摘 要:旨在探究熱應(yīng)激對牛卵子及其胚胎表觀遺傳修飾與發(fā)育能力的影響。本研究將卵子置于體外熱應(yīng)激條件下培養(yǎng)(41℃12h+38.5℃12h),進(jìn)行體外成熟(in vitro maturtion,IVM)和體外受精(in vitro fertilization,IVF),檢測對照組(38.5℃24h)和熱應(yīng)激組牛卵子和后續(xù)胚胎的發(fā)育能力及卵子發(fā)育過程中表觀遺傳修飾組蛋白H1、組蛋白H2、組蛋白H4和DNA甲基化的修飾水平。本研究還檢測了卵子活性氧(reactive oxygen species,ROS)水平、線粒體膜電位(mitochondrial membrane potential,ΔΨm)水平及與表觀遺傳修飾和發(fā)育能力相關(guān)基因的表達(dá)水平。結(jié)果表明,熱應(yīng)激處理組卵子成熟率((59.21±4.29)%)、卵裂率((57.78±4.58)%)和囊胚率((22.31±1.67)%)均顯著低于對照組((85.10±6.75)%、(78.64±2.46)%、(42.64±1.38)%,Plt;0.05);熱應(yīng)激組牛卵子及各階段胚胎表觀遺傳修飾組蛋白H1、組蛋白H2、組蛋白H4、DNA甲基化水平顯著低于對照組(Plt;0.05);熱應(yīng)激組牛卵子ΔΨm水平顯著低于對照組(Plt;0.05);熱應(yīng)激組牛卵子ROS水平顯著高于對照組(Plt;0.05);熱應(yīng)激組牛卵子表觀遺傳修飾相關(guān)基因DNMT1、DNMT3A、DNMT3B、Histone H2A、SMYD3、IGF-2R的mRNA表達(dá)水平顯著低于對照組(Plt;0.05);熱應(yīng)激組牛卵子發(fā)育能力相關(guān)基因C-MOS、GDF-9和POU5F1的mRNA表達(dá)水平顯著低于對照組(Plt;0.05)。本研究表明,熱應(yīng)激顯著降低了牛卵子和胚胎表觀遺傳修飾組蛋白H1、組蛋白H2、組蛋白H4、DNA甲基化水平,顯著降低了牛卵子ΔΨm水平及與表觀遺傳修飾和發(fā)育能力相關(guān)基因的mRNA表達(dá)水平,顯著提高了ROS水平,降低了卵子的發(fā)育能力質(zhì)量。
關(guān)鍵詞:熱應(yīng)激;牛;卵子;表觀遺傳修飾;發(fā)育能力
中圖分類號:S823.3
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)06-2460-14
收稿日期:2023-10-16
基金項目:國家自然科學(xué)基金國際合作項目(32161143032);國家重點研發(fā)計劃政府間重點專項(2022YFE0100200);農(nóng)業(yè)農(nóng)村部和財政部資助:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-36);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS06)
作者簡介:馮肖藝(1999-),女,山東濟(jì)南人,碩士生,主要從事動物繁殖研究,E-mail:17806257712@163.com
*通信作者:趙學(xué)明,主要從事家畜胚胎生物技術(shù)研究,E-mail:zhaoxueming@caas.cn;崔 凱,主要從事動物遺傳育種與繁殖學(xué)研究,E-mail:qdndcuikai@163.com
Effects of Heat Stress on Epigenetic Modifications and Developmental
Competence of Bovine Oocytes and Their Embryos
FENGXiaoyi1,2,ZHANGPeipei2,ZHANGHang2,HAOHaisheng2,DUWeihua2,
ZHUHuabin2,CUIKai1*,ZHAOXueming2*
(1.College of Animal Science and Technology,Qingdao Agricultural University,
Qingdao266109,China; 2.Institute of Animal Science,Chinese Academy of
Agricultural Sciences,Beijing100193,China)
Abstract:The aim of this study was to investigate the effects of heat stress on epigenetic modifications and developmental capacity of bovine oocytes and their embryos.In this study,oocytes were cultured under in vitro heat stress conditions(41℃for12h+38.5℃for12h)for in vitro maturation(IVM)and in vitro fertilization(IVF).The developmental ability of oocytes and subsequent embryos and the modification levels of epigenetic modifications histone H1,histone H2,histone H4,and DNA methylation during oocyte development were examined in control(38.5℃for24h)and heat-stressed cattle.In this study,we also examined oocyte reactive oxygen species(ROS)levels,mitochondrial membrane potential(ΔΨm)levels,and expression levels of genes associated with epigenetic modifications and developmental competence.The results showed that the maturation rate((59.21±4.29)%),oocyte cleavage rate((57.78±4.58)%)and blastocyst rate((22.31±1.67)%)of the heat stress treatment group were significantly lower than those of the control group((85.10±6.75)%,(78.64±2.46)%,and(42.64±1.38)%,Plt;0.05); The levels of epigenetic modifications histone H1,histone H2,histone H4,and DNA methylation of bovine oocytes and embryos at all stages in the heat stress group were significantly lower than those of the control group(Plt;0.05); the level of ΔΨm of bovine oocytes in the heat stress group was significantly lower than that of the control group(Plt;0.05); the level of ROS in bovine oocytes of heat stress group was significantly higher than that of the control group(Plt;0.05); the mRNA expression levels of genes related to epigenetic modification of bovine oocytes DNMT1,DNMT3A,DNMT3B,Histone H2A,SMYD3,and IGF-2R were significantly lower in the heat stress group than in the control group(Plt;0.05); the mRNA expression levels of the genes C-MOS,GDF-9and POU5F1related to oocyte developmental competence were significantly lower in the heat stress group than in the control group(Plt;0.05).In this study,weThe results showed that heat stress significantly reduced the levels of epigenetic modifications histone H1,histone H2,histone H4,and DNA methylation,significantly decreased the levels of ΔΨm and mRNA expression of genes related to epigenetic modifications and developmental competence,and significantly increased the levels of ROS and reduced the developmental competencequality of bovine oocytes and embryos.
