摘 要:旨在探究鳥苷酸結(jié)合蛋白2b(guanylate-binding protein2b,GBP2b)對M.bovis感染的小鼠單核巨噬細(xì)胞系RAW264.7細(xì)胞M1、M2型極化的調(diào)控及其介導(dǎo)的信號通路。通過小干擾RNA下調(diào)RAW264.7巨噬細(xì)胞內(nèi)GBP2b表達(dá),分別利用qRT-PCR、Western blot和流式細(xì)胞術(shù)檢測M1、M2型巨噬細(xì)胞表面標(biāo)志物以及依賴MyD88信號通路關(guān)鍵蛋白表達(dá)情況;雙螢光素酶報(bào)告基因檢測GBP2b對NF-κB轉(zhuǎn)錄調(diào)控。結(jié)果表明GBP2b在M.bovis感染的巨噬細(xì)胞內(nèi)高表達(dá).下調(diào)RAW264.7巨噬細(xì)胞的GBP2b后再經(jīng)M.bovis感染24h,M1巨噬細(xì)胞表面標(biāo)志物表達(dá)下調(diào),而對M2巨噬細(xì)胞表面標(biāo)志物表達(dá)無顯著影響。下調(diào)GBP2b后抑制了NF-κB的轉(zhuǎn)錄啟動,依賴MyD88信號通路相關(guān)蛋白隨GBP2b的下調(diào)而下調(diào)。結(jié)果表明,GBP2b主要通過依賴MyD88信號通路促進(jìn)M.bovis感染的RAW264.7巨噬細(xì)胞向M1表型極化和炎性反應(yīng),從而有助于巨噬細(xì)胞清除胞內(nèi)M.bovis。
關(guān)鍵詞:牛分枝桿菌;鳥苷酸結(jié)合蛋白2b;巨噬細(xì)胞;M1極化;M2極化
中圖分類號:S852.4
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)06-2641-11
收稿日期:2023-10-07
基金項(xiàng)目:寧夏回族自治區(qū)重大科技成果轉(zhuǎn)化項(xiàng)目(2023CJE09028)
作者簡介:于有利(1991-),女,河北張家口人,副研究員,博士,主要從事動物疫病防控和致病機(jī)制研究,E-mail:yyl06010323@163.com。王建東(1980-),男,寧夏同心人,副研究員,碩士,主要從事動物疾病防治研究,E-mail:jiandongwang668@126.com。于有利和王建東為同等貢獻(xiàn)作者
*通信作者:于有利,E-mail:yyl06010323@163.com
Role of Guanylate Binding Protein2b during Macrophage Polarization Induced
by Mycobacterium bovis
YUYouli1*,WANGJiandong1,GUOYa’nan1,ZHANGJiupan1,XUEFeng2,CAOYuying2
(1.Institute of Animal Science,Ningxia Academy of Agriculture and Forestry
Sciences,Yinchuan750002,China; 2.College of Veterinary Medicine,Nanjing
Agricultural University,Nanjing210095,China)
Abstract:This study aimed to investigate the effect of guanylate binding protein2b(GBP2b)on M.bovis infection of RAW264.7cells and its signal pathways in polarization of M1and M2during M.bovis infection.Downregulate the expression of GBP2b in RAW264.7macrophages through small interfering RNA,and detect the expression of M1and M2macrophage surface markers and key proteins related to the MyD88signaling pathway using qRT-PCR,Western blot,and flow cytometry,respectively.Dual luciferase reporter assay to examine the effect of GBP2b on NF-κB transcriptional regulation.The results showed that GBP2b was highly expressed in macrophages infected with M.bovis.After downregulating the expression of GBP2b in RAW264.7macrophages and then being infected with M.bovis for24h,the expression of surface markers in M1macrophages was downregulated,while there was no significant effect on the expression of surface markers in M2macrophages.The transcription initiation of NF-κB is inhibited,and the downregulation of MyD88signaling pathway related protein expression were due to the downregulation of GBP2b.The results indicate that GBP2b mainly promotes the polarization and inflammatory response of RAW264.7macrophage infected with M.bovis towards the M1phenotype by relying on the MyD88signaling pathway,thereby helping macrophages clear intracellular M.bovis.
