摘 要:旨在探明胰島素樣生長因子1(insulin-like growth factors1,IGF1)、輔酶Q10(coenzyme Q10,CoQ10)及褪黑素(melatonin,MT)聯(lián)合添加對牛卵母細胞和胚胎發(fā)育以及熱應激囊胚的影響。本研究于屠宰場采集牛離體卵巢,于實驗室抽取卵丘卵母細胞復合體(cumulus-oocyte complexes,COCs),在牛卵母細胞體外成熟(in vitro maturation,IVM)液及牛胚胎體外培養(yǎng)(in vitro culture,IVC)液中添加IGF1、CoQ10及MT,檢測各添加方式對牛卵母細胞發(fā)育能力、牛卵母細胞活性氧(reactive oxygen species,ROS)水平及線粒體膜電位(mitochondrial membrane potential,ΔΨm)的影響;在囊胚期施加41℃熱應激,檢測熱應激及聯(lián)合添加對牛IVF囊胚發(fā)育能力及凋亡水平的影響,并利用qRT-PCR檢測囊胚中胚胎質(zhì)量相關基因mRNA表達水平。各組試驗均重復3次。結果表明,與未添加組(CT-0組)相比,聯(lián)合添加IGF1、CoQ10及MT組(ICM組)卵母細胞成熟率((90.40±2.06)%vs.(65.41±0.63)%)、卵裂率((93.33±1.96)%vs.(59.77±2.93)%)及囊胚率((51.43±5.34)%vs.(26.92±3.24)%)均顯著提高(P<0.05);ICM組牛卵母細胞ROS水平顯著降低;ΔΨm顯著提高(P<0.05)。與熱應激組(HS組)相比,聯(lián)合添加IGF1、CoQ10及MT(ICM+HS組)顯著提高了囊胚擴張率((62.00±2.97)%vs.(30.77±8.66)%,P<0.05),抑制了熱應激囊胚細胞凋亡,并提高了IGFBP3、ATP1A1、DSC2及IFNT2的mRNA表達水平(P<0.05)。綜上表明,聯(lián)合添加IGF1、CoQ10及MT有效提高牛卵母細胞發(fā)育能力,降低ROS水平,提高ΔΨm。熱應激降低牛囊胚擴張率,促進牛囊胚細胞凋亡,影響囊胚質(zhì)量,而聯(lián)合添加IGF1、CoQ10及MT緩解了熱應激損傷。
關鍵詞:IGF1;CoQ10;褪黑素;熱應激;奶牛;胚胎
中圖分類號:S823.3
文獻標志碼:A
文章編號:0366-6964(2024)06-2474-12
收稿日期:2023-12-25
基金項目:國家重點研發(fā)計劃政府間重點專項(2022YFE0100200);國家自然科學基金國際合作項目(32161143032);農(nóng)業(yè)農(nóng)村部和財政部資助:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系資助(CARS-36);國家家養(yǎng)動物種質(zhì)資源庫;中國農(nóng)業(yè)科學院科技創(chuàng)新工程(ASTIP-IAS06)
作者簡介:張 航(1998-),男,河南鄭州人,碩士,主要從事動物繁殖研究,E-mail:2113884879@qq.com
*通信作者:趙學明,主要從事家畜胚胎生物技術研究,E-mail:zhaoxueming@caas.cn
Combination of IGF1,CoQ10and MT Alleviated the Effects of
Heat Stress on Bovine IVF Blastocysts
ZHANGHang1,ZHANGPeipei1,YANGBaigao1,F(xiàn)ENGXiaoyi1,NIUYifan1,
YUZhou1,CAOJianhua1,WANPengcheng2,ZHAOXueming1*
(1.Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing
100193,China; 2.Institute of Animal Husbandry and Veterinary Medicine,Xinjiang
Academy of Agricultural and Reclamation Science,UrumqiShihezi832000,China)
Abstract:The aim of this study was to investigate the effects of combination of insulin-like growth factor1(IGF1),coenzyme Q10(CoQ10),and melatonin(MT)on development of bovine oocytes,embryos and heat stressed blastocysts.In this study,bovine ovaries were collected from the abattoir and cumulus-oocyte complexes(COCs)were extracted in the laboratory.IGF1,CoQ10and MT were added to bovine oocyte in vitro maturation(IVM)solution and bovine embryo in vitro culture(IVC)solution.The developmental ability,level of reactive oxygen species(ROS)and mitochondrial membrane potential(ΔΨm)of bovine oocytes from each treatment were detected.By applying41℃heat stress at the blastocyst stage,the effects of heat stress and combined supplementation on the developmental ability and apoptosis level of bovine IVF blastocysts were determined,and the mRNA expression levels of embryo quality related genes were detected by qRT-PCR.Each experimental group was repeated3times.The results showed that the combination of IGF1,CoQ10and MT(ICM group)significantly increased oocyte maturation rate((90.40±2.06)%vs.(65.41±0.63)%),cleavage rate((93.33±1.96)%vs.(59.77±2.93)%)and blastocyst rate((51.43±5.34)%vs.(26.92±3.24)%))(Plt;0.05)compared with the non added group(CT-0group).In the ICM group,the ROS level of bovine oocytes was significantly decreased and the ΔΨm of bovine oocytes was significantly increased(Plt;0.05).Compared with the heat stress group(HS group),the combination of IGF1,CoQ10and MT(ICM+HS group)significantly increased expanding rate((62.00±2.97)%vs.(30.77±8.66)%,Plt;0.05)of heat stressed blastocysts,inhibited apoptosis of heat stressed blastocyst cells,and increased mRNA expression levels of IGFBP3,ATP1A1,DSC2,and IFNT2(Plt;0.05)of heat stressed blastocysts.In summary,the combination of IGF1,CoQ10and MT can effectively enhance the developmental ability,reduce the ROS level and increase the ΔΨm of bovine oocytes.Heat stress reduced the expanding rate of bovine blastocysts,promoted apoptosis of bovine blastocyst cells and damaged the quality of blastocysts,while the combination of IGF1,CoQ10and MT alleviated the damage from heat stress.