Key words:heat stress; bovine; oocyte; epigenetic modifications; developmental competence
*Corresponding authors:ZHAO Xueming,E-mail:zhaoxueming@caas.cn; CUI Kai,E-mail:qdndcuikai@163.com
近年來,隨著人們對牛奶等乳制品需求的不斷增長,目前迫切需要提高牛的生產(chǎn)效率[1]。影響牛生產(chǎn)力的主要因素是繁殖效率[2],而繁殖力受到多方面因素的影響,包括營養(yǎng)、管理和環(huán)境等,其中環(huán)境因素的影響最大[1-3]。在夏季,環(huán)境溫度高是牛產(chǎn)業(yè)面臨的關(guān)鍵問題[4],牛妊娠率會下降20%~30%[2],當(dāng)環(huán)境溫度最高時,妊娠率會顯著下降近50%[5]。夏季氣溫高導(dǎo)致牛體溫超過熱中性區(qū),且環(huán)境濕度也較高,高溫與潮濕結(jié)合會導(dǎo)致牛生理發(fā)生變化,其自身無法充分散熱以維持熱平衡,從而引發(fā)熱應(yīng)激(heat stress,HS)[6]。熱應(yīng)激以減少飲食攝入量、日增重和產(chǎn)奶量的形式影響牛的生產(chǎn)力[7]。
熱應(yīng)激會降低許多物種的繁殖力,包括牛、小鼠、羊和豬等[8]。熱應(yīng)激會對牛繁殖力造成長期負(fù)面影響[9],影響牛發(fā)情、子宮功能、卵泡生長和卵子發(fā)育等[3]。其中,卵子發(fā)育能力質(zhì)量是影響繁殖力的關(guān)鍵因素[10],然而,熱應(yīng)激會破壞細(xì)胞骨架并導(dǎo)致線粒體功能下降[8],誘導(dǎo)發(fā)育中的卵子氧化還原平衡紊亂,并導(dǎo)致卵子基因表達(dá)發(fā)生顯著改變,從而導(dǎo)致卵子發(fā)育能力質(zhì)量下降[11]。熱應(yīng)激對繁殖力的有害影響在產(chǎn)奶量高的牛中更為明顯[8],熱應(yīng)激導(dǎo)致牛繁殖效率降低會對牛場的經(jīng)濟(jì)和生產(chǎn)效率產(chǎn)生負(fù)面影響[4]。
表觀遺傳學(xué)研究是了解環(huán)境因素如何影響牛重要經(jīng)濟(jì)性狀表型變化的關(guān)鍵,包括發(fā)育、營養(yǎng)、行為和健康[12]。研究表明,熱應(yīng)激通過影響表觀遺傳修飾水平直接影響牛卵子和胚胎的發(fā)育能力[9]。表觀遺傳修飾參與許多生物過程,遺傳和環(huán)境因素復(fù)雜的相互作用導(dǎo)致表觀基因組的動態(tài)變化對牛的正常生長發(fā)育和健康至關(guān)重要,特別是對熱應(yīng)激的響應(yīng)[13]。表觀遺傳修飾是指主要發(fā)生在DNA和染色體上的可遺傳分子修飾[14],其調(diào)節(jié)基因組活動和基因表達(dá),而不改變DNA序列[13,15]。表觀遺傳過程包括組蛋白修飾、DNA甲基化、染色質(zhì)重塑和非編碼RNA調(diào)節(jié)[16]。表觀遺傳修飾參與許多生物過程,多種表觀遺傳過程不僅相互作用,改變?nèi)旧|(zhì)構(gòu)象,還影響基因表達(dá)活性,從而影響基因功能和表型[12]。其中,在牛卵子和胚胎發(fā)育過程中,組蛋白修飾和DNA甲基化在基因表達(dá)調(diào)控[17]和表觀遺傳重編程中發(fā)揮重要作用[18]。然而,牛熱應(yīng)激改變了基因表達(dá),導(dǎo)致卵子和胚胎表觀基因組異常,誘發(fā)表觀基因變異,導(dǎo)致不同的表型變異,從而導(dǎo)致卵子發(fā)育能力質(zhì)量下降[2,12]。
目前,在形態(tài)學(xué)、生化和發(fā)育水平上已觀察到熱應(yīng)激對卵子發(fā)育能力質(zhì)量產(chǎn)生的負(fù)面影響,然而,熱應(yīng)激在表觀遺傳水平上影響卵子和胚胎發(fā)育能力的機(jī)制仍有待進(jìn)一步闡明。因此,本試驗通過檢測熱應(yīng)激組和對照組卵子發(fā)育過程中組蛋白修飾水平、DNA甲基化水平,并檢測了卵子ROS水平、JC-1水平以及與表觀遺傳修飾和發(fā)育能力相關(guān)基因的表達(dá)水平,以探究夏季熱應(yīng)激對牛卵子及其胚胎表觀遺傳修飾和發(fā)育能力的影響,以期為提出緩解夏季熱應(yīng)激的方法奠定一定基礎(chǔ)。
