摘 要:旨在分析死亡白羽肉雞腸道中的致病微生物,明確白羽肉雞的死因,為白羽肉雞的科學(xué)防病和治病提供新思路。采集養(yǎng)雞場(chǎng)病死白羽肉雞的腸道內(nèi)容物,利用宏基因組測(cè)序、序列拼接、分箱技術(shù)、進(jìn)化樹分析、物種注釋鑒定白羽肉雞腸道中的致病微生物,通過基因組毒力基因和耐藥基因的注釋,闡述病原微生物的致病和耐藥機(jī)制。結(jié)果顯示:病死白羽肉雞腸道內(nèi)容物樣品中檢出的致病微生物為禽類致病性大腸桿菌(avian pathogenic Escherichia coli),經(jīng)序列拼接和分箱技術(shù)得到病原菌全基因組序列,大小為4998208bp,完整度為99.23%。該菌含有毒力基因192種,主要編碼鞭毛、纖毛合成相關(guān)蛋白、定植相關(guān)蛋白、菌素合成相關(guān)蛋白,含有耐藥基因88種,主要涉及28類抗生素的耐藥,表明上述種類抗生素對(duì)感染禽類致病性大腸桿菌的白羽肉雞無治療作用,最終導(dǎo)致白玉肉雞死亡。本研究利用宏基因測(cè)序技術(shù)可有效分析白羽肉雞的致病微生物及致病、耐藥機(jī)制,可在白羽肉雞發(fā)病早期幫助養(yǎng)殖者了解病因,并有針對(duì)性地指導(dǎo)科學(xué)用藥,減少經(jīng)濟(jì)損失。
關(guān)鍵詞:白羽肉雞;腸道;致病菌;宏基因組測(cè)序;菌群結(jié)構(gòu)
中圖分類號(hào):S852.612
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)06-2692-09
收稿日期:2023-08-03
基金項(xiàng)目:中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2022-YWF-ZYSQ-11)
作者簡(jiǎn)介:李 明(1983-),男,河北唐山人,博士,主要從事動(dòng)物腸道微生物與健康研究,E-mail:liming01@caas.cn
*通信作者:李松勵(lì),主要從事飼料質(zhì)量與安全評(píng)估創(chuàng)新藥品研發(fā)及動(dòng)物疫病預(yù)警與智能健康監(jiān)測(cè)相關(guān)研究,E-mail:raozhenghualisongli@caas.cn
Identification and Genomic Analysis of Pathogenic Escherichia coli in
Small Intestinal Content of White Feather Broilers
LIMing,CUI Hongwei,GAO Jie,ANLele,LISongli*,RAOZhenghua
(Central Laboratory,Institute of Animal Science,Chinese Academy of
Agricultural Sciences,Beijing100193,China)
Abstract:This experiment was conducted to analyze the pathogenic microorganisms in the intestines of dead white feather broilers,clarify the cause of death of white feather broilers,and provide new ideas for scientific disease prevention and treatment of white feather broilers.Intestinal contents of died white feather broilers were collected from achicken farm,then metagenomic sequencing,sequence splicing,box splitting technology,evolutionary tree analysis,and species annotation were used to identify pathogenic microorganisms in the intestine of white feather broilers.The pathogenic and drug resistance mechanisms of pathogenic microorganisms were elucidated through annotation of genome virulence genes and drug resistance genes.The results showed that the pathogenic microorganism detected in the intestinal contents of diseased white feather broiler chickens was avian pathogenic Escherichia coli.The entire genome sequence of the pathogen was obtained through sequence splicing and box splitting techniques,with asize of4998208bp and an integrity of99.23%.This bacterium contains192virulence genes,mainly encoding flagella,cilia synthesis related proteins,colonization related proteins,and bacteriocin synthesis related proteins.It contains88resistance genes,mainly involving28types of antibiotic resistance,indicating that the above types of antibiotics have no therapeutic effect on white feather broilers infected with pathogenic Escherichia coli in poultry,ultimately leading to the death of white jade broilers.This study utilizes macro gene sequencing technology to effectively analyze the pathogenic microorganisms,pathogenesis,and drug resistance mechanisms of white feather broilers.It can help breeders understand the etiology in the early stages of white feather broiler disease,and provide targeted guidance for scientific medication to reduce economic losses.