Key words:IGF1; CoQ10; melatonin; heat stress; dairy cow; embryo
*Corresponding author:ZHAO Xueming,E-mail:zhaoxueming@caas.cn
夏季熱應激是降低奶牛繁殖力,影響奶業(yè)發(fā)展的重要原因。研究表明,當溫度濕度指數(shù)(temperature-humidity index,THI)≥72時,奶牛將無法充分散熱,隨即發(fā)生熱應激[1],進而嚴重損害奶牛繁殖[2-3]及產(chǎn)奶[4]性能,每年造成數(shù)十億美元的經(jīng)濟損失[4-5]。熱應激對奶牛繁殖的影響包括高溫引起卵母細胞活性氧(reactive oxygen species,ROS)升高,加劇卵母細胞氧化應激損傷[6],并降低卵母細胞線粒體膜電位水平(mitochondrial membrane potential,ΔΨm),進而影響細胞代謝,損害卵母細胞發(fā)育[7]。熱應激還對卵母細胞微管蛋白和微絲造成損傷,影響卵母細胞成熟,并增加受精失敗風險[8]。此外,熱應激引發(fā)卵母細胞染色質(zhì)凝聚異常,進而干擾胚胎染色質(zhì)重塑,影響胚胎基因組激活[9-10]。研究表明,當2細胞期胚胎遭受熱應激時,胚胎微絲微管網(wǎng)絡受損,引發(fā)細胞器向細胞核周圍移動,并造成線粒體分布異常、腫脹,進而損害胚胎發(fā)育[11-12]。
體外胚胎移植能有效減少熱應激對奶牛繁殖力的負面影響。由于熱應激主要對牛卵母細胞[13]及早期胚胎造成損害[14-16],當胚胎發(fā)育至8~16細胞期時,胚胎基因組激活,此時一些熱應激蛋白以及內(nèi)源性抗氧化酶基因開始轉(zhuǎn)錄,胚胎對高溫的耐受性增加[17-18]。當胚胎發(fā)育至桑葚胚期時,施加熱應激會導致胚胎熱應激蛋白相關基因(如:HSPB11、HSPA1A等)轉(zhuǎn)錄水平提高,以此緩解熱應激損傷[18]。而體外胚胎移植通常是將囊胚期胚胎移植到母牛體內(nèi)[19],該階段胚胎對高溫已經(jīng)具備了一定的抵抗力,因此,通過在體外培養(yǎng)胚胎能有效避免高溫對卵母細胞及早期胚胎的損害,提高熱應激條件下奶牛繁殖力。研究表明,當熱應激發(fā)生時,體外胚胎移植奶牛受孕率(42.1%)顯著高于人工授精奶牛(18.3%)[20]。
然而,盡管胚胎基因組激活后胚胎能獲得一定程度的耐熱性,但并無法完全抵抗熱應激的負面影響。據(jù)統(tǒng)計,當THI=72時,奶牛胚胎移植妊娠率可達78.78%,而當THI升高至78時,胚胎移植妊娠率則顯著降低至36.63%[21]。Kuroki等[22]的研究表明,對牛8細胞期胚胎施加熱應激,胚胎ΔΨm顯著降低,胚胎發(fā)育至囊胚的能力顯著下降。Mori等[23]指出,冷凍牛囊胚遭受熱應激后擴張率顯著降低,IFN tau基因表達降低,這表明熱應激損害冷凍囊胚發(fā)育能力,并可能影響后期的妊娠效果。在小鼠上,Cheng等[24]發(fā)現(xiàn)短時間(1h)的熱應激抑制囊胚Oct4和Nanog蛋白表達,他們認為熱應激通過破壞胚胎多能性,進而損害哺乳動物胚胎發(fā)育,甚至導致其死亡。
據(jù)報道,在體外胚胎生產(chǎn)過程中添加胰島素樣生長因子1(insulin-like growth factors1,IGF1)能夠緩解熱應激對胚胎的損傷,提高夏季胚胎移植妊娠率[25]。前人研究表明,IGF1能夠激活PI3K/Akt[26]及MAPK信號通路[27],降低熱應激胚胎細胞凋亡水平并恢復熱應激胚胎囊胚細胞數(shù)[26,28]。此外,輔酶Q10(coenzyme Q10,CoQ10)具有提高線粒體質(zhì)量、抗氧化的作用,能有效提高牛[29]、豬[30]、小鼠[31]等多個物種卵母細胞的發(fā)育能力。Gendelman和Roth[7]發(fā)現(xiàn)CoQ10有效恢復了秋季牛卵母細胞線粒體質(zhì)量,表明CoQ10一定程度上緩解了熱應激對牛卵母細胞的損傷。還有研究使用褪黑素(melatonin,MT)清除ROS,進而減小熱應激對牛卵母細胞的負面影響[32]。Cebrian-Serrano等[33]的研究指出,10-4mol·L-1MT能提高熱應激牛卵母細胞發(fā)育至囊胚的能力。然而,單獨添加IGF1[34]、CoQ10[7]或MT[35]還不足以完全抵消熱應激的負面影響,熱應激對奶牛體外胚胎生產(chǎn)及繁殖的威脅依然存在。
因此,本試驗通過在卵母細胞體外成熟(in vitro maturation,IVM)液及胚胎體外培養(yǎng)(in vitro culture,IVC)液中聯(lián)合添加IGF1、CoQ10及MT,檢測牛卵母細胞成熟率、卵裂率、囊胚率及牛卵母細胞ROS水平、ΔΨm,并在囊胚期施加熱應激后檢測囊胚擴張率、囊胚細胞凋亡水平及胚胎發(fā)育相關基因轉(zhuǎn)錄水平,以探究聯(lián)合添加IGF1、CoQ10及MT對體外生產(chǎn)奶牛胚胎發(fā)育能力以及對熱應激抵抗力的影響,以期為進一步提高熱應激條件下體外生產(chǎn)奶牛胚胎質(zhì)量奠定一定理論基礎。