Key words:M.bovis; GBP2b; macrophages; M1polarization; M2polarization
*Corresponding author:YU Youli,E-mail:yyl06010323@163.com
牛分枝桿菌(Mycobacterium bovis,M.bovis)屬于結(jié)核分枝桿菌(Mycobacterium tuberculosis,Mtb)復(fù)合群,由M.bovis感染引起的結(jié)核病仍然是全球主要的傳染病之一[1-3]。巨噬細(xì)胞作為M.bovis感染的主要效應(yīng)細(xì)胞,其殺菌功能嚴(yán)格依賴于細(xì)胞的激活表型[4-6]。由Th1細(xì)胞因子(如IFN-γ)引發(fā)的巨噬細(xì)胞極化為促炎性M1表型巨噬細(xì)胞,在存在微生物配體的情況下增加活化水平,產(chǎn)生大量促炎細(xì)胞因子,觸發(fā)活性氧(ROI)和氮(RNI)中間體的產(chǎn)生,增強(qiáng)巨噬細(xì)胞的殺菌能力和細(xì)胞毒性[7-9]。相比之下,由Th2細(xì)胞因子(如IL-4和IL-13)激活的巨噬細(xì)胞為抑炎型M2表型巨噬細(xì)胞,具有抗炎和組織修復(fù)活性[10-11]。在M.bovis感染巨噬細(xì)胞的任何時(shí)間點(diǎn),特別是感染早期,巨噬細(xì)胞都可以被極化成促炎細(xì)胞群(M1表型)增強(qiáng)宿主細(xì)胞對胞內(nèi)M.bovis的持續(xù)殺滅和清除[12-13]。因此,M.bovis感染過程中巨噬細(xì)胞向M1表型極化對于宿主抗感染具有重要作用。
鳥苷酸結(jié)合蛋白(guanylate-binding protein,GBP)1(GBP1/GBP2b)是一個(gè)IFN-γ誘導(dǎo)GTP酶大家族的成員,廣泛參與調(diào)節(jié)各種細(xì)胞功能,包括細(xì)胞焦亡、凋亡和自噬等過程[14-16]。前期課題組研究發(fā)現(xiàn),GBP2b在M.bovis感染的RAW264.7巨噬細(xì)胞和組織中高表達(dá),并通過AMPK-mTOR-ULK1信號通路調(diào)控細(xì)胞自噬促進(jìn)巨噬細(xì)胞清除胞內(nèi)M.bovis,在M.bovis感染引起的免疫反應(yīng)中發(fā)揮重要調(diào)控作用[17]。Wandel等[14]報(bào)道GBP2b直接與細(xì)胞溶質(zhì)LPS結(jié)合,將炎性半胱氨酸半胱天冬酶4(caspase4)帶到細(xì)菌表面,誘導(dǎo)細(xì)胞焦亡。GBP2b參與炎癥性銀屑病期間,IFN-γ驅(qū)動人單核細(xì)胞向促炎性巨噬細(xì)胞分化過程[18]。此外,對急性呼吸窘迫綜合征患者所有基因表達(dá)譜的生物信息學(xué)分析顯示,GBP2b是促進(jìn)M1巨噬細(xì)胞極化的關(guān)鍵基因[19]。另一項(xiàng)研究表明,通過將蛋白質(zhì)組學(xué)與co豐度網(wǎng)絡(luò)相結(jié)合預(yù)測出GBP2b可能是促進(jìn)巨噬細(xì)胞向M1表型極化的關(guān)鍵分子[20]。但另一種相反的觀點(diǎn)報(bào)道,在小鼠脂肪細(xì)胞中,下調(diào)GBP2b的表達(dá)會損害線粒體呼吸功能,導(dǎo)致巨噬細(xì)胞向促炎表型分化,表明GBP2b可抑制巨噬細(xì)胞向M1表型極化[21]。因此,GBP2b在巨噬細(xì)胞極化中的調(diào)控作用仍有很大爭議,另外GBP2b在M.bovis感染過程中是否參與調(diào)控巨噬細(xì)胞極化未見報(bào)道。因此,本研究通過干擾RAW264.7巨噬細(xì)胞中的GBP2b后,再經(jīng)M.bovis感染,探討GBP2b對M.bovis感染的巨噬細(xì)胞極化表型的影響以及相關(guān)信號通路的調(diào)控作用。
1 材料與方法
1.1 主要材料