1 材料與方法
1.1 主要試劑
除特別說明外,本試驗所用試劑均采購自Sigma公司。卵子培養(yǎng)基(TCM-199)和胎牛血清(fetal bovine serum,F(xiàn)BS)購自Gibco公司。
1.2 卵子采集與體外成熟
本試驗所用卵子均來自屠宰場卵巢。將牛卵巢于2h內(nèi)送至實驗室,用含雙抗(青霉素和鏈霉素)的37 ℃無菌生理鹽水清洗2~3次。使用真空泵抽取直徑為2~8mm卵泡中的卵丘-卵母細(xì)胞復(fù)合體(cumulus-oocyte complexes,COCs)于離心管中。在體式顯微鏡下選擇含有3層及以上完整卵丘細(xì)胞的COCs,在洗卵液中清洗2次,成熟液中洗3次后,將其放入含體外成熟液的四孔板中(≤50個·孔-1)。對照組COCs在38.5 ℃、5%CO2條件下成熟22~24h,熱應(yīng)激組在41.0 ℃、5%CO2條件下成熟12h,隨后在38.5 ℃、5%CO2條件下繼續(xù)成熟12h。
1.3 體外受精
體外受精根據(jù)Brackett和Oliphant[19]的方法,并稍作修改。將凍精從液氮罐中取出,平推散液氮后,置于38 ℃水浴解凍,后于超凈臺中將精液加入到7mL洗精液中,離心條件為1800r·min-1,5min,共洗兩次。去上清后,用受精液重懸,調(diào)整精子密度為1×107個·mL-1。取10μL精液與90μL受精液混勻成100μL的受精滴,使精子終密度為1×106個·mL-1,放入恒溫培養(yǎng)箱(38.5 ℃、5%CO2)中平衡1.5h。將成熟后的卵子置于1mg·mL-1透明質(zhì)酸酶溶液中,反復(fù)吹打以脫去卵丘細(xì)胞,保留至1~2層,用終止液(TCM199+10%FBS)終止消化反應(yīng)。將卵子轉(zhuǎn)移至受精滴中,在恒溫培養(yǎng)箱中培養(yǎng)16~18h進(jìn)行體外受精。受精結(jié)束后,脫凈顆粒,將受精卵轉(zhuǎn)移至胚胎前期培養(yǎng)液中培養(yǎng)48h,統(tǒng)計卵裂率,隨后移至后期培養(yǎng)液中繼續(xù)培養(yǎng),每隔48h半量換液,于受精后第7天統(tǒng)計囊胚率。
1.4 免疫熒光染色
將成熟后的卵子置于1mg·mL-1透明質(zhì)酸酶溶液中,反復(fù)吹打以脫凈卵丘細(xì)胞,用終止液(TCM199+10%FBS)終止消化反應(yīng)。將脫凈卵丘細(xì)胞的成熟卵子和胚胎用0.1%PBS/PVA洗3次后,移入4%多聚甲醛中過夜固定。將細(xì)胞用0.1%PBS/PVA洗兩次后,放入0.5%Triton X-100液中,室溫通透40min后移入1%BSA溶液中4 ℃封閉過夜。用1%BSA溶液稀釋一抗(H1F0,Solarbo,1∶200;H2B,Solarbo,1∶500;H4,Bioeasy,1∶500;DNA甲基化5-methylation,Epigentek,1∶200)并4 ℃過夜孵育,用0.5%Triton X-100液清洗3次。用1%BSA溶液稀釋二抗(Alexa Fluor488羊抗兔IgG;Alexa Fluor488羊抗鼠IgG;Alexa Fluor680羊抗兔IgG),比例為1∶500,室溫避光孵育1h,清洗3次后,用DAPI壓片,在激光共聚焦顯微鏡下(TCS SP8,Leica,德國)觀察染色情況并采集圖像。采集的熒光圖像利用Image J軟件進(jìn)行熒光值統(tǒng)計。
1.5 線粒體膜電位檢測
利用JC-1檢測試劑盒(碧云天)檢測卵子線粒體膜電位(ΔΨm)。COCs體外成熟24h后,將其置于1mg·mL-1透明質(zhì)酸酶溶液中,反復(fù)吹打以脫凈卵丘細(xì)胞,并用0.1%PBS/PVA清洗。將卵子在37.0 ℃JC-1溶液(10μg·mL-1)中孵化20min,用0.1%PBS/PVA清洗。用激光共聚焦掃描顯微鏡(TCS SP8,Leica,德國)拍照。使用Image J軟件分析熒光圖像。
1.6 活性氧檢測