1 材料與方法
1.1 試驗分組
本試驗分別設置空白組(CT-0)、添加物質(zhì)處理組(CT-I、IC、IM、ICM)、熱應激組(HS)和熱應激處理組(ICM+HS),其中添加物質(zhì)IGF1[36]為100ng·mL-1,CoQ10[7]為50μmol·L-1,MT[32]為1μmol·L-1。本試驗根據(jù)培養(yǎng)階段進行的分組見表1所示。
1.2 主要試劑
除特別說明外,本試驗所用試劑均采購自Sigma公司。TCM-199和胎牛血清(foetal bovine serum,F(xiàn)BS)購自Gibco公司。CoQ10和TUNEL細胞凋亡試劑盒購自北京索萊寶科技有限公司。JC-1ΔΨm檢測試劑盒和ROS檢測試劑盒購自上海碧云天生物技術有限公司。
1.3 試驗方法
1.3.1 卵母細胞采集與IVM
本試驗卵母細胞均來源于屠宰場卵巢。將卵巢放置于含有青霉素及鏈霉素的37 ℃生理鹽水中,于2h內(nèi)送至實驗室。選擇直徑2~8mm大小的卵泡抽取卵丘卵母細胞復合體(cumulus-oocyte complexes,COCs),選擇含3層及以上卵丘細胞的COCs進行后續(xù)試驗。將COCs置入含IVM液的4孔板中,IVM液含TCM-199、10%FBS、1μg·mL-1雌二醇、10μg·mL-1促卵泡激素、50μg·mL-1表皮生長因子、10μg·mL-1促黃體生成素、10μg·mL-1肝素及0.4mg·mL-1青霉素和鏈霉素。設置培養(yǎng)條件為38.5 ℃,5%CO2,成熟22~24h,統(tǒng)計各組卵母細胞成熟率。本試驗采集卵巢共152對。
1.3.2 體外受精
以Brackett和Oliphant[37]的方法稍作修改后進行體外受精。38 ℃水浴解凍凍精,在洗精液中混勻清洗,1800r·min-1離心5min,重復兩次。用受精液重懸精子,使精子密度為5×106個·mL-1。將混勻的精子(20μL)加入受精液(80μL)中,制成受精滴,在培養(yǎng)箱中平衡1.5h。篩選卵丘擴散良好的成熟卵母細胞,使用1mg·mL-1透明質(zhì)酸酶進行消化,并吹打至僅剩1~2層顆粒細胞。將卵母細胞放入受精滴,在38.5 ℃,5%CO2條件下培養(yǎng)16~18h。受精結束后,將受精卵放入胚胎前期培養(yǎng)液(CR1aa培養(yǎng)液)中培養(yǎng)48h,統(tǒng)計各組卵裂率,再放入胚胎后期培養(yǎng)液(含10%FBS CR1aa培養(yǎng)液)中,每隔48h半量換液。受精后第7天統(tǒng)計囊胚率(受精當天認定為第0天)。
1.3.3 ROS檢測
將成熟22~24h后的COCs放入1mg·mL-1透明質(zhì)酸酶中,充分吹打,脫去顆粒細胞。根據(jù)活性氧檢測試劑盒(S0033S,碧云天)說明書檢測各組卵母細胞中ROS水平。首先,將卵母細胞放入0.1%PVA-PBS溶液中清洗,再放入10mmol·L-1DCFH-DA染色液中,37 ℃條件下避光染色20min。隨后,再次將卵母細胞放入0.1%PVA-PBS溶液中充分清洗,用倒置熒光顯微鏡(Nikon,日本)進行拍攝。利用Image J軟件,選取各卵母細胞并分析其熒光強度,統(tǒng)計所采集熒光圖像的熒光值。
1.3.4 線粒體膜電位檢測
將成熟22~24h后的COCs放入1mg·mL-1透明質(zhì)酸酶中,充分吹打,脫去顆粒細胞。根據(jù)說明書檢測各組卵母細胞中ΔΨm水平。首先,將卵母細胞放入0.1%PVA-PBS溶液中清洗,再放入JC-1染色液中,37 ℃條件下避光染色20min。隨后,再次將卵母細胞放入0.1%PVA-PBS溶液中充分清洗,用激光共聚焦顯微鏡(Leica,德國)進行拍攝。利用Image J軟件,選取各卵母細胞并分析其熒光強度,統(tǒng)計所采集熒光圖像的熒光值,紅色熒光與綠色熒光強度比值即為ΔΨm。
1.3.5 熱應激處理及囊胚擴張率統(tǒng)計
取出受精后第7天囊胚,CT-I組囊胚設置培養(yǎng)條件為38.5 ℃,5%CO2,培養(yǎng)24h;根據(jù)Rivera和Hansen[38]的方法,HS組囊胚和ICM+HS組囊胚設置培養(yǎng)條件為41 ℃,5%CO2,培養(yǎng)12h,后更改培養(yǎng)條件為38.5 ℃,5%CO2,繼續(xù)培養(yǎng)12h。隨后,統(tǒng)計囊胚擴張率。
1.3.6 TUNEL細胞凋亡檢測
利用TUNEL細胞凋亡試劑盒(T2196,索萊寶)檢測囊胚細胞凋亡水平。根據(jù)制造商說明書,將囊胚放入0.1%PVA-PBS溶液中充分清洗,然后將囊胚放入4%多聚甲醛中,4 ℃固定30min,再用0.2%Triton X-100室溫通透囊胚20min。隨后,將TdT酶與TUNEL Reaction Buffer充分混勻,制成TUNEL反應液。將囊胚放入TUNEL反應液中37 ℃避光孵育1h,然后用0.1%Triton X-100清洗囊胚,再將囊胚放入5μg·mL-1的DAPI染液,室溫避光孵育5min。染色完成后,囊胚壓片,用激光共聚焦顯微鏡(Leica,德國)進行拍攝。