M.bovis強(qiáng)毒株購自中國獸藥控制研究所,在含有的7H9Middlebrook Broth培養(yǎng)基(含0.05%吐溫80和10%白蛋白-葡萄糖-過氧化氫酶添加劑)中培養(yǎng)。于37℃培養(yǎng)箱中持續(xù)培養(yǎng)3~4周至對數(shù)生長中期。小鼠單核巨噬細(xì)胞RAW264.7細(xì)胞系和乳倉鼠腎細(xì)胞BHK21細(xì)胞系由本實(shí)驗(yàn)室保存。6~8周齡雌性C57BL/6小鼠購自北京維通利華實(shí)驗(yàn)動物技術(shù)有限公司。動物實(shí)驗(yàn)通過南京農(nóng)業(yè)大學(xué)實(shí)驗(yàn)動物倫理審查委員會(PTA2019024)審批,符合動物倫理和福利要求。
1.2 主要儀器
CO2細(xì)胞培養(yǎng)箱(Thermo Fisher); 羅氏LightCycler480II實(shí)時(shí)熒光定量PCR儀(Thermo Fisier); 倒置熒光顯微鏡(Olympus); 化學(xué)發(fā)光成像系統(tǒng)(Biorad); 流式細(xì)胞儀(BD); 多功能酶標(biāo)儀(TECAN)。
1.3 主要試劑
DMEM培養(yǎng)基、胎牛血清、PBS緩沖液(Gibco);Middlebrook7H9Broth、MiddleBrook7H10瓊脂(BD Biosciences);吐溫80、10%白蛋白-葡萄糖-過氧化氫酶添加劑、jetPRIME轉(zhuǎn)染試劑、Alexa Fluor647標(biāo)記山羊抗兔IgG(南京福麥斯);雙螢光素酶報(bào)告基因檢測試劑盒、BCA蛋白定量試劑盒、RIPA裂解液裂、蛋白酶抑制劑PMSF、組織固定液、抗熒光淬滅劑、DAPI、細(xì)胞消化液(上海碧云天);SYBR Premix Ex TaqTM、HiScriptII One Step qRT-PCR SYBR Green Ki(TaKaR);APC-CD206流式抗體、APC-CD86流式抗體(Invitrogen);E.Z.N.A Total RNA Kit I(Omega)。
1.4 方法
1.4.1 設(shè)計(jì)siRNA及干擾效果評價(jià)
針對GBP2b基因序列,由上海吉瑪公司設(shè)計(jì)并合成3條GBP2b特異性siRNA(siGBP2b-388,siGBP2b-765和siGBP2b-1625)及陰性對照siRNA(siCon),序列見表1,將RAW264.7細(xì)胞以1×106個(gè)·孔-1的密度接種在6孔細(xì)胞培養(yǎng)板中,每孔加2mL10%FBS-DMEM培養(yǎng)基,每組處理設(shè)置3個(gè)重復(fù),隨后將細(xì)胞放置37 ℃5%CO2培養(yǎng)箱培養(yǎng)12h使其貼壁。將不同siRNA稀釋成20μmol·L-1的儲存液,分別將2μL siRNA分別放入1.5mL離心管中,隨后向每管中加入200μL jet PRIME buffer和4μL jet PRIME轉(zhuǎn)染試劑,低速渦旋10s,瞬時(shí)離心后,室溫靜置10min,形成轉(zhuǎn)染復(fù)合物逐滴滴加在RAW264.7貼壁細(xì)胞中,待轉(zhuǎn)染48h后,再經(jīng)M.bovis感染24h,通過qRT-PCR和Western blot驗(yàn)證siRNA干擾效率,最終選擇干擾效率最高的siRNA用于后續(xù)試驗(yàn)。
1.4.2 RT-qPCR
將siCon細(xì)胞和siGBP2b細(xì)胞,分別按1×106個(gè)·孔-1接種在6孔板中,貼壁過夜。次日以1×107CFU(MOI=10)的M.bovis分別感染siCon細(xì)胞和siGBP2b細(xì)胞24h后,PBS清洗3次,向6孔板中加入1mL Trizol,吹打均勻后,收集至1.5 mL離心管中。將小鼠1/2肺組織和1/2脾組織經(jīng)組織破碎儀勻漿后,同細(xì)胞一同使用E.Z.N.A Total RNA Kit I試劑盒提取組織和細(xì)胞總RNA,具體步驟參照說明書。使用多功能酶標(biāo)儀測定RNA的濃度和純度。使用羅氏LightCycler480Ⅱ?qū)崟r(shí)熒光定量PCR和HiScriptII One Step qRT-PCR SYBR Green Kit進(jìn)行qRT-PCR擴(kuò)增。最后采用2-ΔΔCt法計(jì)算GBP2b、M1標(biāo)志物(iNOS、IL-1β和TNF-a)以及M2標(biāo)志物(Mrc1、IL-10和Arg1)[如誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、白細(xì)胞介素(interleukin,IL)-1β(IL-1β)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)]以及M2標(biāo)志物[如IL-10、精氨酸酶1(arginase1,Arg1)和甘露糖受體C1樣蛋白1(mannose receptor1,Mrc1)]的mRNA水平,使用引物設(shè)計(jì)軟件Primer7.0設(shè)計(jì)特異性熒光定量PCR引物,引物由南京擎科生物技術(shù)服務(wù)有限公司合成,見表2。
