摘 要:下丘腦是參與進食調(diào)控的重要腦區(qū),具有復(fù)雜的環(huán)路調(diào)控機制。然而,是否存在下丘腦以外同樣發(fā)揮體重調(diào)節(jié)功能的神經(jīng)核團尚不清楚。本試驗利用神經(jīng)環(huán)路示蹤技術(shù),鑒定向背肩胛棕色脂肪組織(interscapular brown adipose tissue,IBAT)發(fā)送神經(jīng)元投射的神經(jīng)元類型和分布,探究中樞神經(jīng)元及神經(jīng)環(huán)路調(diào)節(jié)能量穩(wěn)態(tài)的形態(tài)學(xué)基礎(chǔ)。首先通過報告基因和逆行示蹤識別囊泡型谷氨酸轉(zhuǎn)運體2(vesicular glutamate transporter2,VGlut2)和細胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinase,ERK)神經(jīng)元,順行示蹤試驗拓展VGlut2神經(jīng)元發(fā)送神經(jīng)支配的大腦區(qū)域。化學(xué)遺傳技術(shù)驗證VGlut2免疫陽性神經(jīng)元的體重和采食調(diào)控作用。結(jié)果顯示:LCVGlut2::ERK神經(jīng)元向IBAT發(fā)送密集的神經(jīng)支配信號。ERK免疫陽性神經(jīng)元富集表達在LC,可作為LC特異性標(biāo)記物。LCVGlut2神經(jīng)元向紋狀體(neurons project to the striatum,CPu)、第二運動皮層(secondary motor cortex,M2)、下丘腦腹內(nèi)側(cè)核(ventromedial hypothalamic nucleus,VMH)和迷走神經(jīng)背核(dorsal motor nucleus of the vagus,DMV)發(fā)送神經(jīng)元投射?;瘜W(xué)遺傳激活LCVGlut2神經(jīng)元顯著降低小鼠體重(P=0.0165)和采食(P=0.0290)。(結(jié)論)綜上,LCVGlut2神經(jīng)元參與小鼠的體重調(diào)節(jié)過程。鑒定除下丘腦室旁核(paraventricular nucleus of hypothalamus,PVN)以外的谷氨酸能神經(jīng)元及調(diào)節(jié)體重的下游神經(jīng)環(huán)路,將進一步加深對于攝食行為和攝食過程中神經(jīng)調(diào)控機制的了解,為研究和干預(yù)肥胖相關(guān)的疾病提供新思路。
關(guān)鍵詞:下丘腦;谷氨酸能神經(jīng)元;藍斑核;體重
中圖分類號:S852.1
文獻標(biāo)志碼:A
文章編號:0366-6964(2024)06-2672-08
收稿日期:2023-09-25
基金項目:國家自然科學(xué)基金(32060204);內(nèi)蒙古科技攻關(guān)計劃(2021GG0199;2022YFHH0015);內(nèi)蒙古自治區(qū)直屬高校基本科研業(yè)務(wù)費項目(BR231507);內(nèi)蒙古自治區(qū)教育廳高等學(xué)??茖W(xué)研究項目(NJZY22535;NJZY23120);內(nèi)蒙古農(nóng)業(yè)大學(xué)職業(yè)技術(shù)學(xué)院草食家畜優(yōu)異種質(zhì)資源科技創(chuàng)新團隊項目(TDY202302)
作者簡介:李國俊(1977-),男,內(nèi)蒙古呼和浩特人,講師,主要從事動物營養(yǎng)、能量代謝調(diào)控研究,E-mail:liguojun6688@163.com;曹曉娟(1979-),女,山西太谷人,碩士,主要從事動物營養(yǎng)與飼料研究,E-mail:zykyk@163.com;劉昊東(1996-),男,內(nèi)蒙古赤峰人,博士,主要從事臨床獸醫(yī)學(xué)研究,E-mail:lhd@emails.imau.edu.cn。李國俊、曹曉娟和劉昊東為同等貢獻作者
*通信作者:杜晨光,主要從事臨床獸醫(yī)學(xué)研究,E-mail:duc@imau.edu.cn
Glutamatergic Neurons in Locus Ceruleus Mediated in the Regulation of Body Weight in Mice
LIGuojun1,CAOXiaojuan1,LIUHaodong2,3,4,LIPenghui2,3,4,LIJiacheng2,3,4,F(xiàn)ANQi2,3,4,WANGXing2,3,4,CHENYujie1,HAIRihan1,ZHANGXiaoyu1,DUChenguang1,2,3,4*