將脫凈卵丘細(xì)胞的成熟卵子清洗3次后,根據(jù)制造商說明書,利用活性氧檢測試劑盒(S0033 S,碧云天)檢測卵子ROS水平。卵子經(jīng)0.1%PBS/PVA洗滌3次后,置于10μmol·L-1DCFH-DA染色液中,37.0 ℃避光孵育20min。染色完成后,用0.1%PBS/PVA溶液清洗卵子3次,置于倒置熒光顯微鏡(尼康,日本)下拍照。采集的熒光圖像利用Image J軟件進(jìn)行熒光值統(tǒng)計。
1.7 實時熒光定量PCR(RT-qPCR)
采用NCBI進(jìn)行引物設(shè)計,引物序列見表1。采用BIO-RAD(美國)CFX96TM實時熒光定量PCR儀進(jìn)行定量分析。試驗采用15μL反應(yīng)體系:上、下游引物各0.5μL,cDNA模板2μL,TB Green Premix Ex Taq II7.5μL,不含RNase的ddH2O4.5μL。反應(yīng)程序:95 ℃預(yù)變性30s;95 ℃5s,60 ℃30s,共計39個循環(huán)。每個樣品重復(fù)3次,每組卵母細(xì)胞樣品為50枚。利用2-ΔΔCt法以牛GAPDH為內(nèi)參基因計算各目的基因mRNA的表達(dá)水平。
1.8 數(shù)據(jù)統(tǒng)計與分析
本試驗均重復(fù)3次。采用SAS8.2軟件進(jìn)行單因素方差分析,并使用Duncan′s檢驗法進(jìn)行顯著性分析,結(jié)果以“平均數(shù)±標(biāo)準(zhǔn)差”表示,Plt;0.05表示差異顯著。
2 結(jié) 果
2.1 熱應(yīng)激對牛卵子及其胚胎發(fā)育能力的影響
為了研究熱應(yīng)激對牛卵子及其胚胎發(fā)育能力的影響,本研究統(tǒng)計了牛卵子IVF后的卵裂率和囊胚率。如表2所示,熱應(yīng)激組成熟率((59.21±4.29)%)、卵裂率((57.78±4.58)%)和囊胚率((22.31±1.67)%)均顯著低于對照組((85.10±6.75)%、(78.64±2.46)%、(42.64±1.38)%,Plt;0.05),表明熱應(yīng)激顯著降低了牛卵子和胚胎的發(fā)育能力。
2.2 熱應(yīng)激對卵子發(fā)育過程中及其胚胎組蛋白H1表達(dá)水平的影響
為了研究熱應(yīng)激對牛卵子發(fā)育過程中組蛋白H1的影響,檢測了牛MII期卵子、2細(xì)胞胚胎、4細(xì)胞胚胎、8細(xì)胞胚胎、桑葚胚和囊胚的組蛋白H1F0表達(dá)水平。圖1A和圖1B分別為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H1F0染色圖。圖1C為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H1表達(dá)水平結(jié)果統(tǒng)計學(xué)分析,與對照組相比,熱應(yīng)激組各細(xì)胞階段的組蛋白H1熒光強(qiáng)度顯著降低(Plt;0.05),表明熱應(yīng)激顯著降低了牛卵子和胚胎組蛋白H1修飾水平,從而影響了卵子和胚胎的發(fā)育能力。
2.3 熱應(yīng)激對卵子發(fā)育過程中及其胚胎組蛋白H2表達(dá)水平的影響
為了研究熱應(yīng)激對牛卵子發(fā)育過程中組蛋白修飾的影響,檢測了牛MII期卵子、2細(xì)胞胚胎、4細(xì)胞胚胎、8細(xì)胞胚胎、桑葚胚和囊胚的組蛋白H2B表達(dá)水平。圖2A和圖2B分別為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H2B染色圖。圖2C為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H2表達(dá)水平結(jié)果統(tǒng)計學(xué)分析,與對照組相比,熱應(yīng)激組各細(xì)胞階段的組蛋白H2熒光強(qiáng)度顯著降低(Plt;0.05),表明熱應(yīng)激顯著降低了牛卵子和胚胎組蛋白修飾水平,從而影響了卵子和胚胎的發(fā)育能力。
2.4 熱應(yīng)激對卵子發(fā)育過程中及其胚胎組蛋白H4表達(dá)水平的影響