1.4.3 Western blot
將siCon細(xì)胞和siGBP2b細(xì)胞,分別按1×106個(gè)·孔-1接種在6孔板中,貼壁過夜。次日以1×107CFU(MOI=10)的M.bovis分別感染24h后。感染結(jié)束后用預(yù)冷的PBS清洗3次,加入預(yù)冷的RIPA和蛋白酶抑制劑PMSF,冰上孵育15min以裂解細(xì)胞。裂解的細(xì)胞于12000r·min-1,4℃,離心10min,分別取上清液,通過BCA蛋白定量試劑盒對提取的蛋白進(jìn)行定量。在提取的蛋白中加入5×蛋白上樣緩沖液,然后100 ℃煮沸10min,-80 ℃保存?zhèn)溆?。Western blot試驗(yàn)蛋白上樣量為20μg。用于Western blot分析的抗體見表3。
1.4.4 流式細(xì)胞術(shù)
將siCon細(xì)胞和siGBP2b細(xì)胞分別按1×106個(gè)·孔-1接種在6孔板中,貼壁過夜。次日以1×107CFU(MOI=10)的M.bovis分別感染24h,感染結(jié)束后,用PBS清洗細(xì)胞3次,用細(xì)胞消化液將細(xì)胞消化下來,300×g離心5min,棄上清。將同一孔細(xì)胞分成兩份,分別避光孵育APC-CD206流式抗體和APC-CD86流式抗體各30min,同時(shí)設(shè)置空白管、APC單染管和PE單染管,待染色結(jié)束后,PBS清洗3次,最后每組細(xì)胞用500μL PBS重懸,經(jīng)流式細(xì)胞儀分別檢測PE和APC熒光通道分別用于統(tǒng)計(jì)CD86和CD206白細(xì)胞分化抗原86(cluster of differentiation86,CD86)和巨噬細(xì)胞甘露糖受體CD206(cluster of differentiation206,CD206)細(xì)胞陽性比例。
1.4.5 免疫熒光檢測NF-κB p65核易位
將siCon細(xì)胞和siGBP2b細(xì)胞分別按1×105個(gè)·皿-1接種在35mm玻底共聚焦培養(yǎng)皿中,貼壁過夜。次日以1×107CFU(MOI=10)的M.bovis分別感染24h,同時(shí)設(shè)置未感染組;待感染結(jié)束后,PBS洗滌3次,每次5min;加入500μL4%多聚甲醛,室溫固定細(xì)胞15min,PBS洗滌3次,每次5min;用兔抗NF-κB p65抗體(1∶500稀釋)于37 ℃孵育細(xì)胞2h,PBS洗滌3次,每次5min;隨后用Alexa Fluor647標(biāo)記山羊抗兔IgG(1∶1000稀釋)于37 ℃孵育細(xì)胞1h,PBS洗滌3次,每次5min;DAPI(1∶1000稀釋)染色5min,PBS洗滌3次,每次5min,最后用抗熒光淬滅劑封片并用激光共聚焦顯微鏡進(jìn)行圖像采集。
1.4.6 雙熒光素酶檢測
取對數(shù)生長期的BHK21細(xì)胞,以1×106個(gè)·孔-1接種在6孔細(xì)胞培養(yǎng)板中,生長至70%~80%后,按以下分組:設(shè)以下分組空白組(Mock)、對照組(pRL-TK+NF-κB)和試驗(yàn)組(RL-TK+NF-κB+siCon和RL-TK-NF-κB+siGBP2b)進(jìn)行試驗(yàn),使用jetPRIME轉(zhuǎn)染試劑與siCon、siGBP2b、RL-TK+NF-κB共轉(zhuǎn)染36h后收集細(xì)胞。按照雙熒光素酶報(bào)告基因檢測試劑盒的說明,使用雙熒光素酶/海腎測定系統(tǒng)測定報(bào)告基因的活性,海腎熒光素酶表達(dá)質(zhì)粒pRL-TK用作內(nèi)部對照以標(biāo)準(zhǔn)化轉(zhuǎn)染效率。
2 結(jié) 果