(1.Vocational and Technical College of Inner Mongolia Agricultural University,Baotou Tuyou014109,China; 2.Key Laboratory of Veterinary Basis and Disease Prevention and Control of Herbivorous Livestock in Inner Mongolia Autonomous Region,Hohhot010018,China; 3.Key Laboratory of Colleges and Universities in Animal Embryo and Development Engineering Autonomous Region,Hohhot010018,China; 4.College of Veterinary Medicine,Inner Mongolia Agricultural University,Hohhot010018,China)
Abstract:Hypothalamus is an important brain area involved in the regulation of food intake,which has acomplex circuit regulation mechanism.However,it is not clear whether there are nuclei that also play arole in weight regulation outside the hypothalamus.Therefore,in this study,the neural circuit tracer technique was used to identify the distribution and projection pattern of neurons in the locus coeruleus(LC)projecting to the interscapular brown adipose tissue(IBAT),and to explore the morphological basis of central neurons and neural circuits regulating energy homeostasis.The reporter gene and retrograde tracing were used to identify the localization of vesicular glutamate transporter2(VGlut2)and extracellular regulated protein kinase(ERK)neurons in the brain,and the anterograde tracing experiment expanded the brain area where VGlut2neurons sent innervation.The body weight and feeding regulation of VGlut2immunoreactive neurons were verified by chemical genetics.The results showed that LCVGlut2::ERK neurons sent dense innervation signals to IBAT.ERK immunoreactive neurons are enriched and expressed in LC and can be used as specific markers of LC.LCVGlut2neurons project to the striatum(CPu),secondary motor cortex(M2),ventromedial hypothalamic nucleus(VMH)and dorsal motor nucleus of the vagus(DMV).Chemical genetic activation of LCVGlut2neurons significantly decreased body weight(P=0.0165)and feed intake(P=0.0290).These results suggesting that LCVGlut2neurons were involved in the process of body weight regulation in mice.Identification of glutamatergic neurons other than paraventricular nucleus of hypothalamus(PVN)and downstream neural circuits regulating body weight will further understand the feeding mechanism and provide some inspiration for the development of obesity drugs.