為了研究熱應(yīng)激對牛卵子發(fā)育過程中組蛋白修飾的影響,檢測了牛MII期卵子、2細(xì)胞胚胎、4細(xì)胞胚胎、8細(xì)胞胚胎、桑葚胚和囊胚的組蛋白H4表達(dá)水平。圖3A和圖3B分別為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H4染色圖。圖3C為對照組和熱應(yīng)激組卵子和胚胎的組蛋白H4表達(dá)水平結(jié)果統(tǒng)計學(xué)分析,與對照組相比,熱應(yīng)激組各細(xì)胞階段的組蛋白H4熒光強(qiáng)度顯著降低(Plt;0.05),表明熱應(yīng)激顯著降低了牛卵子和胚胎組蛋白修飾水平,從而影響了卵子和胚胎的發(fā)育能力。
2.5 熱應(yīng)激對卵子發(fā)育過程中及其胚胎DNA甲基化表達(dá)水平的影響
為了研究熱應(yīng)激對牛卵子發(fā)育過程中DNA甲基化的影響,檢測了牛MII期卵子、2細(xì)胞胚胎、4細(xì)胞胚胎、8細(xì)胞胚胎、桑葚胚和囊胚的DNA甲基化表達(dá)水平。圖4A和圖4B分別為對照組和熱應(yīng)激組卵子和胚胎的DNA甲基化染色圖。圖4C為對照組和熱應(yīng)激組卵子和胚胎的DNA甲基化表達(dá)水平結(jié)果統(tǒng)計學(xué)分析,與對照組相比,熱應(yīng)激組各細(xì)胞階段的DNA甲基化熒光強(qiáng)度顯著降低(Plt;0.05),表明熱應(yīng)激顯著降低了牛卵子和胚胎DNA甲基化水平,從而影響了卵子和胚胎的發(fā)育能力。
2.6 熱應(yīng)激對卵子ΔΨm的影響
為了研究熱應(yīng)激對牛卵子線粒體膜電位的影響,本研究采用JC-1檢測試劑盒檢測了卵子ΔΨm。卵子ΔΨm熒光染色圖像如圖5A所示。如圖5B所示,對照組牛卵子ΔΨm熒光強(qiáng)度顯著高于熱應(yīng)激組(Plt;0.05),這表明IVM期間熱應(yīng)激降低了牛卵子ΔΨm水平。
2.7 熱應(yīng)激對卵子ROS水平的影響
為了研究熱應(yīng)激對牛卵子ROS水平的影響,本研究采用活性氧檢測試劑盒檢測了牛卵子ROS水平。牛卵子DCFH-DA熒光染色圖像如圖6A所示。如圖6B所示,對照組牛卵子的DCFH-DA熒光強(qiáng)度顯著低于熱應(yīng)激組(Plt;0.05),這表明IVM期間熱應(yīng)激增強(qiáng)了牛卵子ROS水平。
2.8 熱應(yīng)激對卵子表觀遺傳修飾相關(guān)基因表達(dá)水平的影響
本試驗利用熒光定量PCR對熱應(yīng)激組和對照組卵子表觀遺傳修飾相關(guān)基因DNMT1、DNMT3A、DNMT3B、Histone H2A、IGF-2R和SMYD3的表達(dá)水平進(jìn)行檢測。由圖7可以看出,熱應(yīng)激組DNMT1、DNMT3A、DNMT3B、Histone H2A、IGF-2R和SMYD3的mRNA表達(dá)量顯著低于對照組(Plt;0.05)。
2.9 熱應(yīng)激對卵子發(fā)育能力相關(guān)基因表達(dá)水平的影響
本試驗利用熒光定量PCR對熱應(yīng)激組和對照組卵子發(fā)育能力相關(guān)基因C-MOS、GDF-9和POU5F1的表達(dá)水平進(jìn)行檢測。由圖8可以看出,熱應(yīng)激組C-MOS、GDF-9和POU5F1的mRNA表達(dá)量顯著低于對照組(Plt;0.05)。
3 討 論
熱應(yīng)激影響卵子的發(fā)育能力質(zhì)量是牛繁殖效率下降的主要原因[20]。熱應(yīng)激通過溫度和時間依賴性影響卵子發(fā)育[21-22],會對卵質(zhì)、細(xì)胞核和卵丘細(xì)胞產(chǎn)生負(fù)面影響,從而損害牛卵子的發(fā)育能力成熟[23]。研究表明,夏季卵子質(zhì)量低于冬季卵子,表現(xiàn)為發(fā)育能力成熟率降低[24]。Payton等[22]研究發(fā)現(xiàn),GV階段COCs處于熱應(yīng)激條件下,會導(dǎo)致核成熟和胚胎發(fā)育能力降低。Roth和Hansen[25]研究表明,在成熟過程前12h將COCs在41.0 ℃熱應(yīng)激條件下培養(yǎng),后12h在38.5 ℃條件下培養(yǎng),結(jié)果顯著降低了卵裂率和囊胚率。同樣,本研究也表明,熱應(yīng)激顯著降低了卵子和胚胎的發(fā)育能力,降低了卵裂率和囊胚率。受精時卵子的細(xì)胞核和細(xì)胞質(zhì)狀態(tài)是后續(xù)胚胎發(fā)育的主要決定因素,熱應(yīng)激導(dǎo)致卵子生理上的改變會導(dǎo)致卵子發(fā)育能力和后續(xù)胚胎發(fā)育能力的降低,對牛繁殖效率產(chǎn)生不良影響[25]。