2.1 M.bovis感染RAW264.7細(xì)胞后GBP2b表達(dá)量變化
為了揭示GBP2b是否與M.bovis感染相關(guān),通過M.bovis感染RAW264.7細(xì)胞在感染不同MOI(0、2、10和50)24h后或感染MOI為10的M.bovis不同時(shí)間點(diǎn)(0、6、12和24h)后,通過qRT-PCR和Western blot檢測感染細(xì)胞中GBP2b的mRNA和蛋白表達(dá)水平。結(jié)果顯示GBP2b的mRNA和蛋白水平在RAW264.7細(xì)胞感染不同MOI和不同時(shí)間點(diǎn)后均顯著上調(diào)(圖1)。其中在感染MOI為10的M.bovis時(shí),感染時(shí)間為6h時(shí),GBP2b的mRNA水平最高。在MOI為10時(shí)以及感染時(shí)間為24h時(shí)表達(dá)12時(shí)蛋白水平最高,其中mRNA和蛋白水平上的差異可能是由于mRNA和蛋白的不同步表達(dá)所致。以上結(jié)果表明,GBP2b與M.bovis感染相關(guān)。
2.2 GBP2b干擾效果
為了深入了解GBP2b在M.bovis感染巨噬細(xì)胞中的調(diào)控作用,通過qRT-PCR和Western blot檢測GBP2b的干擾效果,發(fā)現(xiàn)相較對照組siCon,siGBP2b-1625能顯著抑制細(xì)胞內(nèi)GBP2b的mRNA和蛋白水平,因此將siGBP2b-1625用于后續(xù)試驗(yàn)(圖2)。
2.3 GBP2b對M.bovis感染巨噬細(xì)胞極化表型的影響
為了探究GBP2b是否影響M.bovis感染后的巨噬細(xì)胞極化,通過qRT-PCR和流式細(xì)胞術(shù)檢測M.bovis(MOI10)分別感染siCon細(xì)胞和siGBP2b細(xì)胞24h后,M1和M2巨噬細(xì)胞極化表型的表面標(biāo)志物。如圖3qRT-PCR結(jié)果所示,相較siCon細(xì)胞,siGBP2b細(xì)胞中M1巨噬細(xì)胞標(biāo)志物如誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS、白細(xì)胞介素(interleukin,IL)-1β(IL-1β、腫瘤壞死因子α(tumor necrosis factor α,TNF-α的mRNA水平顯著上調(diào),差異顯著(P<0.05,圖3A),而M2巨噬細(xì)胞標(biāo)志物如IL-10、精氨酸酶1(arginase1,Arg1和甘露糖受體C1樣蛋白1(mannose receptor1,Mrc1的mRNA水平無顯著差異(P>0.05,圖3B)。另外通過流式細(xì)胞術(shù)檢測M1巨噬細(xì)胞標(biāo)志物-白細(xì)胞分化抗原86(cluster of differentiation86,CD86和M2巨噬細(xì)胞標(biāo)志物-巨噬細(xì)胞甘露糖受體CD206(cluster of differentiation206,CD206)。結(jié)果如圖3C和D所示,相較siCon組,siGBP2b組內(nèi)CD86陽性細(xì)胞比例顯著上調(diào)(P<0.05,圖3C),尤其是感染后;而CD206陽性細(xì)胞數(shù)量無顯著變化(P>0.05,圖3C)。以上結(jié)果表明干擾GBP2b表達(dá)可抑制M.bovis感染后的RAW264.7細(xì)胞向M1型極化,但對M2巨噬細(xì)胞極化無顯著影響,GBP2b通過促進(jìn)M1巨噬細(xì)胞極化抑制了M.bovis在細(xì)胞內(nèi)的存活。
2.4 GBP2b參與調(diào)控NF-κB轉(zhuǎn)錄的啟動子
NF-κB作為一種參與調(diào)節(jié)多種生物反應(yīng)的轉(zhuǎn)錄因子,通過介導(dǎo)多種促炎細(xì)胞因子和其它抗菌效應(yīng)分子的分泌來增強(qiáng)適應(yīng)性免疫,在M.bovis感染和巨噬細(xì)胞極化過程中發(fā)揮重要作用[22]。據(jù)報(bào)道ROS-NF-κB、TLR4/NF-κB/STAT3等通路影響巨噬細(xì)胞極化。因此,作者推測GBP2b可能通過NF-κB影響巨噬細(xì)胞極化。通過對GBP2b和NF-κB啟動子結(jié)合位點(diǎn)預(yù)測,如表4所示,GBP2b可能對NF-κB的轉(zhuǎn)錄啟動子具有調(diào)控作用。最終通過雙熒光素酶檢測結(jié)果發(fā)現(xiàn),與siCon組相比,siGBP2b組的雙熒光素酶活性相對值降低(Plt;0.05,圖4),表明NF-κB啟動子的轉(zhuǎn)錄被抑制,表明GBP2b對NF-κB的轉(zhuǎn)錄啟動具有正向控作用。