1.3.7 實時熒光定量PCR
利用Cells-to-cDNAⅡKit(Invitrogen,美國)試劑盒合成cDNA,用PowerUpTM SYBRTM Green Master Mix試劑盒檢測基因表達水平。參照NCBI中?;蛐蛄校靡镌O計軟件(https:∥bioinfo.ut.ee/primer3-0.4.0/)完成引物設計,引物信息見表2所示。實時熒光定量PCR(real-time quantitative PCR)體系如下:PowerUpTM SYBRTM Green Master Mix(2×)7.5μL、引物0.6μL、cDNA1μL,并用ddH2O補至15μL。利用實時熒光定量PCR儀(Applied Biosystems,美國)進行檢測,反應條件:95℃預變性2min;95℃10s,60℃30s40個循環(huán)。以β-actin作為內(nèi)參基因,以2-ΔΔCt法計算基因相對表達水平。
1.4 統(tǒng)計分析
各試驗至少重復3次。數(shù)據(jù)采用SPSS27.0軟件進行單因素方差分析,并使用Duncan′s檢驗法進行顯著性分析,數(shù)據(jù)以“平均數(shù)±標準差”表示,P<0.05表示差異顯著。
2 結 果
2.1 IGF1、CoQ10、MT聯(lián)合添加對牛卵母細胞及胚胎發(fā)育能力的影響
各組牛卵母細胞發(fā)育能力結果如表3所示。ICM組牛卵母細胞成熟率((90.40±2.06)%)、卵裂率((93.33±1.96)%)顯著高于其他組(P<0.05),ICM組囊胚率((51.43±5.34)%)顯著高于CT-0組((26.92±3.24)%,P<0.05)和CT-I組((37.50±2.50)%,P<0.05)。該結果說明聯(lián)合添加IGF1、CoQ10和MT能夠顯著提高牛卵母細胞及胚胎的發(fā)育能力。
2.2 IGF1、CoQ10、MT聯(lián)合添加對卵母細胞ROS水平的影響
各組牛卵母細胞DCFH-DA染色代表圖見圖像如圖1A所示。如圖1B所示,ICM組牛卵母細胞DCFH-DA熒光強度顯著低于CT-0和CT-I組(P<0.05),IC組和IM組牛卵母細胞DCFH-DA熒光強度顯著低于CT-0組(P<0.05),說明IVM期間聯(lián)合添加IGF1、CoQ10和MT能夠顯著降低牛卵母細胞ROS水平。
2.3 IGF1、CoQ10、MT聯(lián)合添加對卵母細胞ΔΨm的影響
各組牛卵母細胞JC-1染色代表圖像如見圖2A所示。如圖2B所示,ICM組牛卵母細胞ΔΨm顯著高于其他組(P<0.05),說明IVM期間聯(lián)合添加IGF1、CoQ10和MT能夠顯著提高牛卵母細胞ΔΨm。
2.4 IGF1、CoQ10、MT聯(lián)合添加及熱應激對胚胎發(fā)育能力的影響
各組牛卵母細胞、胚胎發(fā)育能力及囊胚熱應激后擴張率如表4所示。ICM+HS組卵裂率((93.45±3.50)%)和囊胚率((49.68±2.04)%)顯著高于CT-I組((75.37±6.29)%,(31.69±0.48)%,P<0.05)和HS組((75.63±2.95)%,(32.22±1.92)%,P<0.05)。熱應激后,ICM+HS組囊胚擴張率((62.00±2.97)%)顯著高于HS組((30.77±8.66)%,(P<0.05)),但顯著低于CT-I組((82.76±3.91)%,(P<0.05))。由此可見,熱應激損傷牛IVF囊胚發(fā)育能力,而聯(lián)合添加IGF1、CoQ10、MT一定程度上緩解了熱應激損傷。
2.5 IGF1、CoQ10、MT聯(lián)合添加及熱應激對牛囊胚細胞凋亡水平的影響
各組牛囊胚TUNEL染色代表圖見像如圖3A。如圖3B所示,ICM+HS組牛囊胚細胞凋亡率顯著低于HS組(P<0.05),且與CT-I組無顯著差異(P>0.05),說明聯(lián)合添加IGF1、CoQ10和MT能夠抑制熱應激造成的囊胚細胞凋亡。
2.6 IGF1、CoQ10、MT聯(lián)合添加及熱應激對牛囊胚質(zhì)量相關基因表達的影響
各組牛囊胚質(zhì)量相關基因表達如圖4所示。與HS組相比,ICM+HS組IGFBP3、ATP1A1、DSC2、IFNT2基因表達水平顯著提高,但顯著低于CT-I組,說明熱應激影響胚胎質(zhì)量,而聯(lián)合添加IGF1、CoQ10、MT有助于提高熱應激囊胚質(zhì)量。
3 討 論
熱應激阻礙奶牛胚胎發(fā)育[21],嚴重損害奶牛繁殖效率[17],而大量研究指出IGF1[39]、CoQ10[7,40]及MT[41-42]具有提高奶牛卵母細胞及胚胎質(zhì)量的作用,一定程度上能夠緩解熱應激對奶牛卵母細胞及胚胎的影響。因此,本研究推斷,在奶牛體外胚胎生產(chǎn)中聯(lián)合添加IGF1、CoQ10及MT能進一步改善奶牛卵母細胞及胚胎質(zhì)量,進而提高奶牛胚胎對熱應激的抵抗力。