卵子和胚胎發(fā)育過程中基因表達(dá)調(diào)控需要轉(zhuǎn)錄因子的順式調(diào)節(jié)和表觀遺傳機(jī)制的逆式調(diào)節(jié)[26]。然而,環(huán)境刺激會誘發(fā)表觀遺傳修飾變化[12],并且表觀遺傳重編程也受環(huán)境因素的影響,其中溫度是環(huán)境中的主要影響因素[27]。由于發(fā)育中卵子和胚胎的敏感性,妊娠牛夏季熱應(yīng)激會誘發(fā)后代的表觀遺傳變異,導(dǎo)致發(fā)育中表觀基因組的改變,進(jìn)而導(dǎo)致卵子和胚胎發(fā)育能力下降以及牛自身和其后代的表型變化[2,15],并存在潛在的遺傳性[12]。
組蛋白H1在維持染色質(zhì)結(jié)構(gòu)和穩(wěn)定性方面起重要作用[28],并通過轉(zhuǎn)錄激活和抑制能力調(diào)控基因表達(dá)[29]。Funaya等[30]通過實時熒光定量PCR檢測胚胎發(fā)育過程中接頭組蛋白H1變體的表達(dá)水平變化,其中,H1F0表達(dá)水平在單細(xì)胞階段到桑葚胚階段逐漸下降,囊胚期略有升高。研究表明,熱應(yīng)激顯著影響組蛋白H1的表達(dá),從而影響卵子和胚胎的發(fā)育[30]。同樣,如圖1所示,本研究表明,H1F0存在于卵子和胚胎染色質(zhì)和細(xì)胞質(zhì)中,表達(dá)水平從卵子到桑葚胚階段逐漸下降,囊胚期有所升高,并且熱應(yīng)激顯著降低了H1F0的表達(dá)水平。熱應(yīng)激影響細(xì)胞發(fā)育過程,其中涉及不同的表觀遺傳過程,導(dǎo)致組蛋白H1表達(dá)水平降低[12]。
組蛋白H2參與調(diào)控基因表達(dá)[31],組蛋白H2B在細(xì)胞分裂過程中發(fā)揮著重要作用[32],并且組蛋白H2B的N末端對染色體凝聚至關(guān)重要[33]。Kafer等[34]研究發(fā)現(xiàn),在小鼠胚胎發(fā)育期間均可檢測到組蛋白H2B,在受精卵至2-細(xì)胞階段表達(dá)顯著下降,發(fā)育至囊胚階段過程中H2B表達(dá)水平逐漸增加。組蛋白是染色質(zhì)的組成部分,細(xì)胞在45 ℃左右會出現(xiàn)酶促反應(yīng),在體外組蛋白的變性也在相似的溫度下進(jìn)行[35]。Izumi等[35]表明,熱應(yīng)激條件下會誘導(dǎo)細(xì)胞組蛋白H2A-H2B蛋白的結(jié)構(gòu)改變,并且H2A-H2B的變性會隨著細(xì)胞體外溫度的升高而進(jìn)行。同樣,本試驗結(jié)果表明,組蛋白H2B在卵子和胚胎發(fā)育所有階段均存在,表達(dá)水平從卵子階段到2-細(xì)胞階段有所下降,后逐漸升高至囊胚階段,并且熱應(yīng)激降低了組蛋白H2的表達(dá)水平。
組蛋白H4調(diào)節(jié)轉(zhuǎn)錄過程[36],是組蛋白八聚體中最保守的成分,在S期將DNA包裝成染色質(zhì)[37],在核小體中具有結(jié)構(gòu)作用[36]。核心組蛋白的N端尾,特別是H4,經(jīng)歷了甲基化、乙酰化和磷酸化各種修飾,這些翻譯后修飾在染色質(zhì)結(jié)構(gòu)和轉(zhuǎn)錄的調(diào)節(jié)中起著至關(guān)重要的作用[38]。Rozinek等[39]研究表明,在豬的4-細(xì)胞胚胎中,組蛋白H4存在于異染色質(zhì)中,在核的外圍表達(dá)更強(qiáng)烈。Wee等[40]研究發(fā)現(xiàn),在牛IVF胚胎中,AcH4K5強(qiáng)度水平從1-細(xì)胞到4-細(xì)胞階段維持,并在8-細(xì)胞階段顯著增加,表明組蛋白H4乙?;?。同樣,本研究結(jié)果表明,組蛋白H4存在于胚胎發(fā)育的各個階段,表達(dá)水平從MII卵子階段逐漸降低至4-細(xì)胞階段,8-細(xì)胞顯著上升,桑葚胚和囊胚期有所下降,并且熱應(yīng)激顯著降低了各細(xì)胞階段組蛋白H4的表達(dá),從而降低了卵子和胚胎的發(fā)育能力。組蛋白H4表達(dá)水平發(fā)生改變不僅會導(dǎo)致基因組不穩(wěn)定,還會導(dǎo)致細(xì)胞早期發(fā)育期間凋亡增加和細(xì)胞周期進(jìn)展異常[41]。