Key words:White feather broiler; intestinal tract; pathogenic bacteria; metagenomic sequencing; microbiota
*Corresponding author:RAO ZhenghuaLI Songli,E-mail:raozhenghualisongli@caas.cn
雞肉是我國(guó)第二大肉類產(chǎn)品,其中,白羽肉雞對(duì)我國(guó)雞肉生產(chǎn)的貢獻(xiàn)約為45%,是我國(guó)雞肉的主要來源[1]。我國(guó)于2020年開始全面禁止促生長(zhǎng)類藥物飼料添加劑的使用,這標(biāo)志無抗綠色養(yǎng)殖時(shí)代的到來[2]。然而,新的養(yǎng)殖模式也使規(guī)模化養(yǎng)殖的白羽肉雞在疾病防控方面面臨新的挑戰(zhàn)[3]。
禽致病性大腸桿菌(avian pathogenic Escherichia coli,APEC)是鳥類最常見的病原體,在世界范圍內(nèi)引起禽大腸桿菌病[4]。它是腸外致病性大腸桿菌的一個(gè)重要亞型,在不同年齡的家禽中引起各種局部和全身感染[5-6]。最近的研究表明,APEC具有人畜共患隱患[6-8],它被公認(rèn)為食源性病原體。由APEC引起的禽類疾病包括肝周炎、氣管炎、心包炎和其他綜合征,如卵黃性腹膜炎、輸卵管炎、大腸肉芽腫、臍炎和蜂窩組織炎,統(tǒng)稱為“大腸桿菌病”[9]。APEC通過特定的毒力因子引起家禽疾病,如黏附素、入侵素、保護(hù)素、鐵獲取系統(tǒng)和毒素。這些毒力因子促進(jìn)APEC入侵及其逃避宿主免疫反應(yīng),導(dǎo)致腸外感染[10]。在入侵宿主后,APEC定植于肺部,避開身體的免疫系統(tǒng),進(jìn)入血液循環(huán),隨后引起全身感染[11]。
目前,白羽肉雞養(yǎng)殖中,最突出的問題為致病微生物不明的非典型性傳染病類型增多,這導(dǎo)致養(yǎng)殖者無法對(duì)疾病進(jìn)行診斷,更難以開展有針對(duì)性的治療[12]。不少養(yǎng)殖者憑以往的經(jīng)驗(yàn)盲目用藥,最終導(dǎo)致治療無效,白羽肉雞大量死亡,造成巨大經(jīng)濟(jì)損失[13]。探索新技術(shù)、新方法奠定白羽肉雞非典型疾病致病菌迫在眉睫。
宏基因組學(xué)技術(shù)是基于生境中所有微生物總DNA序列,分析其菌群結(jié)構(gòu)的重要檢測(cè)方法,可全面分析樣品中含有的微生物種類、相對(duì)豐度以及基因分布等,被廣泛應(yīng)用于食品[14-16]、環(huán)境[17-19]、腸道[20-22]等前沿領(lǐng)域。Li等[16]利用宏基因組學(xué)技術(shù)分析雞胸肉表面的微生物組,并以此來建立肉質(zhì)量和安全的關(guān)聯(lián)性。Zhou等[17]利用宏基因組分析家用活性炭飲用水凈化器微生物群和抗生素耐藥性。
本研究利用宏基因組學(xué)技術(shù)對(duì)病死白羽肉雞腸道內(nèi)容物樣品進(jìn)行致病菌的鑒定和毒力基因及耐藥基因的分析,闡明病原微生物的致病機(jī)理,為養(yǎng)殖者針對(duì)非典型性白羽肉雞傳染病的治療和預(yù)防提供科學(xué)數(shù)據(jù)和理論支持。
1 材料與方法
1.1 材料
1.1.1 研究對(duì)象
為檢測(cè)腸道中更多種類的微生物,本試驗(yàn)的研究對(duì)象為死亡白羽肉雞小腸內(nèi)容物。病死的白羽肉雞為北京市昌平區(qū)養(yǎng)殖基地一間雞舍的試驗(yàn)用雞,雞舍有雞籠20個(gè),每籠5只雞苗。養(yǎng)雞前整間雞舍和每個(gè)雞籠均進(jìn)行了消殺,舍內(nèi)配置了取暖燈,以保障養(yǎng)殖溫度。雞苗于2023年2月底采購(gòu),并于采購(gòu)當(dāng)天開展試驗(yàn)。病死雞在18日齡表現(xiàn)出精神萎靡、食欲不振等癥狀,當(dāng)日在飲水中加入萬分之二(m/v)的諾氟沙星,并未有效控制病情,該雞在20日齡病死,立刻通過解剖獲取小腸內(nèi)容物,利用干冰送往測(cè)序公司。