前人研究發(fā)現(xiàn),IGF1、CoQ10及MT對牛卵母細胞及胚胎發(fā)育具有改善作用。Sakaguchi等[43]指出,成熟促進因子(maturation/M-phase promoting factor,MPF)及絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)均可調(diào)節(jié)牛卵母細胞減數(shù)分裂進程,而IGF1能與表皮生長因子協(xié)同促進MPF及MAPK活性,進而提高牛卵母細胞成熟率。此外,胚胎發(fā)育同樣受MAPK調(diào)節(jié),而IGF1通過激活MAPK信號通路進而促進了胚胎分裂,提高囊胚率[44]。Abdulhasan等[29]指出,CoQ10通過提高線粒體呼吸效率,促進ATP產(chǎn)生,進而幫助牛卵母細胞抵抗外界應激,改善卵母細胞發(fā)育。Zhao等[45]指出,MT避免了ROS對牛卵母細胞微絲微管的破壞、改善細胞器分布,提高卵母細胞質(zhì)量。同時,MT改善受精相關蛋白IP3R1分布,并促進CD9及JUNO蛋白表達,提高卵母細胞受精能力[45],并通過提高H3K9ac水平調(diào)節(jié)胚胎組蛋白乙?;?,誘導胚胎染色質(zhì)重塑,進而改善胚胎質(zhì)量[46]。與前人研究結果一致,我們的本研究結果表明IGF1、IGF1和CoQ10、IGF1和MT均能促進牛卵母細胞發(fā)育能力,顯著提高卵母細胞成熟率、受精后卵裂率及囊胚率,而聯(lián)合添加IGF1、CoQ10及MT效果最為顯著。
ROS是線粒體代謝的副產(chǎn)物,高濃度ROS會破壞DNA、脂質(zhì)、蛋白質(zhì)等,引發(fā)卵母細胞凋亡[47-48]。本研究結果顯示,IGF1對牛卵母細胞ROS水平?jīng)]有顯著影響,但IGF1與CoQ10或MT聯(lián)合使用能發(fā)揮顯著的抗氧化效果,且三者聯(lián)合添加時效果最為明顯,這一結果也對應了聯(lián)合添加對牛卵母細胞發(fā)育能力的改善效果。我們認為由此推測,聯(lián)合添加對ROS的清除作用或許依賴于CoQ10和MT的抗氧化特性。CoQ10作為一種高效的抗氧化劑,能夠有效降低豬[30]、小鼠[31]等卵母細胞ROS水平,同時,CoQ10能通過改善線粒體功能,促進ATP生成,進而緩解氧化應激的負面影響,提高卵母細胞恢復穩(wěn)態(tài)的能力[29]。MT及其衍生物均具有高效的抗氧化作用,能夠直接清除卵母細胞中的ROS,且MT促進抗氧化酶相關基因轉(zhuǎn)錄,并上調(diào)GSH水平,進而發(fā)揮抗氧化效果[45,49]。
線粒體是細胞能量代謝的主要場所,對卵母細胞發(fā)育至關重要[50-51]。ΔΨm反映線粒體活性,是衡量卵母細胞質(zhì)量的重要指標之一[52]。我們的本研究結果顯示,IGF1提高牛卵母細胞ΔΨm,而IGF1聯(lián)合添加CoQ10或MT后,ΔΨm進一步提高,聯(lián)合添加IGF1、CoQ10及MT則發(fā)揮了最強的提升效果,這也反映了聯(lián)合添加能通過改善牛卵母細胞線粒體活性,進而改善牛卵母細胞質(zhì)量。與前人研究結果相似,Giroto等[53]的研究指出IGF1通過調(diào)節(jié)線粒體功能相關基因表達調(diào)控胚胎質(zhì)量,此外IGF1還通過調(diào)控COX1表達間接影響卵母細胞代謝,進而提高線粒體活性[54]。Heydarnejad等[55]認為,線粒體活性與電子呼吸鏈效率相關,而CoQ10作為線粒體電子呼吸鏈的載體,能有效促進ATP合成,提高卵母細胞ΔΨm,改善線粒體功能[29]。Zhao等[56]的研究指出,MT通過維持鈣離子穩(wěn)態(tài),清除ROS,從而保護線粒體。MT及其代謝物還能維持線粒體呼吸鏈復合物Ⅰ、Ⅲ和Ⅳ的活性,抑制線粒體電子漏,進而提高ΔΨm,改善線粒體質(zhì)量[57]。
前人研究指出,熱應激損害奶牛胚胎發(fā)育[58],僅6h的熱應激便會大大增加冷凍囊胚的凋亡率[23],而IGF1[28]、CoQ10[7,59]及MT[33]均有改善胚胎質(zhì)量,緩解熱應激的作用。因此,本研究檢測了各組囊胚擴張率、囊胚細胞凋亡水平以及囊胚發(fā)育相關基因表達水平。結果表明,熱應激抑制牛囊胚擴張,顯著增加囊胚細胞凋亡比例,影響囊胚質(zhì)量相關基因表達,損害囊胚發(fā)育,而聯(lián)合添加IGF1、CoQ10及MT一定程度上抑制了熱應激損傷。
研究表明,IGF1能通過PI3K信號通路抑制凋亡發(fā)生,并通過MAPK信號通路促進囊胚的進一步發(fā)育[27]。此外,胚胎發(fā)育依賴線粒體供能,而由于胚胎中線粒體數(shù)量恒定,隨著胚胎細胞數(shù)量增加,胚胎發(fā)育所需能量隨之升高,這要求線粒體供能的效率也必須隨之提升,而研究表明CoQ10能提高線粒體ATP合成效率,進而提高牛囊胚ATP水平[59],這不僅有助于細胞應對環(huán)境應激[29],同時滿足了胚胎發(fā)育需求,進而促進囊胚擴張[59]。Cebrian-Serrano等[33]報道了較高濃度MT(10-4mol·L-1)能挽救熱應激對牛卵母細胞的損傷,促進囊胚發(fā)育,而10-6mol·L-1MT則能顯著降低熱應激引起的胚胎氧化應激[60]。