哺乳動物表觀遺傳改變的最突出形式是胞嘧啶在CpG二核苷酸中5′位置的對稱甲基化[42],DNA甲基化是細(xì)胞發(fā)育過程中表觀遺傳修飾的重要組成部分[20,43-44]。DNA甲基化不僅對早期胚胎發(fā)育和分化至關(guān)重要[26],還在調(diào)控基因表達(dá)、X染色體失活、基因組印記以及轉(zhuǎn)錄等方面發(fā)揮重要作用[26,42,45]。Dobbs等[46]使用抗5-甲基胞嘧啶的免疫熒光標(biāo)記證明牛胚胎DNA甲基化水平從2-細(xì)胞階段降低到8-細(xì)胞階段,后增加至囊胚階段。Chen等[14]研究表明,與對照組相比,牛玻璃化冷凍MII期卵子和2~8-細(xì)胞胚胎的DNA甲基化表達(dá)水平較低。LiangSantos和Dean[42]研究表明,在小鼠中,與對照組相比,玻璃化MII期卵子和2~8-細(xì)胞期胚胎的DNA甲基化水平顯著降低。本研究表明,DNA甲基化表達(dá)水平從MII期卵子階段逐漸降低到8-細(xì)胞階段,后桑葚胚和囊胚階段有所升高,并且熱應(yīng)激顯著降低了卵子和各階段胚胎的DNA甲基化水平,降低了卵子質(zhì)量和后續(xù)胚胎發(fā)育能力。異常的DNA甲基化變化會導(dǎo)致卵裂球的異常分裂并損害卵子和胚胎的正常發(fā)育[14,42,45]。
胚胎發(fā)育與卵子中線粒體活性相關(guān),其特征為ΔΨm[47]。卵子中線粒體的各種功能依賴于膜電位的維持,包括ATP生成和受精能力的獲得等[24,48],并且ΔΨm大小與信號轉(zhuǎn)導(dǎo)、鈣穩(wěn)態(tài)的維持和細(xì)胞凋亡直接相關(guān)[49]。卵子ΔΨm對環(huán)境敏感[47],夏季熱應(yīng)激會降低ΔΨm,誘導(dǎo)細(xì)胞凋亡[47],從而影響卵子質(zhì)量[24]。Nabenishi等[47]研究表明,與對照組相比,熱應(yīng)激組卵子ΔΨm較低。Gendelman和Roth[48]研究表明,具有高極性的卵子比例在冬季較高,在秋季中等,在夏季最低。Soto和Smith[50]研究表明,熱應(yīng)激會降低卵子線粒體膜電位和活性。同樣,本研究也表明,熱應(yīng)激顯著降低了卵子ΔΨm水平,降低了卵子質(zhì)量。奶牛卵子中低ΔΨm線粒體與其發(fā)育能力質(zhì)量降低有關(guān)[51]。
熱應(yīng)激損傷卵子質(zhì)量的機(jī)制之一是通過改變氧化還原狀態(tài),即ROS增加[52]。在生理條件下,ROS對核成熟至關(guān)重要[24]。然而,當(dāng)ROS產(chǎn)生與抗氧化能力不平衡時,ROS不僅會引起蛋白質(zhì)、脂質(zhì)氧化[53]和DNA、線粒體、細(xì)胞損傷[54],還會導(dǎo)致細(xì)胞質(zhì)缺陷、染色體異常分離、破壞卵裂和細(xì)胞凋亡[52]。CavallariDe Castro Cavallari等[55]研究表明,熱應(yīng)激卵子ROS水平高于對照組卵子。Nabenishi等[47]研究表明,與對照組相比,熱應(yīng)激組ROS水平顯著升高。我們的本研究結(jié)果也表明,熱應(yīng)激組卵子ROS水平顯著高于對照組卵子ROS水平。熱應(yīng)激通過誘導(dǎo)ROS增加導(dǎo)致細(xì)胞各種損傷,從而導(dǎo)致卵子發(fā)育能力和質(zhì)量下降[8]。
