和BCA試劑盒均購(gòu)自碧云天生物技術(shù);預(yù)染蛋白Marker和DNA Marker購(gòu)自全式基因;E2和P4 ELISA試劑盒購(gòu)自Bioswamp武漢貝茵萊生物科技;脂質(zhì)體2000購(gòu)自Invitrogen。
1.3 GCs分離及培養(yǎng)
用小鑷子從綿羊卵巢中剝下完整卵泡,置于生理鹽水內(nèi)。用兩個(gè)干凈的小鑷子將卵泡撕開(kāi),釋放GCs,并在體視顯微鏡下?lián)斐雎亚?卵母細(xì)胞復(fù)合體,收集GCs。將細(xì)胞收集后保存于液氮中,用于細(xì)胞試驗(yàn)。
當(dāng)GCs達(dá)到60%~70%匯合度時(shí),用無(wú)血清DMEM/F12替換培養(yǎng)基培養(yǎng)進(jìn)行以下處理:1)添加不同濃度LH(0、1、5、10 IU·mL-1)培養(yǎng)24 h收集細(xì)胞。2)依據(jù)上一步驟結(jié)果,在添加LH(5" IU·mL-1)后不同培養(yǎng)時(shí)間(0 h、2 h、4 h、8 h、24 h)收集細(xì)胞。3)將si-NC、si-FKBP5轉(zhuǎn)染入GCs,添加/不添加LH后收集細(xì)胞。
1.4 免疫熒光檢測(cè)細(xì)胞的定位
GCs培養(yǎng)24 h后吸去培養(yǎng)液,加入4%多聚甲醛,4℃固定。加入0.25% TritonX-100,室溫封閉10 min。1×PBS清洗,加入封閉液封閉1 h。加入FKBP5抗體(1∶300),4℃過(guò)夜孵育,1×PBS清洗,加入二抗(1∶100),避光孵育1 h,加入DAPI溶液(1 μg·μL-1),室溫避光孵育3 min。使用熒光顯微鏡進(jìn)行觀察。
1.5 FKBP5的siRNA的設(shè)計(jì)、合成與轉(zhuǎn)染
1.5.1 siRNA的設(shè)計(jì)、合成
根據(jù)FKBP5基因CDS區(qū)序列,由上海吉瑪公司設(shè)計(jì)并合成3個(gè)FKBP5干擾RNA;分別為si-416、si-1023、si-1523及對(duì)照si-NC,序列見(jiàn)表1。
1.5.2 siRNA的轉(zhuǎn)染
將siRNA-FKBP5(si-416、si-1023、si-1523)和siRNA-NC分別用脂質(zhì)體2000轉(zhuǎn)染到GCs中。將GCs置于6孔板中過(guò)夜培養(yǎng)(每孔0.5×106),并與LH孵育。
1.6 Real time-qPCR法
所用的定量引物見(jiàn)表2;以綿羊cDNA為模板,綿羊β-actin為內(nèi)參進(jìn)行Real time-qPCR。反應(yīng)體系(20 μL):10 μL SYBR Pre mix Ex TaTMII、0.8 μL引物、2 μL cDNA和7.2 μL無(wú)RNase水。反應(yīng)條件:95℃預(yù)變性10 min;然后95℃ 10 s,引物特異Tm 30 s,58℃ 30 s,循環(huán)40次。熔解曲線(xiàn)分析:95℃ 15 s,60℃ 1 min,然后從55℃緩慢遞增到95 ℃。根據(jù)閾值循環(huán)(CT)值計(jì)算各基因相對(duì)于內(nèi)參基因β-actin的表達(dá)量。每組重復(fù)3次。
1.7 Western blot(WB)檢測(cè)
細(xì)胞樣本中加入1 mL蛋白裂解液和1%蛋白酶抑制劑,充分勻漿后4℃離心。收集沉淀加入蛋白上樣Buffer,煮沸10min,收集總蛋白。用BCA試劑盒測(cè)定蛋白濃度。將等量的蛋白質(zhì)于SDS-PAGE凝膠上分離,隨后轉(zhuǎn)移至PVDF膜上。用含有5%脫脂奶粉的TBST室溫封閉1 h。洗脫封閉液,4℃下一抗孵育膜12 h,洗3次。室溫下二抗孵育2 h,洗3次。用ECL顯影液(A液∶B液=1∶1)顯影,通過(guò)GE6100系統(tǒng)檢測(cè)化學(xué)發(fā)光,利用ImageJ軟件分析蛋白灰度值。
1.8 細(xì)胞增殖(EdU)法檢測(cè)