IGFBP3是IGFBP蛋白中的一員,通過調(diào)節(jié)IGF1活性進而促進胚胎發(fā)育[36],我們的本研究結果表明IGF1、CoQ10及MT聯(lián)合添加提高了熱應激囊胚IGFBP3的轉(zhuǎn)錄水平。此外,ATP1A1參與調(diào)節(jié)囊胚液積累及囊胚擴張過程中細胞間的連接[61],纖凝蛋白Ⅱ(desmocollinⅡ,DSC2)參與橋粒形成,調(diào)控囊胚擴張[62]。而IGF1、CoQ10和MT聯(lián)合添加提高了熱應激條件下ATP1A1及DSC2表達,這或許是囊胚擴張率增加的原因之一。IFNT2是判斷囊胚質(zhì)量的重要標準之一,IFNT2的高表達有利于維持妊娠,并與囊胚的低溫耐受性相關[63-64]。我們的本研究結果發(fā)現(xiàn),熱應激降低IFNT2表達,而聯(lián)合添加緩解了這一情況。此外,聯(lián)合添加對胚胎質(zhì)量相關基因的改善,一定程度上也解釋了熱應激囊胚擴張率增加及凋亡率減少的現(xiàn)象。
4 結 論
本研究結果表明,在體外胚胎生產(chǎn)過程中聯(lián)合添加IGF1、CoQ10及MT能提高牛卵母細胞成熟率、卵裂率及囊胚率,降低ROS水平并提高ΔΨm。熱應激導致體外生產(chǎn)牛囊胚擴張率下降,細胞凋亡率升高,囊胚IGFBP3、ATP1A1、DSC2及IFNT2轉(zhuǎn)錄水平降低,而聯(lián)合添加IGF1、CoQ10及MT改善了這一情況。本研究結果為改善熱應激條件下體外生產(chǎn)奶牛胚胎質(zhì)量奠定一定理論基礎。
參考文獻(References):
[1]DASH S,CHAKRAVARTY AK,SINGH A,et al.Effect of heat stress on reproductive performances of dairy cattle and buffaloes:a review[J].Vet World,2016,9(3):235-244.
[2]KASIMANICKAM R,KASIMANICKAM V.Impact of heat stress on embryonic development during first16days of gestation in dairy cows[J].Sci Rep,2021,11(1):14839.
[3]MISHRA SR.Behavioural,physiological,neuro-endocrine and molecular responses of cattle against heat stress:an updated review[J].Trop Anim Health Prod,2021,53(3):400.
[4]THORNTON P,NELSON G,MAYBERRY D,et al.Impacts of heat stress on global cattle production during the21st century:a modelling study[J].Lancet Planet Health,2022,6(3):e192-e201.
[5]WANKAR AK,RINDHE SN,DOIJAD NS.Heat stress in dairy animals and current milk production trends,economics,and future perspectives:the global scenario[J].Trop Anim Health Prod,2021,53(1):70.
[6]ROTH Z,WOLFENSON D.Comparing the effects of heat stress and mastitis on ovarian function in lactating cows:basic and applied aspects[J].Domest Anim Endocrinol,2016,56:S218-S227.
[7]GENDELMAN M,ROTH Z.Incorporation of coenzyme q10into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod,2012,87(5):118.
[8]ROTH Z.Effect of heat stress on reproduction in dairy cows:insights into the cellular and molecular responses of the oocyte[J].Annu Rev Anim Biosci,2017,5:151-170.