2.5 GBP2b對M.bovis感染巨噬細(xì)胞中TLR信號相關(guān)蛋白的影響
眾所周知,TLR信號與巨噬細(xì)胞極化密切相關(guān),因此為了進(jìn)一步研究GBP2b對M.bovis感染巨噬細(xì)胞極化和炎性反應(yīng)的調(diào)控是否與TLR信號相關(guān),用M.bovis感染干擾GBP2b的RAW264.7細(xì)胞24h,通過Western blot檢測TLR信號中關(guān)鍵分子TLR2、TLR4、MyD88、p-NF-κB p65、IRF3、TBK1的蛋白表達(dá)水平,結(jié)果如圖5所示,與siCon+M.bovis組相比,siGBP2b+M.bovis組依賴MyD88通路相關(guān)蛋白TLR2、TLR4、MyD88、TRAF-6和p-NF-κB p65的表達(dá)顯著下調(diào)(Plt;0.01)(圖6),NF-κB p65核易位被抑制(圖6)以上結(jié)果表明,干擾GBP2b后下調(diào)依賴MyD88通路相關(guān)蛋白,GBP2b介導(dǎo)M1巨噬細(xì)胞極化和炎性反應(yīng)主要是依賴MyD88信號通路。
3 討 論
M.bovis感染引起的結(jié)核病是一種慢性炎癥性疾病,巨噬細(xì)胞是M.bovis感染的關(guān)鍵效應(yīng)細(xì)胞。M.bovis通過利用巨噬細(xì)胞群體的異質(zhì)性來獲取自身優(yōu)勢,可優(yōu)先招募和感染更適合其生長的巨噬細(xì)胞并改變募集的巨噬細(xì)胞的激活狀態(tài),從而影響它們產(chǎn)生的細(xì)胞因子和趨化因子[23]。巨噬細(xì)胞感染后的激活狀態(tài)決定了感染的進(jìn)程和疾病的轉(zhuǎn)歸[23-24]。諸多結(jié)核病的臨床研究己證實(shí),促炎型M1巨噬細(xì)胞,對抵御M.bovis的感染具有重要的作用[25]。然而,關(guān)于哪些分子調(diào)控M1型和M2型巨噬細(xì)胞潛在機(jī)制仍不明確。GBP2b作為多種形式細(xì)胞死亡的上游調(diào)節(jié)器,介導(dǎo)病原體釋放胞質(zhì)微生物配體,促進(jìn)先天免疫檢測,促進(jìn)炎癥和細(xì)胞死亡反應(yīng)[14-16]。在本研究中,通過干擾RAW264.7細(xì)胞內(nèi)GBP2b后,探究GBP2b在M.bovis感染過程中調(diào)控巨噬細(xì)胞極化表型的影響,結(jié)果發(fā)現(xiàn)GBP2b在M.bovis感染的RAW264.7巨噬細(xì)胞中高表達(dá),且GBP2b可促進(jìn)M1巨噬細(xì)胞極化,而對M2巨噬細(xì)胞極化無顯著影響。目前,在M.bovis感染巨噬細(xì)胞調(diào)控極化涉及的信號通路主要包括TLR/NF-κB通路、JAK/STAT通路、IRFs通路、Notch通路、PI3K/Akt通路等[26-28]。Toll樣受體(TLRs)是PRR家族的主要成員,可識別M.bovis的多種結(jié)構(gòu),通過介導(dǎo)多種促炎細(xì)胞因子和其它抗菌效應(yīng)分子的分泌來增強(qiáng)適應(yīng)性免疫。TLR在識別相應(yīng)的PAMP后,通過TIR結(jié)構(gòu)域傳遞信號,激發(fā)下游的級聯(lián)效應(yīng)。其主要的信號轉(zhuǎn)導(dǎo)通路包括MyD88依賴通路,該通路通過激活MyD88及相應(yīng)的下游效應(yīng)因子來磷酸化NF-κB的抑制因子IkB,從而活化NF-κB,啟動相應(yīng)的基因轉(zhuǎn)錄[29]。在本研究中,通過對依賴MyD88通路的相關(guān)蛋白表達(dá)的檢測結(jié)果發(fā)現(xiàn)干擾GBP2b后再經(jīng)M.bovis感染的巨噬細(xì)胞中依賴MyD88通路的蛋白表達(dá)顯著下調(diào)。進(jìn)一步通過對GBP2b和NF-κB啟動子的結(jié)合位點(diǎn)進(jìn)行預(yù)測,發(fā)現(xiàn)下調(diào)GBP2b后可抑制NF-κB轉(zhuǎn)錄因子啟動子的激活,表明GBP2b對NF-κB轉(zhuǎn)錄有正向調(diào)控作用。因此,猜測GBP2b可能通過依賴MyD88信號通路促進(jìn)了M.bovis感染巨噬細(xì)胞向M1型極化以及增強(qiáng)感染后的巨噬細(xì)胞炎性反應(yīng),增強(qiáng)巨噬細(xì)胞的殺菌能力。然而,GBP2b具體如何調(diào)控依賴MyD88信號通路有待更深入的研究。