將2×105個(gè)細(xì)胞接種于6孔板中培養(yǎng)過(guò)夜,將37℃預(yù)熱的EdU工作液加入6孔板中孵育細(xì)胞2 h。EdU標(biāo)記細(xì)胞完成后,去除培養(yǎng)液,并加入1 mL固定液,室溫固定15 min。去除固定液,洗滌液洗滌細(xì)胞3次,每孔加入通透液,室溫孵育10 min,去除通透液,洗滌液洗滌細(xì)胞。每孔加入0.5 mL Click反應(yīng)液,輕輕搖晃培養(yǎng)板以確保反應(yīng)混合物可以均勻覆蓋樣品。室溫避光孵育30 min。吸除Click反應(yīng)液,用洗滌液洗滌。在熒光顯微鏡下拍照觀察。
1.9 細(xì)胞凋亡(Tunel)法檢測(cè)
將固定的細(xì)胞取出,加入含0.3% Triton X-100的PBS,室溫孵育5 min。加入100 μL TUNEL檢測(cè)液,37℃避光孵育60 min。1×PBS清洗,用抗熒光淬滅封片液封片后熒光顯微鏡下拍照觀察。
1.10 ELISA檢測(cè)
將2×104個(gè)細(xì)胞接種于96孔板中培養(yǎng)過(guò)夜,ELISA檢測(cè)上清中E2和P4的含量。設(shè)置標(biāo)準(zhǔn)品孔、空白孔和樣品孔,標(biāo)準(zhǔn)品孔中加不同濃度的標(biāo)準(zhǔn)品。樣本孔中加待測(cè)樣本,辣根過(guò)氧化物酶(HRP)標(biāo)記的檢測(cè)抗體,用錫箔紙蓋住,37℃水浴鍋或恒溫培養(yǎng)箱中孵育60 min。每孔加滿(mǎn)洗滌液進(jìn)行沖洗,拍干。每孔加底物A、B,輕輕震蕩混勻,37℃避光顯色15 min。每孔加入終止液終止反應(yīng)。通過(guò)酶標(biāo)儀450 nm波長(zhǎng)檢測(cè)吸光度(OD)值。
1.11 統(tǒng)計(jì)分析
每個(gè)試驗(yàn)均為3個(gè)獨(dú)立的樣本,并重復(fù)3次。組間差異通過(guò)T檢驗(yàn)和ANOVA多重比較法進(jìn)行檢驗(yàn),所有數(shù)據(jù)用“平均數(shù)±標(biāo)準(zhǔn)差(mean±SD)”表示。用GraphPad Prism 8.0軟件分析數(shù)據(jù)顯著性水平。Plt;0.05為統(tǒng)計(jì)學(xué)差異顯著。
2 結(jié) 果
2.1 綿羊卵巢GCs中FKBP5的亞細(xì)胞定位
通過(guò)免疫熒光染色鑒定卵巢GCs中FKBP5的亞細(xì)胞定位情況。免疫熒光顯微鏡觀察結(jié)果顯示,大部分FKBP5在綿羊GCs的細(xì)胞質(zhì)中表達(dá),如圖1所示。
2.2 干擾效率驗(yàn)證
為了研究FKBP5的表達(dá)調(diào)控,轉(zhuǎn)染了不同的干擾FKBP5小分子,并分別采用RT-qPCR和WB技術(shù)檢測(cè)卵巢GCs中FKBP5的mRNA和蛋白水平。結(jié)果表明,與對(duì)照組相比,si-416顯著降低了卵巢GCs中FKBP5的mRNA(圖2A)和蛋白(圖2B)表達(dá)水平(Plt;0.01)。
2.3 LH對(duì)綿羊卵巢GCs中FKBP5表達(dá)調(diào)控
進(jìn)一步的研究通過(guò)RT-qPCR和WB檢測(cè)了LH孵育卵巢GCs后FKBP5的mRNA和蛋白表達(dá)情況。結(jié)果顯示,F(xiàn)KBP5的mRNA(圖3A)和蛋白(圖3B)水平隨著LH濃度的增加而逐漸增加。在不同時(shí)間(0、2、4、8和24 h)用5 IU·mL-1的LH孵育卵巢GCs,發(fā)現(xiàn)LH在作用4 h時(shí)顯著促進(jìn)了FKBP5的mRNA(圖3C)和蛋白(圖3D)的表達(dá)(Plt;0.01)。
為了進(jìn)一步驗(yàn)證LH對(duì)FKBP5表達(dá)的影響,將si-NC和si-FKBP5轉(zhuǎn)染入卵巢GCs,并進(jìn)行RT-qPCR和WB檢測(cè)。結(jié)果顯示,與單獨(dú)轉(zhuǎn)染卵巢GCs和GCs+si-FKBP5相比,GCs+si-FKBP5+LH組能夠顯著提高FKBP5的mRNA(圖3E)和蛋白(圖3F)表達(dá)(Plt;0.05)。