Key words:hypothalamus; glutamatergic neurons; locus ceruleus; body weight
*Corresponding author:DU Chenguang,E-mail:duc@imau.edu.cn
肥胖的病理特征之一是代謝穩(wěn)態(tài)受損[1]。而中樞神經(jīng)系統(tǒng)的內(nèi)分泌信號在體重調(diào)節(jié)中起著至關(guān)重要的作用,主要通過經(jīng)典攝食中心下丘腦室旁核(paraventricular nucleus of hypothalamus,PVN)發(fā)揮功能[2]。最新研究結(jié)果證明藍斑核(locus coeruleus,LC)同樣參與能量和循環(huán)信號整合過程,調(diào)節(jié)食欲、體重和葡萄糖穩(wěn)態(tài)以及能量消耗。LC神經(jīng)元接受來自PVN的黑素皮質(zhì)素4型受體(melanocortin-4receptor,MC4R)神經(jīng)元輸入,對機體能量狀態(tài)作出響應(yīng),是控制食物攝入的充分和必要條件,這擴展了中樞神經(jīng)系統(tǒng)的飽腹感環(huán)路[3-4]。
作為大腦中去甲腎上腺素生成的主要部位[5],LC神經(jīng)元介導(dǎo)了食物和水的攝取行為[6]。LC核團主要存在兩種神經(jīng)元類型:囊泡型谷氨酸轉(zhuǎn)運體2(vesicular glutamate transporters,LCVGlut2)和細胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,LCERK)神經(jīng)元。VGlut2裝載谷氨酸進入突觸囊泡并促進釋放,是谷氨酸能神經(jīng)元和軸突末端高度特異性標(biāo)志物[7]。先前文獻報道選擇性地刪除PVNVGlut2神經(jīng)元后小鼠攝食量增加,揭示了攝食過程中VGlut2的重要作用[8]。ERK神經(jīng)元根據(jù)營養(yǎng)狀態(tài)和激素信號對進食產(chǎn)生反作用,其軸突向大腦的其他區(qū)域投射,如PVN[9]。PVN神經(jīng)元表達調(diào)節(jié)能量平衡的MC4R,阿黑皮素原(proopiomelanocortin,POMC)神經(jīng)元合成并分泌α黑素細胞刺激素(α-melanocyte-stimulating hormone,α-MSH)以激活PVN中MC4R神經(jīng)元并抑制食物攝入[10],刺鼠肽基因相關(guān)蛋白(agouti-related peptide,AgRP)/神經(jīng)肽Y(neuropeptide-Y,NPY)神經(jīng)元充當(dāng)MC4R的反向激動劑,促進食物攝入[11-12]。這些能量平衡相關(guān)的神經(jīng)元投射對體重產(chǎn)生影響。然而,目前尚不清楚與PVN存在突觸聯(lián)系的LC神經(jīng)元是否影響采食和體重,并且向LC提供神經(jīng)輸入的上游核團仍然未知。
因此,本研究通過逆行示蹤確定參與調(diào)節(jié)機體產(chǎn)熱的背肩胛棕色脂肪組織(interscapular brown adipose tissue,IBAT)與LC神經(jīng)核團之間的解剖聯(lián)系,以及VGlut2和ERK免疫陽性神經(jīng)元分布情況,進而明晰LCVGlut2神經(jīng)元發(fā)送投射的腦區(qū),并探究LCVGlut2神經(jīng)元介導(dǎo)采食和體重調(diào)控的相關(guān)性。通過鑒定能量穩(wěn)態(tài)調(diào)節(jié)神經(jīng)元的類型和下游環(huán)路,為開發(fā)抗肥胖的新策略提供些許解剖基礎(chǔ)。
1 材料與方法
1.1 試驗材料