1.1.2 主要試劑及儀器
DNA提取試劑:參照于忠堂教授發(fā)表的文章文獻(xiàn)[23]自行配制;DNA分子量標(biāo)準(zhǔn)Marker S(100~5000bp),生工生物公司;文庫(kù)構(gòu)建試劑盒Tn5DNA Library Prep Kit for Illumina,北京全式金生物技術(shù)有限公司。Thermo微量移液器、5810R小型臺(tái)式冷凍離心機(jī),德國(guó)Eppendorf公司;GR60DA高壓滅菌鍋,致微(廈門)儀器有限公司;Qubit3.0核酸熒光定量?jī)x,美國(guó)ThermoFisher Scientific公司;Illumina Hiseq3000基因測(cè)序平臺(tái),美國(guó)Illumina公司。
1.2 方法
1.2.1 基因組DNA的提取
取0.05g樣品于離心管中,加入5~20粒氧化鋯珠和1mL的裂解液,振蕩研磨儀震蕩3min。70℃水浴15min。12000r·min-1離心15min,轉(zhuǎn)移上清液至新的離心管,加入10μL的RNA酶A溶液,37 ℃孵育15min。加入20μL的蛋白酶K溶液,70℃孵育10min。加入200μL的PEG溶液和100μL的核酸吸附磁珠懸液,室溫靜置10min,磁力架靜置吸附1min,棄上清液。70%的乙醇漂洗2次。加入100μL的純水洗脫DNA。Qubit3.0核酸熒光定量?jī)x檢測(cè)DNA的濃度,使用1%瓊脂糖凝膠電泳檢測(cè)DNA的完整度。
1.2.2 宏基因組文庫(kù)構(gòu)建與測(cè)序
利用全式金建庫(kù)試劑盒,按照說明書進(jìn)行文庫(kù)制備。Illumina Hiseq3000測(cè)序平臺(tái)(北京貝瑞和康生物技術(shù)有限公司)進(jìn)行宏基因組測(cè)序。
1.2.3 下機(jī)數(shù)據(jù)質(zhì)控
利用fastp v0.12.4[24],對(duì)宏基因組下機(jī)數(shù)據(jù)進(jìn)行質(zhì)控,刪除N堿基含量超過10%或Q值小于5的堿基超過50%的序列。
1.2.4 物種注釋和定量
利用Kraken2v2.0.8[25],將質(zhì)控后的數(shù)據(jù)與Kraken數(shù)據(jù)庫(kù)進(jìn)行序列比對(duì),完成種屬分類。利用Bracken v2.5[26],對(duì)注釋結(jié)果進(jìn)行統(tǒng)計(jì),計(jì)算每種微生物的相對(duì)含量。
1.2.5 序列拼接和分箱
利用MetaWRAP v1.3.2[27],將質(zhì)控后的數(shù)據(jù)進(jìn)行序列拼接和分箱,得到細(xì)菌的全基因組。
1.2.6 菌種鑒定和進(jìn)化樹的構(gòu)建
利用BLAST2.11.0+[28]將細(xì)菌基因組部分核酸序列比對(duì)到NT數(shù)據(jù)庫(kù)[29],并GTDB-Tk v2.1.1,對(duì)致病菌構(gòu)建進(jìn)化樹,以明確到株水平。
1.2.7 毒力基因和耐藥基因的注釋
利用Prokka v1.12[30]注釋致病菌的編碼基因,并利用diamond v2.1.8[31]將編碼基因分別比對(duì)到VFDB[32]和CARD[33]數(shù)據(jù)庫(kù),注釋致病菌的毒力基因和耐藥基因。
2 結(jié) 果
2.1 DNA提取質(zhì)量的分析
為保障宏基因組分析的準(zhǔn)確性,對(duì)提取的小腸內(nèi)容物的總DNA進(jìn)行電泳分析。如圖1所示,提取得到的總DNA完整度較高且濃度和純度均符合后續(xù)試驗(yàn)的要求。