4 結(jié) 論
本研究結(jié)果表明M.bovis感染通過GBP2b調(diào)控M1巨噬細(xì)胞極化,并且這一過程是依賴MyD88信號通路介導(dǎo)的。基于M1巨噬細(xì)胞極化在M.bovis感染中的重要性,GBP2b有望成為藥物靶向篩選和治療M.bovis感染的潛在靶點(diǎn)。
參考文獻(xiàn)(References):
[1]LANGE C,AABY P,BEHR MA,et al.100years of Mycobacterium bovis bacille Calmette-Guérin[J].Lancet Infect Dis,2022,22(1):e2-e12.
[2]TAYE H,ALEMU K,MIHRET A,et al.Global prevalence of Mycobacterium bovis infections among human tuberculosis cases:systematic review and meta-analysis[J].Zoonoses Public Health,2021,68(7):704-718.
[3]LOISEAU C,MENARDO F,ASEFFA A,et al.An African origin for Mycobacterium bovis[J].Evol Med Public Health,2020,2020(1):49-59.
[4]GE G,JIANG HQ,XIONG JS,et al.Progress of the art of macrophage polarization and different subtypes in mycobacterial infection[J].Front Immunol,2021,12:752657.
[5]HOWARD NC,KHADER SA.Immunometabolism during Mycobacterium tuberculosis Infection[J].Trends Microbiol,2020,28(10):832-850.
[6]KHAN A,SINGH VK,HUNTER RL,et al.Macrophage heterogeneity and plasticity in tuberculosis[J].J Leukoc Biol,2019,106(2):275-282.
[7]ANDRADE MR,AMARAL EP,RIBEIRO SC,et al.Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages[J].BMC Microbiol,2012,12:166.
[8]MILY A,KALSUM S,LORETI MG,et al.Polarization of M1and M2human monocyte-derived cells and analysis with flow cytometry upon Mycobacterium tuberculosis infection[J].J Vis Exp,2020(163).
[9]JIAO Y,ZHANG T,ZHANG CM,et al.Neutrophil-derived exosomes induce M1macrophage polarization and prime macrophage pyroptosis via miR-30d-5p in sepsis[DB/OL].Research Square,2021,doi:10.21203/rs.3.rs-665364/v1.[2024-04-01].https:∥www.researchsquare.com/article/rs-665364/v1.