實驗選用單轉(zhuǎn)基因或雙轉(zhuǎn)基因小鼠:VGlut2-IRES-Cre(VGlut2-Cre)和Ai14(tdTomatoTom/+)來自Jackson實驗室。將VGlut2-Cre小鼠與tdTomatoTom/+小鼠雜交,獲得VGlut2-Cre::tdTomatoTom/+小鼠。C57BL/6J野生小鼠(Wild male mice,WT,8~9周齡)由北京維通利華實驗動物技術(shù)有限公司提供。為避免激素周期對雌性小鼠生理參數(shù)的影響,所有試驗數(shù)據(jù)均來自雄性小鼠。小鼠被關(guān)在12h光/暗周期的籠子里,隨意獲取食物和水。
1.2 PRV逆行示蹤
選用雄性WT(n=3)小鼠,異氟烷麻醉后暴露雙側(cè)背肩胛棕色脂肪組織,隨機選取5個位點注射偽狂犬病病毒(pseudorabies virus,PRV)PRV-CAG-EGFP(1×1010基因組拷貝·mL-1,2×5×100nL)[13]。5μL微量注射針刺入約1cm后,后退0.5cm以制作潛在空腔,20s內(nèi)緩慢注入,停針20s,以防止回流。然后用紗布擦干注射部位,以防止泄漏到周圍組織和循環(huán)中。逐層縫合傷口。攻毒小鼠特殊環(huán)境單獨飼養(yǎng)以防病毒擴散,試驗結(jié)束后,對手術(shù)器具高壓滅菌,材料無害化處理。
1.3 免疫熒光
小鼠蠕動泵心肺灌注取材。Saline灌注2min后,轉(zhuǎn)為4%多聚甲醛(pH=7.4,Sigma-Aldrich,158127)繼續(xù)灌注20min取全腦。4%多聚甲醛4℃后固定6h,30%蔗糖脫水。冰凍切片機(Slee MNT,Mainz,Germany)將目標(biāo)區(qū)域切為若干張厚度30μm腦片,0.01mol·L-1磷酸鹽緩沖溶液(PBS)洗滌。4℃一抗孵育24h;兔抗ERK(1∶1000,Cell Signaling Technology,4370 S)和鼠抗VGlut2(1∶1000,Abcam,ab211869)。0.01mol·L-1PBS(pH7.4)洗滌腦片3次。二抗Alexa Fluor488山羊抗鼠IgG(1∶2000,Abcam,ab150113)和Alexa Fluor647驢抗兔IgG(1∶2000,Abcam,ab150075)于25℃下孵育2h。洗滌后,自然風(fēng)干。腦片在舒適恒溫孵育儀300r·min-1(Eppendorf ThermoMixerTM C)孵育,以加強抗體效果[14]。含0.4%TritonX-100(Sigma-Aldrich,T8787)的抗體稀釋液作為陰性對照。4倍和10倍物鏡的激光共聚焦顯微鏡(Nikon,C2Plus)對腦片進行成像。
1.4 腦立體定位注射
異氟烷麻醉VGlut2-Cre小鼠(n=5),將其放置在腦立體定位儀上(Neurostar,StereoDrive-DM)。涂抹紅霉素眼膏以保持眼部濕潤。借助儀器軟件顯示的位置進行定位和鉆孔,5μL微量注射器連接到微量注射泵上,吸取AAV2-DIO-ChR2-mCherry200nL(#35504,Addgene)注射于單側(cè)LC(from Lambda:AP:-4.90mm,ML:±1.10mm,DV:-3.25mm)[15]。化學(xué)遺傳試驗使用AAV9-DIO-hM3Dq-mCherry(100nL#44361,Addgene)或AAV9-DIO-mCherry(100nL#50459,Addgene)單側(cè)注射于上述坐標(biāo)。病毒注射完畢后,將針頭固定5min后慢慢拔出,縫合后單獨飼養(yǎng)。
1.5 采食與體重
化學(xué)遺傳病毒表達2周后,試驗當(dāng)天兩組小鼠腹腔注射N-氧化氯氮平(clozapine N-oxide,CNO,1mg·kg-1)進行化學(xué)遺傳激活試驗,注射CNO后測量1周內(nèi)的每日攝食量和體重變化。
1.6 數(shù)據(jù)統(tǒng)計
利用統(tǒng)計學(xué)軟件GraphPad Prism7,運用單因素方差分析,然后進行Tukey多重比較檢驗。當(dāng)未達到正態(tài)分布時,采用非參數(shù)Kruskal-Wallis檢驗進行比較。數(shù)據(jù)以“平均值±標(biāo)準誤(x-±sx-)”表示。P<0.05被認為表示結(jié)果具有統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 LCVGlut2/ERK神經(jīng)元參與支配IBAT