2.2 腸道菌群結(jié)構(gòu)分析
利用Kraken2分析病死白羽肉雞小腸中菌群結(jié)構(gòu),如圖2所示,豐度排名前9的物種主要有羅伊氏黏液乳桿菌、大腸桿菌、約氏乳桿菌等。值得注意的是,腸道中檢出犬弓首線蟲的基因,由于并未發(fā)現(xiàn)成蟲,不排除有蟲卵污染,但并不是致死的直接原因。因此,選擇大腸桿菌進(jìn)一步研究。
2.3 大腸桿菌菌株的鑒定
利用metawrap進(jìn)行序列拼接和分箱,如表1所示,箱體bin.3的物種分類為腸桿菌科(Enterobacteriaceae),對(duì)應(yīng)大腸桿菌的基因組,其大小為4998208bp,完整度為99.23%。隨機(jī)選取基因組部分序列,利用BLAST比對(duì)NT數(shù)據(jù)庫(kù),將排名前15物種的全基因組序列進(jìn)行下載,構(gòu)建進(jìn)化樹。如圖3所示,發(fā)現(xiàn)本研究中的致病菌與CP087 290.1(Escherichia coli strain APEC102026)最為相近,而該菌株是禽致病性大腸桿菌,在世界范圍內(nèi),是引起肉雞第一周高死亡率的致病原[34]。
2.4 毒力基因和耐藥基因的鑒定
利用prokka對(duì)致病菌的基因組進(jìn)行注釋,得到tRNA序列70個(gè)、rRNA序列5個(gè)和蛋白質(zhì)編碼區(qū)(CDS)4626個(gè)。利用diamond,將所用CDS與VFDB數(shù)據(jù)庫(kù)和CARD數(shù)據(jù)庫(kù)進(jìn)行序列比對(duì),得到毒力基因192個(gè)、耐藥基因88個(gè)。由表2可知,本研究中的致病菌與大腸桿菌APEC102026相比,基因總數(shù)較低,但毒力基因和耐藥基因的數(shù)量卻較高,說明本研究中的致病菌具有更高的毒性和更強(qiáng)的耐藥性。
2.5 毒力基因和耐藥基因的分類統(tǒng)計(jì)
利用VFDB數(shù)據(jù)庫(kù)和CARD數(shù)據(jù)庫(kù)中的基因分類表對(duì)毒力基因和耐藥基因進(jìn)行分類統(tǒng)計(jì),如圖4所示,發(fā)現(xiàn)本研究中致病菌的毒力基因主要為鞭毛、纖毛合成相關(guān)基因、定植相關(guān)基因和菌素合成相關(guān)基因。其中,與鞭毛合成相關(guān)的基因數(shù)量最多,共43個(gè)。與細(xì)菌素合成相關(guān)的基因主要有2種,其中與腸桿菌素合成和運(yùn)輸相關(guān)的基因12個(gè),編碼耶爾森桿菌素的基因11個(gè)。如圖5可知,致病菌含有28大類耐藥基因,其中編碼氟喹諾酮類抗生素耐藥基因的數(shù)量最多,為32個(gè)。這表明,致病菌具有很強(qiáng)的致病性和耐藥性,從而導(dǎo)致感染的白羽肉雞發(fā)病,且不能被常規(guī)藥物治療,最終死亡。
3 討 論
目前,高通量測(cè)序技術(shù)已經(jīng)部分應(yīng)用于禽類疾病的診斷,但主要是針對(duì)病毒開展的研究,包括新城疫病毒[35]、禽微小核糖核酸病毒[36]、3型禽腎炎病毒[37]和新病毒及突變體[38]。這可能主要與病毒的基因組較小,研究相對(duì)容易有關(guān)。但利用宏基因組技術(shù)研究白羽肉雞中的致病菌暫無報(bào)道。本研究利用宏基因組技術(shù),通過序列拼接和分箱技術(shù),得到了致病菌的基因組序列,并通過序列比對(duì)和進(jìn)化樹分析,確定了患有非典型疾病的羽肉雞的致病菌為禽類致病性大腸桿菌(APEC),為白羽肉雞集約化養(yǎng)殖中,非典型疾病的早期診斷和針對(duì)性用藥奠定了基礎(chǔ)。