[10]TSAI CF,CHEN GW,CHEN YC,et al.Regulatory effects of quercetin on M1/M2macrophage polarization and oxidative/antioxidative balance[J].Nutrients,2021,14(1):67.
[11]LE YQ,CAO W,ZHOU L,et al.Infection of Mycobacterium tuberculosis promotes both M1/M2polarization and MMP production in cigarette smoke-exposed macrophages[J].Front Immunol,2020,11:1902.
[12]LIU QH,TIAN Y,ZHAO XF,et al.NMAAP1expressed in BCG-activated macrophage promotes M1macrophage polarization[J].Mol Cells,2015,38(10):886-894.
[13]NGUYEN H,GAZY N,VENKETARAMAN V.A role of intracellular toll-like receptors(3,7,and9)in response to Mycobacterium tuberculosis and co-infection with HIV[J].Int JMol Sci,2020,21(17):6148.
[14]WANDEL MP,KIM BH,PARK ES,et al.Guanylate-binding proteins convert cytosolic bacteria into caspase-4signaling platforms[J].Nat Immunol,2020,21(8):880-891.
[15]FISCH D,BANDO H,CLOUGH B,et al.Human GBP1is amicrobe-specific gatekeeper of macrophage apoptosis and pyroptosis[J].EMBO J,2019,38(13):e100926.
[16]HONKALA AT,TAILOR D,MALHOTRA SV.Guanylate-binding protein1:an emerging target in inflammation and cancer[J].Front Immunol,2020,10:3139.
[17]YU YL,Pan JL,LIU MT,et al.Guanylate-binding protein2b regulates the AMPK/mTOR/ULK1signalling pathway to induce autophagy during Mycobacterium bovis infection[J].Virulence,2022,13(1):875-889.
[18]LUQUE-MARTIN R,ANGELL DC,KALXDORF M,et al.IFN-γ drives human monocyte differentiation into highly proinflammatory macrophages that resemble aphenotype relevant to psoriasis[J].J Immunol,2021,207(2):555-568.
[19]ZHANG S,CHU CL,WU ZS,et al.IFIH1contributes to M1macrophage polarization in ARDS[J].Front Immunol,2021,11:580838.
[20]HALU A,WANG JG,IWATA H,et al.Context-enriched interactome powered by proteomics helps the identification of novel regulators of macrophage activation[J].Elife,2018,7:e37059.
[21]QIU XX,GUO H,YANG JS,et al.Down-regulation of guanylate binding protein1causes mitochondrial dysfunction and cellular senescence in macrophages[J].Sci Rep,2018,8(1):1679.
[22]KUMAR P,TYAGI R,DAS G,et al.Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner[J].Immunology,2014,143(2):258-268.
[23]NI JM,LIU YD,HUSSAIN T,et al.Recombinant ArgF PLGA nanoparticles enhances BCG induced immune responses against Mycobacterium bovis infection[J].Biomed Pharmacother,2021,137:111341.
[24]RAVESLOOT-CHáVEZ MM,VAN DIS E,STANLEY SA.The innate immune response to Mycobacterium tuberculosis infection[J].Annu Rev Immunol,2021,39(1):611-637.
[25]HUANG ZK,LUO Q,GUO Y,et al.Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J].PLoS One,2015,10(6):e0129744.
[26]DA COSTA AC,DE RESENDE DP,DE PO SANTOS B,et al.Modulation of macrophage responses by CMX,a fusion protein composed of Ag85c,MPT51,and HspX from Mycobacterium tuberculosis[J].Front Microbiol,2017,8:623.
[27]IMAI K,KURITA-OCHIAI T,OCHIAI K,et al.Mycobacterium bovis bacillus Calmette-Guérin infection promotes SOCS induction and inhibits IFN-γ-stimulated JAK/STAT signaling in J774macrophages[J].FEMS Immunol Med Microbiol,2003,39(2):173-180.
[28]KEEWAN E,NASER SA.Notch-1signaling modulates macrophage polarization and immune defense against Mycobacterium avium paratuberculosis infection in inflammatory diseases[J].Microorganisms,2020,8(7):1006.
[29]WU YQ,SUN Q,DAI L.Immune regulation of miR-30on the Mycobacterium tuberculosis-induced TLR/MyD88signaling pathway in THP-1cells[J].Exp Ther Med,2017,14(4):3299-3303.
(編輯 白永平)