2.4 FKBP5對(duì)綿羊卵巢GCs功能的影響
通過(guò)EdU法檢測(cè)FKBP5對(duì)細(xì)胞增殖的影響,結(jié)果見(jiàn)圖4A,干擾FKBP5顯著抑制了GCs的增殖,而GCs+si-FKBP5+LH組的細(xì)胞增殖有所提高。WB檢測(cè)結(jié)果顯示,細(xì)胞增殖相關(guān)蛋白PCNA在干擾FKBP5后表達(dá)顯著降低,而GCs+si-FKBP5+LH組顯著提高了干擾FKBP5所抑制的細(xì)胞增殖水平(Plt;0.001),如圖4B所示。
用TUNEL法檢測(cè)細(xì)胞凋亡情況,結(jié)果顯示,干擾FKBP5顯著促進(jìn)了GCs的凋亡,而GCs+si-FKBP5+LH組的細(xì)胞凋亡減少(圖4C)。WB檢測(cè)結(jié)果顯示,干擾FKBP5顯著促進(jìn)了凋亡相關(guān)蛋白BAX的表達(dá),并顯著抑制了抗凋亡蛋白Bcl-2的表達(dá);而與GCs+si-FKBP5組相比,GCs+si-FKBP5+LH組顯著促進(jìn)了Bcl-2的表達(dá)(Plt;0.01),如圖4D所示。
2.5 FKBP5對(duì)綿羊GCs分子功能的影響
通過(guò)WB檢測(cè)AKT和ERK信號(hào)通路的結(jié)果顯示,si-FKBP5轉(zhuǎn)染GCs顯著抑制了p-AKT和p-ERK1/2的蛋白表達(dá),而LH刺激si-FKBP5轉(zhuǎn)染的GCs能夠部分恢復(fù)p-AKT和p-ERK1/2的蛋白表達(dá)(Plt;0.001),如圖5A所示。通過(guò)ELISA法檢測(cè)培養(yǎng)液中雌二醇(E2)和孕酮(P4)的蛋白濃度,結(jié)果顯示,干擾FKBP5顯著降低了E2和P4的水平,而LH刺激si-FKBP5轉(zhuǎn)染的GCs中E2和P4水平增加(Plt;0.05),如圖5B所示。
3 討 論
本研究在綿羊GCs中鑒定了FKBP5的亞細(xì)胞定位,并探討了LH對(duì)其表達(dá)的影響,以及FKBP5對(duì)GCs功能的作用。FKBP5在人類(lèi)優(yōu)勢(shì)卵泡GCs中的表達(dá),在排卵后期和排卵后卵泡中表達(dá)最強(qiáng)烈[27-29]。本研究結(jié)果顯示,F(xiàn)KBP5主要在綿羊GCs的細(xì)胞質(zhì)中表達(dá)。通過(guò)免疫熒光染色,確認(rèn)了FKBP5在GCs中的特定定位,為進(jìn)一步探索其在卵巢生理過(guò)程中的角色提供了基礎(chǔ)。
卵巢卵泡發(fā)育伴隨著顆粒細(xì)胞分化[30]。排卵前LH激增觸發(fā)多個(gè)細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)的激活,調(diào)節(jié)排卵所需基因的表達(dá)[31]。本研究發(fā)現(xiàn),LH能夠顯著提升FKBP5的mRNA和蛋白水平,表明LH通過(guò)調(diào)節(jié)FKBP5的表達(dá)參與GCs的功能調(diào)控。特別是在LH濃度為5 IU·mL-1時(shí),對(duì)GCs孵育4 h后,F(xiàn)KBP5的表達(dá)水平顯著增加,提示FKBP5可能參與由LH引起的快速信號(hào)傳導(dǎo)過(guò)程。Ma等[32]通過(guò)meta分析發(fā)現(xiàn),在FecB突變型綿羊的卵泡期,F(xiàn)KBP5基因在下丘腦中上調(diào),可能直接或間接參與調(diào)節(jié)促性腺激素釋放激素(GnRH)的分泌,而下丘腦分泌GnRH通常被認(rèn)為是啟動(dòng)和整合雌性生殖功能的主要途徑,暗示FKBP5基因可能與FecB突變引起的綿羊多排卵有關(guān)。
卵泡發(fā)育與GCs增殖和凋亡密切相關(guān)。EdU結(jié)果顯示,干擾FKBP5顯著降低了GCs增殖。同時(shí),干擾FKBP5顯著降低了PCNA的表達(dá)。通過(guò)TUNEL法檢測(cè)了干擾FKBP5后綿羊GCs凋亡的情況,結(jié)果顯示,干擾FKBP5促進(jìn)了細(xì)胞凋亡。另外,干擾FKBP5顯著提高了凋亡相關(guān)基因BAX的表達(dá)水平。通過(guò)以上結(jié)果,可初步推測(cè)FKBP5對(duì)于綿羊GCs的增殖具有促進(jìn)作用,并受到LH的影響。