禽類致病性大腸桿菌(APEC)可引起白羽肉雞的大腸桿菌病,是影響肉雞生產(chǎn)性能的最重要的傳染病之一[39]。肉雞大腸桿菌病有多種形式,其中系統(tǒng)性大腸桿菌病最常見,病死率為5%~20%。特征性病理變化是纖維素狀心包炎,心包膜變厚、混濁,心包積液。肝明顯腫脹,表面有白色膠凍樣或纖維素性滲出物,肝有白色壞死點(diǎn)或壞死斑。脾充血、腫脹。氣囊混濁,肥厚[40-41]。這主要與禽類致病性大腸桿菌的毒力基因種類和數(shù)量高度相關(guān)。本研究發(fā)現(xiàn)的禽類致病性大腸桿菌基因組大小為4998208bp,比相似度最高的禽類致病大腸桿菌102026菌株基因組(5197709bp)小,但卻含有更多的毒力基因和耐藥基因,說明本研究發(fā)現(xiàn)的禽類致病大腸桿菌的致病性和耐藥性更強(qiáng)。
目前,用于治療肉雞的大腸桿菌病的藥物主要有頭孢類抗生素、諾氟沙星和鹽酸環(huán)丙沙星。由圖5可知,本研究發(fā)現(xiàn)的禽類致病性大腸桿菌含有頭孢類抗生素耐藥基因;而諾氟沙星[42]和鹽酸環(huán)丙沙星屬于氟喹諾酮類抗生素[43],本研究發(fā)現(xiàn)的禽類致病性大腸桿菌含有最多的氟喹諾酮類抗生素耐藥基因。這說明現(xiàn)有的常規(guī)治療藥物并不能有效治療本研究致病菌引起的肉雞大腸桿菌病。因此,針對(duì)本研究發(fā)現(xiàn)的禽類致病性大腸桿菌探索新靶標(biāo),如蘇氨酰tRNA合成酶[44],研發(fā)新型抑制劑至關(guān)重要。而新靶標(biāo)的探索需要致病菌全基因組的解析。本研究利用宏基因組技術(shù),通過序列拼接和分箱技術(shù),得到了致病菌的基因組序列,為新靶標(biāo)的探索和新型抑制劑的研發(fā)奠定了基礎(chǔ)。
4 結(jié) 論
病死白羽肉雞腸道內(nèi)容物樣品中檢出的致病微生物為禽類致病性大腸桿菌(avian pathogenic Escherichia coli),其基因組大小為4998208bp,完整度為99.23%。該菌含有毒力基因192種,主要編碼鞭毛、纖毛合成相關(guān)蛋白、定植相關(guān)蛋白、菌素合成相關(guān)蛋白,含有耐藥基因88種,主要涉及28類抗生素的耐藥,致使常規(guī)種類抗生素對(duì)感染禽類致病性大腸桿菌的白羽肉雞無治療作用,最終導(dǎo)致白羽肉雞死亡。本研究表明,利用宏基因?qū)W技術(shù)可鑒定病死白羽肉雞的致病菌的種類、毒力基因和耐藥基因,闡明病原微生物的致病機(jī)理,為養(yǎng)殖者針對(duì)非典型性白羽肉雞傳染病的治療和預(yù)防提供科學(xué)數(shù)據(jù)和理論支持。
參考文獻(xiàn)(References):
[1]金衛(wèi)東.肉雞產(chǎn)業(yè)戰(zhàn)略發(fā)展思考[J].中國(guó)禽業(yè)導(dǎo)刊,2023,40(7):15-18.
JIN WD.Thoughts on the strategic development of the broiler industry[J].Guide to Chinese Poultry,2023,40(7):15-18.(in Chinese)
[2]李 明,饒正華,梁洺源,等.基于宏基因測(cè)序的微生物飼料添加劑菌群結(jié)構(gòu)及質(zhì)量分析[J].中國(guó)飼料,2022(21):23-27.
LI M,RAO ZH,LIANG MY,et al.Analysis of microbiota structure and quality of microbial feed additives based on metagenomic sequencing[J].China Feed,2022(21):23-27.(in Chinese)
[3]馮海鵬,辛蕊華,張 凱,等.中獸藥復(fù)方組合與抗生素防治肉雞呼吸道疾病的協(xié)同效應(yīng)[J].中國(guó)畜牧獸醫(yī),2020,47(3):940-947.