為了確認谷氨酸能神經(jīng)元是否參與支配IBAT,將表達增強型綠色熒光蛋白的偽狂犬病病毒PRV-CAG-EGFP注射到VGlut2-Cre::tdTomatoTom/+小鼠的IBAT中。逆行示蹤結(jié)果表明,在LC發(fā)現(xiàn)大量PRV標(biāo)記的EGFP免疫陽性神經(jīng)元和VGlut2免疫陽性神經(jīng)元的共定位,此外,抗體染色證明ERK免疫陽性神經(jīng)元與VGlut2和EGFP免疫陽性神經(jīng)元共表達于LC(圖1A白色箭頭)。病毒逆行示蹤結(jié)果表明LC存在支配IBAT的谷氨酸能ERK免疫陽性神經(jīng)元。
2.2 ERK神經(jīng)元表達分布
示蹤結(jié)果證明LC可能是介導(dǎo)IBAT產(chǎn)熱和機體代謝反應(yīng)的關(guān)鍵靶點,而聚集性表達的ERK神經(jīng)元可能在其中發(fā)揮重要作用,因此基于免疫熒光檢測了LC中ERK免疫陽性神經(jīng)元的表達。結(jié)果顯示,ERK免疫陽性神經(jīng)元散在性分布在LC的頭側(cè)(圖2A),從頭側(cè)延伸到核團中部時ERK免疫陽性神經(jīng)元數(shù)量明顯增多(圖2B),隨著第四腦室擴大,ERK免疫陽性神經(jīng)元聚集在腦室的內(nèi)側(cè)邊界,形成密集表達的三角區(qū)(圖2C)。該結(jié)果提供了LCERK免疫陽性神經(jīng)元的后腦解剖證據(jù)。
2.3 LCVGlut2神經(jīng)元順行示蹤
為了研究哪些下游核團參與了LC谷氨酸能神經(jīng)元的投射,利用順行病毒AAV-DIO-ChR2-mCherry單側(cè)注射到VGlut2-Cre小鼠的LC,病毒表達2周后,在注射位點觀察到mCherry標(biāo)記的谷氨酸能神經(jīng)元(圖3A)。此外,LCVGlut2神經(jīng)元向紋狀體(caudate putamen,CPu)(圖3B)、第二運動皮層(secondary motor cortex,M2)(圖3C)、下丘腦腹內(nèi)側(cè)核(ventromedial hypothalamic nucleus,VMH)(圖3D)和迷走神經(jīng)背核(dorsal motor nucleus of the vagus,DMV)(圖3E)發(fā)送投射,表明皮層區(qū)域和下丘腦核團在結(jié)構(gòu)上與LCVGlut2神經(jīng)元存在投射聯(lián)系。
2.4 激活LCVGlut2神經(jīng)元降低小鼠體重和采食量
為證實LCVGlut2神經(jīng)元對于小鼠體重和采食的調(diào)控作用,將化學(xué)遺傳病毒AAV-DIO-hM3Dq-mCherry單側(cè)注射到VGlut2-Cre小鼠的LC中(圖4A),腹腔注射CNO以特異性激活LCVGlut2神經(jīng)元。結(jié)果表明,LCVGlut2神經(jīng)元激活后顯著抑制hM3Dq組小鼠體重(mCherry vs hM3Dq,P=0.0165;圖4B)和采食(mCherry vs hM3Dq,P=0.0290;圖4C),表明LCVGlut2神經(jīng)元參與體重和采食調(diào)節(jié)過程。
3 討 論
能量代謝失衡導(dǎo)致的脂肪沉積是肥胖的主要原因,脂肪代謝過程需要整合中樞神經(jīng)系統(tǒng)和外周信號通路[16]。雖然中樞神經(jīng)系統(tǒng)在調(diào)節(jié)體重中的關(guān)鍵作用早已被認識到,但參與體重調(diào)節(jié)作用的關(guān)鍵神經(jīng)元類型和核團仍存在爭議。因此,本研究首先以調(diào)節(jié)IBAT功能的關(guān)鍵神經(jīng)核團LC入手。通過逆行示蹤技術(shù)在LC發(fā)現(xiàn)大量支配IBAT的谷氨酸能神經(jīng)元,化學(xué)遺傳激活LCVGlut2神經(jīng)元顯著減少小鼠體重和采食量。
LCVGlut2/ERK神經(jīng)元參與支配IBAT,現(xiàn)有研究證明,PVN神經(jīng)元特異性支配LC和PBN神經(jīng)元,PBN是腸道飽腹感和內(nèi)臟信號中轉(zhuǎn)站[17]。這兩條通路在功能上不同:LC控制飽腹感和總攝食量[18],而PBN神經(jīng)元控制進食模式[19],表明LC神經(jīng)元可能通過影響采食量來進一步平衡能量穩(wěn)態(tài)。未來的研究將補充其他檢測方法來多角度衡量能量代謝變化,探索LC中的非谷氨酸能神經(jīng)元亞群是否發(fā)送神經(jīng)信號以促進采食和體重,以闡明LC神經(jīng)元控制采食和體重的神經(jīng)網(wǎng)絡(luò)。