[9]BáEZ F,LóPEZ DARRIULAT R,RODRíGUEZ-OSORIO N,et al.Effect of season on germinal vesicle stage,quality,and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes[J].J Therm Biol,2022,103:103171.
[10]CAMARGO LS A,AGUIRRE-LAVIN T,ADENOT P,et al.Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo[J].Reproduction,2019,158(4):313-322.
[11]RIVERA RM,KELLEY KL,ERDOS GW,et al.Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos[J].Biol Reprod,2004,70(6):1852-1862.
[12]RIVERA RM,KELLEY KL,ERDOS GW,et al.Alterations in ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following aphysiologically relevant heat shock[J].Biol Reprod,2003,69(6):2068-2077.
[13]STAMPERNA K,DOVOLOU E,GIANNOULIS T,et al.Developmental competence of heat stressed oocytes from Holstein and Limousine cows matured in vitro[J].Reprod Domest Anim,2021,56(10):1302-1314.
[14]NANAS I,CHOUZOURIS TM,DOVOLOU E,et al.Early embryo losses,progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J].J Therm Biol,2021,98:102951.
[15]STAMPERNA K,GIANNOULIS T,DOVOLOU E,et al.The effects of heat shock protein70addition in the culture medium on the development and quality of in vitro produced heat shocked bovine embryos[J].Animals,2021,11(12):3347.
[16]MITKIEWSKA K,KORDOWITZKI P,PAREEK CS.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells,2022,11(24):4073.
[17]LEPOCK JR.How do cells respond to their thermal environment?[J].Int JHyperthermia,2005,21(8):681-687.
[18]SAKATANI M,BONILLA L,DOBBS KB,et al.Changes in the transcriptome of morula-stage bovine embryos caused by heat shock:relationship to developmental acquisition of thermotolerance[J].Reprod Biol Endocrinol,2013,11:3.
[19]HANSEN PJ.The incompletely fulfilled promise of embryo transfer in cattle-why aren′t pregnancy rates greater and what can we do about it?[J].J Anim Sci,2020,98(11):skaa288.
[20]STEWART BM,BLOCK J,MORELLI P,et al.Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen[J].J Dairy Sci,2011,94(7):3437-3445.
[21]ABDEL AZIZ RL,HUSSEIN MM,MOHAMED MA A,et al.Heat stress during critical windows of the oestrous cycle and risk of pregnancy establishment in embryo-recipient dairy heifers[J].Reprod Domest Anim,2022,57(8):856-863.
[22]KUROKI T,IKEDA S,OKADA T,et al.Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro:-astaxanthin colocalization with and action on mitochondria-[J].J Assist Reprod Genet,2013,30(5):623-631.
[23]MORI M,HAYASHI T,ISOZAKI Y,et al.Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro[J].J Reprod Dev,2015,61(5):423-429.
[24]CHENG MB,WANG X,HUANG Y,et al.Hyperthermia depletes Oct4in mouse blastocysts and stem cells[J].Stem Cell Res Ther,2020,11(1):195.
[25]BLOCK J,HANSEN PJ.Interaction between season and culture with insulin-like growth factor-1on survival of in vitro produced embryos following transfer to lactating dairy cows[J].Theriogenology,2007,67(9):1518-1529.
[26]JOUSAN FD,OLIVEIRA LJ,HANSEN PJ.Short-Term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the Phosphatidylinositol3-Kinase/Akt pathway[J].Mol Reprod Dev,2008,75(4):681-688.
[27]JOUSAN FD,HANSEN PJ.Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling[J].Mol Reprod Dev,2007,74(2):189-196.
[28]JOUSAN FD,HANSEN PJ.Insulin-like growth factor-I as asurvival factor for the bovine preimplantation embryo exposed to heat shock[J].Biol Reprod,2004,71(5):1665-1670.
[29]ABDULHASAN MK,LI Q,DAI J,et al.CoQ10increases mitochondrial mass and polarization,ATP and Oct4potency levels,and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death[J].J Assist Reprod Genet,2017,34(12):1595-1607.
[30]YANG CX,LIU S,MIAO JK,et al.CoQ10improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J].Theriogenology,2021,159:77-86.
[31]LEE CH,KANG MK,SOHN DH,et al.Coenzyme Q10ameliorates the quality of mouse oocytes during in vitro culture[J].Zygote,2022,30(2):249-257.
[32]DE CASTRO CAVALLARI F,LEAL CL V,ZVI R,et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote,2019,27(3):180-186.
[33]CEBRIAN-SERRANO A,SALVADOR I,RAGA E,et al.Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes[J].Reprod Domest Anim,2013,48(5):738-746.
[34]BONILLA AQ S,OLIVEIRA LJ,OZAWA M,et al.Developmental changes in thermoprotective actions of insulin-like growth factor-1on the preimplantation bovine embryo[J].Mol Cell Endocrinol,2011,332(1/2):170-179.
[35]YAACOBI-ARTZI S,SHIMONI C,KALO D,et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology,2020,158:477-489.
[36]BLOCK J,WRENZYCKI C,NIEMANN H,et al.Effects of insulin-like growth factor-1on cellular and molecular characteristics of bovine blastocysts produced in vitro[J].Mol Reprod Dev,2008,75(5):895-903.
[37]BRACKETT BG,OLIPHANT G.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod,1975,12(2):260-274.
[38]RIVERA RM,HANSEN PJ.Development of cultured bovine embryos after exposure to high temperatures in the physiological range[J].Reproduction,2001,121(1):107-115.