FENG HP,XIN RH,ZHANG K,et al.Synergistic effect of combination of Chinese veterinary drugs and antibiotics on the prevention and treatment of respiratory diseases in broilers[J].China Animal Husbandryamp;Veterinary Medicine,2020,47(3):940-947.(in Chinese)
[4]SOLEYMANI S,TAVASSOLI A,HASHEMI TABAR G,et al.Design,development,and evaluation of the efficacy of anucleic acid-free version of abacterial ghost candidate vaccine against avian pathogenic E.coli(APEC)O78:K80serotype[J].Vet Res,2020,51(1):144.
[5]GUABIRABA R,SCHOULER C.Avian colibacillosis:still many black holes[J].FEMS Microbiol Lett,2015,362(15):fnv118.
[6]KATHAYAT D,LOKESH D,RANJIT S,et al.Avian pathogenic Escherichia coli(APEC):an overview of virulence and pathogenesis factors,zoonotic potential,and control strategies[J].Pathogens,2021,10(4):467.
[7]JEONG J,LEE JY,KANG MS,et al.Comparative characteristics and zoonotic potential of avian pathogenic Escherichia coli(APEC)isolates from chicken and duck in South Korea[J].Microorganisms,2021,9(5):946.
[8]JOHNSON JR,KUSKOWSKI MA,MENARD M,et al.Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status[J].J Infect Dis,2006,194(1):71-78.
[9]MELLATA M,DHO-MOULIN M,DOZOIS CM,et al.Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity[J].Infect Immun,2003,71(1):536-540.
[10]DZIVA F,STEVENS MP.Colibacillosis in poultry:unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts[J].Avian Pathol,2008,37(4):355-366.
[11]REESE S,DALAMANI G,KASPERS B.The avian lung-associated immune system:a review[J].Vet Res,2006,37(3):311-324.
[12]楊建彬,王榮湖.肉仔雞不明原因急性死亡的調(diào)查與研究[J].中國(guó)畜牧獸醫(yī),2008,35(12):150-151.
YANG JB,WANG RH.Investigation and study on unexplained acute death of broiler chickens[J].China Animal Husbandryamp;Veterinary Medicine,2008,35(12):150-151.(in Chinese)
[13]田云先.白羽肉雞疾病流行特點(diǎn)及對(duì)策措施[J].中國(guó)畜牧獸醫(yī)文摘,2015,31(3):117.
TIAN YX.Epidemic characteristics and countermeasures of diseases in white feathered broiler chickens[J].China Animal Husbandryamp;Veterinary Medicine,2015,31(3):117.(in Chinese)
[14]COUGHLAN LM,COTTER PD,HILL C,et al.Biotechnological applications of functional metagenomics in the food and pharmaceutical industries[J].Front Microbiol,2015,6:672.
[15]HUANG KY,CHANG TH,JHONG JH,et al.Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas[J].BMC Syst Biol,2017,11(S7):131.
[16]LI ST,MANN DA,ZHANG SK,et al.Microbiome-informed food safety and quality:longitudinal consistency and cross-sectional distinctiveness of retail chicken breast microbiomes[J].mSystems,2020,5(5):e00589-20.
[17]ZHOU ZC,XU L,ZHU L,et al.Metagenomic analysis of microbiota and antibiotic resistome in household activated carbon drinking water purifiers[J].Environ Int,2021,148:106394.
[18]NAGARKAR M,KEELY SP,BRINKMAN NE,et al.Human-and infrastructure-associated bacteria in greywater[J].J Appl Microbiol,2021,131(5):2178-2192.
[19]SCHAGES L,WICHERN F,GEISEN S,et al.Distinct resistomes and microbial communities of soils,wastewater treatment plants and households suggest development of antibiotic resistances due to distinct environmental conditions in each environment[J].Antibiotics(Basel),2021,10(5):514.
[20]LIN LM,WANG Y,XU L,et al.Microbiome-host co-oscillation patterns in remodeling of colonic homeostasis during adaptation to ahigh-grain diet in asheep model[J].Anim Microbiome,2020,2(1):22.
[21]CHAITRA HS,SINGH A,PANDIYAN K,et al.Sex biased variance in the structural and functional diversity of the midgut bacterial community of last instar larvae of Pectinophora gossypiella(lepidoptera:gelechiidae)[J].Microb Ecol,2022,83(4):1112-1122.
[22]WANG C,SONG YQ,TANG N,et al.The shared resistome of human and pig microbiota is mobilized by distinct genetic elements[J].Appl Environ Microbiol,2021,87(5):e01910-20.