通過ERK抗體染色鑒別了LC的核團亞區(qū),LC頭側(cè)與尾側(cè)。有研究報道,抑制LC頭側(cè)的VGlut2神經(jīng)元降低小鼠攝食和飲水。而激活投射到LC頭側(cè)的強啡肽原(Pdyn)神經(jīng)元減少攝食[20]。表明LC周圍區(qū)域內(nèi)的功能需要進一步細分,后續(xù)工作應(yīng)定量描繪LC亞區(qū)的解剖與功能連接模式,為系統(tǒng)性解剖和闡述LC的神經(jīng)微環(huán)路奠定基礎(chǔ)。
VGlut2神經(jīng)元將NPY、AgRP釋放到下游核團,在調(diào)節(jié)攝食行為和體重方面發(fā)揮著重要作用。除了LC外,VGlut2在下丘腦神經(jīng)元中高度表達,在調(diào)節(jié)能量平衡中起主要作用。
使用攜帶shRNA的慢病毒敲除下丘腦外側(cè)核(LHA)中的VGlut2降低體溫和UCP1表達[21]。從POMC神經(jīng)元中刪除VGlut2導(dǎo)致高脂飲食的小鼠體重增加,選擇性恢復(fù)谷氨酸能阿黑皮素原(POMC)神經(jīng)元可避免POMC敲除小鼠的肥胖表型。而條件性γ-氨基丁酸(GABA)能POMC神經(jīng)元缺失對體重、再攝食或糖耐量均沒有影響[22]。盡管POMC神經(jīng)元能夠釋放快速作用的GABA和谷氨酸,但來自POMC神經(jīng)元的谷氨酸顯然在能量平衡調(diào)節(jié)中起著主導(dǎo)作用。此外,POMC神經(jīng)元釋放谷氨酸的投射特異性可能是不同行為表型的神經(jīng)基礎(chǔ)。例如,投射到腹側(cè)被蓋區(qū)的谷氨酸能POMC神經(jīng)元驅(qū)動獎勵,而投射到背側(cè)的谷氨酸POMC神經(jīng)元調(diào)節(jié)鎮(zhèn)痛反應(yīng)[23-24]。未來使用Cre重組酶的方法可以更好地了解釋放谷氨酸的POMC神經(jīng)元是否作用于下游核團以改變能量平衡,鑒別谷氨酸神經(jīng)環(huán)路背后的關(guān)鍵神經(jīng)信號對于開發(fā)更有效的肥胖治療方法至關(guān)重要。
4 結(jié) 論
LC中VGlut2/ERK免疫陽性神經(jīng)元參與支配IBAT,ERK免疫陽性神經(jīng)元富集表達于LC,LCVGlut2神經(jīng)元向CPu、M2、VMH和DMV發(fā)送神經(jīng)元投射,化學(xué)遺傳激活LC降低小鼠體重和采食。
參考文獻(References):
[1]PERDOMO CM,COHEN RV,SUMITHRAN P,et al.Contemporary medical,device,and surgical therapies for obesity in adults[J].Lancet,2023,401(10382):1116-1130.
[2]ARESTAKESYAN H,BLACKMORE K,SMITH HC,et al.Large-field-of-view scanning electron microscopy of the paraventricular nucleus of the hypothalamus during diet-induced obesity[J].J Neurophysiol,2023,130(2):345-352.
[3]LIU HD,LI XJ,LI PH,et al.Glutamatergic melanocortin-4receptor neurons regulate body weight[J].FASEB J,2023,37(5):e22920.
[4]FóSCOLO DR C,LIMA PM A,RODOVALHO GV,et al.Early maternal separation alters the activation of stress-responsive brain areas in adulthood[J].Neurosci Lett,2022,771:136464.
[5]WANG X,ESCOBAR JB,MENDELOWITZ D.Sex differences in the hypothalamic oxytocin pathway to locus coeruleus and augmented attention with chemogenetic activation of hypothalamic oxytocin neurons[J].Int JMol Sci,2021,22(16):8510.
[6]GONG R,XU SJ,HERMUNDSTAD A,et al.Hindbrain double-negative feedback mediates palatability-guided food and water consumption[J].Cell,2020,182(6):1589-1605.