進(jìn)一步分析表明,F(xiàn)KBP5干擾影響了AKT和ERK信號(hào)通路的活性。LH的刺激能夠部分恢復(fù)p-AKT和p-ERK1/2的表達(dá)水平,表明FKBP5可能通過(guò)這些信號(hào)通路參與LH調(diào)節(jié)的生物學(xué)過(guò)程。LH是卵母細(xì)胞成熟、排卵和黃體功能所必需的,在不同動(dòng)物的GCs中已經(jīng)證實(shí)了對(duì)ERK信號(hào)通路的激活作用[33-34]。進(jìn)一步的研究表明,依賴(lài)于LH的ERK信號(hào)通路激活發(fā)生在cAMP的下游,并依賴(lài)于PKA的激活[32]。ERK1/2活性信號(hào)級(jí)聯(lián)反應(yīng)參與卵泡發(fā)育和排卵,與顆粒細(xì)胞功能(包括卵巢激素產(chǎn)生)密切相關(guān),并影響GCs的增殖和存活[35-36]。AKT途徑的激活伴隨著GCs增殖的增加,并參與孕酮合成的調(diào)節(jié)[37-38]。上述結(jié)果提示,F(xiàn)KBP5可能通過(guò)AKT和ERK信號(hào)通路促進(jìn)GCs增殖。
此外,還研究了FKBP5對(duì)卵巢激素合成的影響。干擾FKBP5顯著降低了培養(yǎng)液中的E2和P4水平,而LH刺激可以增加這些激素的水平,提示FKBP5可能通過(guò)影響激素合成的途徑參與GCs的功能調(diào)節(jié)。作為E2的主要來(lái)源,卵泡內(nèi)的GCs受到多種分子的復(fù)雜調(diào)控。在卵泡生長(zhǎng)的早期階段,發(fā)育中的卵泡合成類(lèi)固醇激素依賴(lài)于幾個(gè)關(guān)鍵蛋白質(zhì)的存在和活性,如類(lèi)固醇生成因子1、類(lèi)固醇激素合成急性調(diào)節(jié)蛋白、細(xì)胞色素P450側(cè)鏈裂解酶、細(xì)胞色素P450羥化酶、3β-羥基固醇脫氫酶和細(xì)胞色素P450芳香化酶等[39-40]。在牛的研究中發(fā)現(xiàn),排卵前LH/hCG的激增刺激了P4分泌,并促進(jìn)FKBP5基因的表達(dá),而LH/hCG激增后牛GCs中FKBP5表達(dá)的增加可能代表了一個(gè)短暫的負(fù)反饋環(huán),參與了減弱GCs對(duì)孕酮的反應(yīng)性[31]。這一結(jié)果與本研究結(jié)果一致,本研究發(fā)現(xiàn),干擾FKBP5后,GCs分泌的P4水平顯著降低。
本研究揭示了FKBP5在綿羊卵巢GCs中的表達(dá)模式和功能,以及LH如何通過(guò)調(diào)節(jié)FKBP5的表達(dá)影響GCs的增殖、凋亡和激素合成。這些發(fā)現(xiàn)為理解卵巢生理學(xué)以及治療相關(guān)疾病提供了新的見(jiàn)解。未來(lái)的研究可以進(jìn)一步探索FKBP5在其他生殖細(xì)胞類(lèi)型中的作用,以及其在卵巢發(fā)育和功能障礙中的潛在作用。
4 結(jié) 論
綜上所述,F(xiàn)KBP5在綿羊卵巢顆粒細(xì)胞中具有重要的生理功能,其表達(dá)受LH調(diào)控,干擾FKBP5能夠抑制GCs的增殖,促進(jìn)凋亡,并通過(guò)AKT和ERK信號(hào)通路及E2和P4的調(diào)控發(fā)揮作用。LH能夠部分逆轉(zhuǎn)干擾FKBP5的負(fù)面效應(yīng)。這些發(fā)現(xiàn)為進(jìn)一步理解FKBP5在卵巢功能中的作用提供了新的視角。
參考文獻(xiàn)(References):
[1] KOSSOWSKA-TOMASZCZUK K,DE GEYTER C,DE GEYTER M,et al.The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J].Stem cells,2009,27(1):210-219.