[23]YU ZT,MORRISON M.Improved extraction of PCR-quality community DNA from digesta and fecal samples[J].BioTechniques,2004,36(5):808-812.
[24]CHEN SF,ZHOU YQ,CHEN YR,et al.fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.
[25]WOOD DE,LU J,LANGMEAD B.Improved metagenomic analysis with Kraken2[J].Genome Biol,2019,20(1):257.
[26]LU J,BREITWIESER FP,THIELEN P,et al.Bracken:estimating species abundance in metagenomics data[J].PeerJ Comput Sci,2017,3:e104.
[27]URITSKIY GV,DIRUGGIERO J,TAYLOR J.MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J].Microbiome,2018,6(1):158.
[28]ALTSCHUL SF,GISH W,MILLER W,et al.Basic local alignment search tool[J].J Mol Biol,1990,215(3):403-410.
[29]ARITA M,KARSCH-MIZRACHI I,COCHRANE G.The international nucleotide sequence database collaboration[J].Nucleic Acids Res,2021,49(1):D121-D124.
[30]SEEMANN T.Prokka:rapid prokaryotic genome annotation[J].Bioinformatics,2014,30(14):2068-2069.
[31]BUCHFINK B,REUTER K,DROST HG.Sensitive protein alignments at tree-of-life scale using DIAMOND[J].Nat Methods,2021,18(4):366-368.
[32]LIU B,ZHENG DD,ZHOU SY,et al.VFDB2022:a general classification scheme for bacterial virulence factors[J].Nucleic Acids Res,2022,50(1):D912-D917.
[33]ALCOCK BP,HUYNH W,CHALIL R,et al.CARD2023:expanded curation,support for machine learning,and resistome prediction at the Comprehensive Antibiotic Resistance Database[J].Nucleic Acids Res,2023,51(1):D690-D699.
[34]KRAVIK IH,KASPERSEN H,SJURSETH SK,et al.High sequence similarity between avian pathogenic E.coli isolates from individual birds and within broiler chicken flocks during colibacillosis outbreaks[J].Vet Microbiol,2022,267:109378.
[35]PANYAKO PM,OMMEH SC,KURIA SN,et al.Metagenomic characterization reveals virus coinfections associated with Newcastle disease virus among poultry in Kenya[J].J Basic Microbiol,2023,63(12):1383-1396.
[36]ZAMANI NH,HOSSEINI H,KAFI ZZ,et al.Whole-genome characterization of avian picornaviruses from diarrheic broiler chickens co-infected with multiple picornaviruses in Iran[J].Virus Genes,2023,59(1):79-90.
[37]TREGASKIS PL,DEVANEY R,SMYTH VJ.The first whole genome sequence and characterisation of avian nephritis virus genotype3[J].Viruses,2021,13(2):235.
[38]KAPGATE SS,BARBUDDHE SB,KUMANAN K.Next generation sequencing technologies:tool to study avian virus diversity[J].Acta Virol,2015,59(1):3-13.
[39]MANGIAMELE P,NICHOLSON B,WANNEMUEHLER Y,et al.Complete genome sequence of the avian pathogenic Escherichia coli strain APEC O78[J].Genome Announc,2013,1(2):e0002613.
[40]CUMMINS ML,LI D,AHMAD A,et al.Whole genome sequencing of avian pathogenic Escherichia coli causing bacterial chondronecrosis and osteomyelitis in Australian poultry[J].Microorganisms,2023,11(6):1513.
[41]BHATTARAI RK,BASNET HB,DHAKAL IP,et al.Virulence genes of avian pathogenic Escherichia coli isolated from commercial chicken in Nepal[J].Comp Immunol Microb Infect Dis,2023,95:101961.
[42]SIDHU GS,GO A,ATTAR BM,et al.Rifaximin versus norfloxacin for prevention of spontaneous bacterial peritonitis:a systematic review[J].BMJ Open Gastroenterol,2017,4(1):e000154.
[43]WANG JK,LIU Y,YIN QX.Studies on the mechanism of primary nucleation of ciprofloxacin hydrochloride monohydrate[J].Chin JChem Eng,2002,10(4):375-380.
[44]LI M,WEN F,ZHAO SG,et al.Exploring the molecular basis for binding of inhibitors by threonyl-tRNA synthetase from Brucella abortus:a virtual screening study[J].Int JMol Sci,2016,17(7):1078.
(編輯 白永平)