[7]BRAVO L,MARISCAL P,LLORCA-TORRALBA M,et al.Altered expression of vesicular glutamate transporter-2and cleaved caspase-3in the locus coeruleus of nerve-injured rats[J].Front Mol Neurosci,2022,15:918321.
[8]GRZELKA K,WILHELMS H,DODT S,et al.A synaptic amplifier of hunger for regaining body weight in the hypothalamus[J].Cell Metab,2023,35(5):770-785.e5.
[9]RAMíREZ D,SABA J,CARNIGLIA L,et al.Melanocortin4receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus[J].Mol Cell Endocrinol,2015,411:28-37.
[10]IQBAL NJ,SCHWARTZ GJ,ZHAO HL,et al.Cyclin-dependent kinase4/6inhibitors require an arcuate-to-paraventricular hypothalamus melanocortin circuit to treat diet-induced obesity[J].Am JPhysiol Endocrinol Metab,2021,320(3):E467-E474.
[11]SINGH U,JIANG JW,SAITO K,et al.Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations[J].Mol Metab,2022,55:101401.
[12]COSTA-E-SOUSA RH,RORATO R,HOLLENBERG AN,et al.Regulation of thyroid hormone levels by hypothalamic thyrotropin-releasing hormone neurons[J].Thyroid,2023,33(7):867-876.
[13]FRAN?OIS M,TORRES H,HUESING C,et al.Sympathetic innervation of the interscapular brown adipose tissue in mouse[J].Ann NY Acad Sci,2019,1454(1):3-13.
[14]PAN D,F(xiàn)AN KK,LI Q,et al.Response of the expression of oxytocin neurons to ghrelin in female mice[J].Exp Brain Res,2020,238(4):1085-1095.
[15]SCHWARZ LA,MIYAMICHI K,GAO XJ,et al.Viral-genetic tracing of the input-output organization of acentral noradrenaline circuit[J].Nature,2015,524(7563):88-92.
[16]JIANG YY,REZAI-ZADEH K,DESMOULINS LD,et al.GABAergic leptin receptor-expressing neurons in the dorsomedial hypothalamus project to brown adipose tissue-related neurons in the paraventricular nucleus of mice[J].Auton Neurosci,2023,245:103058.
[17]PHUA SC,TAN YL,KOK AM Y,et al.A distinct parabrachial-to-lateral hypothalamus circuit for motivational suppression of feeding by nociception[J].Sci Adv,2021,7(19):eabe4323.
[18]SCIOLINO NR,HSIANG M,MAZZONE CM,et al.Natural locus coeruleus dynamics during feeding[J].Sci Adv,2022,8(33):eabn9134.
[19]SABATINI PV,F(xiàn)RIKKE-SCHMIDT H,ARTHURS J,et al.GFRAL-expressing neurons suppress food intake via aversive pathways[J].Proc Natl Acad Sci US A,2021,118(8):e2021357118.
[20]LEE S,AUGUSTINE V,ZHAO Y,et al.Chemosensory modulation of neural circuits for sodium appetite[J].Nature,2019,568(7750):93-97.
[21]ROSSI MA,BASIRI ML,LIU YJ,et al. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area[J].Neuron,2021,109(23):3823-3837.
[22]RAU AR,KING CM,HENTGES ST.Disruption of GABA or glutamate release from POMC neurons in the adult mouse does not affect metabolic end points[J].Am JPhysiol Regul Integr Comp Physiol,2020,319(5):R592-R601.
[23]RAU AR,HENTGES ST.Energy state alters regulation of proopiomelanocortin neurons by glutamatergic ventromedial hypothalamus neurons:pre-and postsynaptic mechanisms[J].J Neurophysiol,2021,125(3):720-730.
[24]RAU AR,HUGHES AR,HENTGES ST.Various transgenic mouse lines to study proopiomelanocortin cells in the brain stem label disparate populations of GABAergic and glutamatergic neurons[J].Am JPhysiol Regul Integr Comp Physiol,2018,315(1):R144-R152.
(編輯 白永平)