[2] ZHANG C H,LIU X Y,WANG J.Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J].Int J Mol Sci,2023,24(22):16247.
[3] H HLE A,MERZ S,MEYNERS C,et al.The many faces of FKBP51[J].Biomolecules,2019,9(1):35.
[4] ZIMMER C,JIMENO B,MARTIN L B.HPA flexibility and FKBP5:promising physiological targets for conservation[J].Philos Trans R Soc Lond B Biol Sci,2024,379(1898):20220512.
[5] MARRONE L,D’AGOSTINO M,CESARO E,et al.Alternative splicing of FKBP5 gene exerts control over T lymphocyte expansion[J/OL].J Cell Biochem,2023.https://doi.org/10.1002/jcb.30364.
[6] BINDER E B.The role of FKBP5,a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders[J].Psychoneuroendocrinology,2009,34(S1):S186-S195.
[7] SABBAGH J J,CORDOVA R A,ZHENG D L,et al.Targeting the FKBP51/GR/Hsp90 complex to identify functionally relevant treatments for depression and PTSD[J].ACS Chem Biol,2018,13(8):2288-2299.
[8] WANG L S,WOJCIESZAK J,KUMAR R,et al.FKBP51-Hsp90 interaction-deficient mice exhibit altered endocrine stress response and sex differences under high-fat diet[J].Mol Neurobiol,2024,61(3):1479-1494.
[9] LI L,LOU Z,WANG L.The role of FKBP5 in cancer aetiology and chemoresistance[J].Br J Cancer,2011,104(1):19-23.
[10] P REZ-P REZ B,CRIST BAL-NARV EZ P,SHEINBAUM T,et al.Interaction between FKBP5 variability and recent life events in the anxiety spectrum:Evidence for the differential susceptibility model[J].PLoS One,2018,13(2):e0193044.
[11] YIN H L,GALFALVY H,PANTAZATOS S P,et al.Glucocorticoid receptor-related genes:genotype and brain gene expression relationships to suicide and major depressive disorder.depress anxiety[J].Depress Anxiety,2016,33(6):531-540.
[12] CRIADO-MARRERO M,SMITH T M,GOULD L A,et al.FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism[J].Brain Behav Immun Health,2020,9:100143.
[13] ZHANG Y,YUE W H,LI J.The association of FKBP5 gene polymorphism with genetic susceptibility to depression and response to antidepressant treatment-a systematic review[J].BMC Psychiatry,2024,24(1):274.
[14] LOU Q Y,LI Z,TENG Y,et al.Associations of FKBP4 and FKBP5 gene polymorphisms with disease susceptibility,glucocorticoid efficacy,anxiety,depression,and health-related quality of life in systemic lupus erythematosus patients[J]. Clin Rheumatol,2021,40(1):167-179.
[15] MA X Y,WANG Z,ZHANG C M,et al.Association of SNPs in the FK-506 binding protein (FKBP5) gene among Han Chinese women with polycystic ovary syndrome[J].BMC Med Genomics,2022,15(1):149.
[16] CHEN F,CHEN Z R,CHEN M J,et al.Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients[J].NPJ Biofilms Microbiomes,2021,7(1):60.
[17] TARRYN W,AMBERLY O,STEPHANIE D, et al. A pilot investigation of genetic and epigenetic variation of FKBP5 and response to exercise intervention in African women with obesity[J]. Sci Rep,2022,12(1):11771.
[18] H USL A S,BALSEVICH G,GASSEN N C,et al.Focus on FKBP51:A molecular link between stress and metabolic disorders[J]. Mol Metab,2019,29:170-181.