[39]YANG S,YANG YZ,HAO HS,et al.Supplementation of EGF,IGF-1,and Connexin37in IVM medium significantly improved the maturation of bovine oocytes and vitrification of their IVF blastocysts[J].Genes(Basel),2022,13(5):805.
[40]MADDAHI A,SABERIVAND A,HAMALI H,et al.Exploring the impact of heat stress on oocyte maturation and embryo development in dairy cattle using aculture medium supplemented with vitamins E,C,and coenzyme Q10[J].J Therm Biol,2024,119:103759.
[41]GUTIéRREZ-A?EZ JC,HENNING H,LUCAS-HAHN A,et al.Melatonin improves rate of monospermic fertilization and early embryo development in abovine IVF system[J].PLoS One,2021,16(9):e0256701.
[42]EL-SHEIKH M,MESALAM AA,SONG SH,et al.Melatonin alleviates the toxicity of high nicotinamide concentrations in oocytes:potential interaction with nicotinamide methylation signaling[J].Oxid Med Cell Longev,2021,2021:5573357.
[43]SAKAGUCHI M,DOMINKO T,YAMAUCHI N,et al.Possible mechanism for acceleration of meiotic progression of bovine follicular oocytes by growth factors in vitro[J].Reproduction,2002,123(1):135-142.
[44]BONILLA AQ S,OZAWA M,HANSEN PJ.Timing and dependence upon mitogen-activated protein kinase signaling for pro-developmental actions of insulin-like growth factor1on the preimplantation bovine embryo[J].Growth Horm IGF Res,2011,21(2):107-111.
[45]ZHAO XM,WANG N,HAO HS,et al.Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J].J Pineal Res,2018,64(1):e12445.
[46]SU JM,WANG YS,XING XP,et al.Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J].J Pineal Res,2015,59(4):455-468.
[47]RODRíGUEZ-NUEVO A,TORRES-SANCHEZ A,DURAN JM,et al.Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I[J].Nature,2022,607(7920):756-761.
[48]VAN DER REEST J,NARDINI CECCHINO G,HAIGIS MC,et al.Mitochondria:their relevance during oocyte ageing[J].Ageing Res Rev,2021,70:101378.
[49]YANG MH,TAO JL,CHAI ML,et al.Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development:mechanisms and results[J].Molecules,2017,22(12):2059.
[50]KIRILLOVA A,SMITZ JE J,SUKHIKH GT,et al.The role of mitochondria in oocyte maturation[J].Cells,2021,10(9):2484.
[51]ADHIKARI D,LEE IW,YUEN WS,et al.Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility[J].Biol Reprod,2022,106(2):366-377.
[52]AL-ZUBAIDI U,LIU J,CINAR O,et al.The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation[J].Mol Hum Reprod,2019,25(11):695-705.
[53]GIROTO AB,F(xiàn)ONTES PK,F(xiàn)RANCHI FF,et al.Use of pregnancy-associated plasma protein-A during oocyte in vitro maturation increases IGF-1and affects the transcriptional profile of cumulus cells and embryos from Nelore cows[J].Mol Reprod Dev,2019,86(11):1694-1704.
[54]ASCARI IJ,ALVES NG,JASMIN J,et al.Addition of insulin-like growth factor Ito the maturation medium of bovine oocytes subjected to heat shock:effects on the production of reactive oxygen species,mitochondrial activity and oocyte competence[J].Domest Anim Endocrin,2017,60:50-60.
[55]HEYDARNEJAD A,OSTADHOSSEINI S,VARNOSFADERANI SR,et al.Supplementation of maturation medium with CoQ10enhances developmental competence of ovine oocytes through improvement of mitochondrial function[J].Mol Reprod Dev,2019,86(7):812-824.
[56]ZHAO XM,HAO HS,DU WH,et al.Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes[J].J Pineal Res,2016,60(2):132-141.
[57]PANG YW,ZHAO SJ,SUN YQ,et al.Protective effects of melatonin on the in vitro developmental competence of bovine oocytes[J].Anim Sci J,2018,89(4):648-660.
[58]RYAN DP,BLAKEWOOD EG,LYNN JW,et al.Effect of heat-stress on bovine embryo development in vitro[J].J Anim Sci,1992,70(11):3490-3497.
[59]STOJKOVIC M,WESTESEN K,ZAKHARTCHENKO V,et al.Coenzyme Q10in submicron-sized dispersion improves development,hatching,cell proliferation,and adenosine triphosphate content of in vitro-produced bovine embryos[J].Biol Reprod,1999,61(2):541-547.
[60]ORTEGA MS,ROCHA-FRIGONI NA S,MINGOTI GZ,et al.Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J].J Dairy Sci,2016,99(11):9152-9164.
[61]WATSON AJ,NATALE DR,BARCROFT LC.Molecular regulation of blastocyst formation[J].Anim Reprod Sci,2004,82-83:583-592.
[62]COLLINS JE,LORIMER JE,GARROD DR,et al.Regulation of desmocollin transcription in mouse preimplantation embryos[J].Development,1995,121(3):743-753.
[63]RIZOS D,GUTIéRREZ-ADáN A,PéREZ-GARNELO S,et al.Bovine embryo culture in the presence or absence of serum:implications for blastocyst development,cryotolerance,and messenger RNA expression[J].Biol Reprod,2003,68(1):236-243.
[64]KHATUN H,EGASHIRA J,SAKATANI M,et al.Sericin enhances the developmental competence of heat-stressed bovine embryos[J].Mol Reprod Dev,2018,85(8-9):696-708.
(編輯 郭云雁)