[19] AGAM G,ATAWNA B,DAMRI O,et al.The role of FKBPs in complex disorders:neuropsychiatric diseases,cancer,and type 2 diabetes mellitus[J].Cells,2024,13(10):801.
[20] HU Z G,GE L Y,ZHANG H L,et al.Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight[J].Anim Biosci,2022,35(1):1-12.
[21] SUN Y F,LI C J,SUN Y L,et al.Expression of neurotrophin 4 and its receptor tyrosine kinase B in reproductive tissues during the follicular and luteal phases in cows[J].Asian-Australas J AnimSci,2011,24(3):336-343.
[22] DOS SANTOS E C,BOYER A,ST-JEAN G,et al.Is the hippo pathway effector yes-associated protein a potential key player of dairy cattle cystic ovarian disease pathogenesis?[J].Animals,2023,13(18):2851.
[23] ZHU L,JING J,QIN S Q,et al.miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J].J Integr Agric,2022,21(4):1137-1145.
[24] CHEN S,GUO X F,HE X Y,et al.Insight into pituitary lncRNA and mRNA at two estrous stages in small tail Han sheep with different FecB genotypes[J].Front Endocrinol (Lausanne),2022,12:789564.
[25] WANG C X,ZHAO Y H,YUAN Z Y,et al.Genome-wide identification of mRNAs,lncRNAs,and proteins,and their relationship with sheep fecundity[J].Front Genet,2022,12:750947.
[26] SILVA B D M,CASTRO E A,SOUZA C J H,et al.A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J].Anim Genet,2011,42(1):89-92.
[27] JEON H,CHOI Y,BR NNSTR M M,et al.Cortisol/glucocorticoid receptor:a critical mediator of the ovulatory process and luteinization in human periovulatory follicles[J].Hum Reprod,2023,38(4):671-685.
[28] HORI H,YOSHIDA F,ISHIDA I,et al.Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis[J].J Affect Disord,2024,349:244-253.
[29] RIZAVI H S,KHAN O S,ZHANG H,et al.Methylation and expression of glucocorticoid receptor exon-1 variants and FKBP5 in teenage suicide-completers[J].Transl Psychiatry,2023,13(1):53.
[30] GUPTA C,CHAPEKAR T,CHHABRA Y,et al.Differential response to sustained stimulation by hCG amp; LH on goat ovarian granulosa cells[J].Indian J Med Res,2012,135(3):331-340.
[31] RICHARDS J S,PANGAS S A.The ovary:basic biology and clinical implications[J].J Clin Invest,2010,120(4):963-972.
[32] MA X F,LIU A J,TIAN S J.A meta-analysis of mRNA expression profiling studies in sheep with different FecB genotypes[J]. Anim Genet,2023,54(3):225-238.
[33] CAMERON M R,F(xiàn)OSTER J S,BUKOVSKY A,et al.Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5′-monophosphates in porcine granulosa cells[J].Biol Reprod,1996,55(1):111-119.
[34] CARVALHO C R O,CARVALHEIRA J B C,LIMA M H M,et al.Novel signal transduction pathway for luteinizing hormone and its interaction with insulin:activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways[J].Endocrinology,2003,144(2):638-647.
[35] PAN B,ZHAN X S,LI J L.MicroRNA-574 impacts granulosa cell estradiol production via targeting TIMP3 and ERK1/2 signaling pathway[J].Front Endocrinol (Lausanne),2022,13:852127.
[36] BADDELA V S,MICHAELIS M,TAO X L,et al.ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition[J].Life Sci Alliance,2023,6(10):e202302100.
[37] SALEHI R,WYSE B A,ASARE-WEREHENE M,et al.Androgen-induced exosomal miR-379-5p release determines granulosa cell fate:cellular mechanism involved in polycystic ovaries[J].J Ovarian Res,2023,16(1):74.
[38] ZHENG X,CHEN L,CHEN T,et al.The mechanisms of BDNF promoting the proliferation of porcine follicular granulosa cells:role of miR-127 and involvement of the MAPK-ERK1/2 pathway[J].Animals (Basel),2023,13(6):1115.
[39] RUGG M S,WILLIS A C,MUKHOPADHYAY D,et al.Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan[J].J Biol Chem,2005,280(27): 25674-25686.
[40] BAO B,GARVERICK H A.Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves:a review[J].J Anim Sci,1998,76(7):1903-1921.
(編輯 郭云雁)