基因表達(dá)分析為更好地理解熱應(yīng)激對卵子發(fā)育成熟的影響提供了新的視角,在研究了相關(guān)基因表達(dá)后,研究發(fā)現(xiàn)熱應(yīng)激改變了基因表達(dá)。其中,表觀遺傳相關(guān)基因DNMT1在牛卵子和胚胎發(fā)育中起著重要作用[56-57],影響胚胎著床前表觀基因組建立的關(guān)鍵發(fā)育階段[58]。Pavani等[57]觀察到牛卵子成熟時熱應(yīng)激會導(dǎo)致DNMT1基因表達(dá)的改變,從而影響卵子的發(fā)育能力成熟,并且在牛夏季胚胎發(fā)育的每個階段DNMT1基因都在持續(xù)下調(diào)。DNA甲基化由從頭DNA甲基轉(zhuǎn)移酶DNMT3A和DNMT3B介導(dǎo),DNMT3A在早期胚胎發(fā)育過程中以相同的效率作用于半甲基化和非甲基化DNA[59],DNMT3B參與從頭DNA甲基化,受甲基化的表觀遺傳調(diào)控[46]。Histone H2A是卵子發(fā)育成熟過程中最穩(wěn)定的參考基因,用于標(biāo)準(zhǔn)化測量牛卵子和胚胎中處于相似發(fā)育階段和不同發(fā)育階段的mRNA豐度[60]。胰島素樣生長因子-2受體(IGF-2R)是一種組織特異性和物種依賴性的印記基因,由表觀遺傳修飾調(diào)節(jié)[61]。SMYD3是一種含有SET結(jié)構(gòu)域的H3K4甲基轉(zhuǎn)移酶,可以作為一種含有組蛋白甲基轉(zhuǎn)移酶活性的轉(zhuǎn)錄因子調(diào)控下游基因,并且能夠觸發(fā)表觀遺傳重編程并調(diào)節(jié)早期胚胎中的基因表達(dá)[62]。本研究熒光定量結(jié)果表明,熱應(yīng)激降低了表觀遺傳相關(guān)基因DNMT1、DNMT3A、DNMT3B、Histone H2A、IGF-2R和SMYD3的表達(dá),從而降低了卵子的發(fā)育能力質(zhì)量。
與發(fā)育能力相關(guān)的基因C-MOS是一種絲氨酸/蘇氨酸激酶,在卵母細(xì)胞成熟中起關(guān)鍵作用,在哺乳動物中,還參與減數(shù)分裂紡錘體的形成[48]。GDF-9在卵母細(xì)胞中產(chǎn)生,是一種生殖細(xì)胞標(biāo)志物,作用于卵丘細(xì)胞,能夠通過調(diào)節(jié)排卵前卵泡中的卵丘細(xì)胞功能來調(diào)節(jié)卵泡發(fā)生、卵發(fā)生和卵母細(xì)胞成熟[48]。GDF-9在卵母細(xì)胞中表達(dá)是具備繁殖能力所必需的[63]。POU5F1(也稱為OCT4)是POU轉(zhuǎn)錄因子家族的成員,具有種系特異性表達(dá)譜[59]。POU5F1廣泛用于鑒定不同物種中的多能細(xì)胞,在牛胚胎植入前發(fā)育中起關(guān)鍵作用,并且其表達(dá)對培養(yǎng)環(huán)境敏感[59]。Gendelman和Roth[48]研究表明,在冷季節(jié)采集的卵母細(xì)胞中C-MOS、GDF-9和POU5F1轉(zhuǎn)錄本的相對豐度高于熱季節(jié)采集的卵母細(xì)胞。如圖8所示,本研究表明,體外熱應(yīng)激條件處理后,發(fā)育能力相關(guān)基因C-MOS、GDF-9和POU5F1的mRNA表達(dá)顯著降低,這表明熱應(yīng)激損害了卵子的發(fā)育能力成熟。
4 結(jié) 論
本研究表明,IVM期間熱應(yīng)激不僅導(dǎo)致牛卵子及后續(xù)胚胎發(fā)育過程中表觀遺傳修飾組蛋白H1、組蛋白H2、組蛋白H4和DNA甲基化表達(dá)水平顯著降低,并顯著降低了牛卵子ΔΨm水平,顯著提高了ROS水平,還導(dǎo)致卵子表觀遺傳修飾相關(guān)基因和發(fā)育能力相關(guān)基因表達(dá)水平顯著降低,從而降低了卵子的發(fā)育能力質(zhì)量。
參考文獻(xiàn)(References):
[1]WANKAR AK,RINDHE SN,DOIJAD NS.Heat stress in dairy animals and current milk production trends,economics,and future perspectives:the global scenario[J].Trop Anim Health Prod,2021,53(1):70.
[2]HUBER E,NOTARO US,RECCE S,et al.Fetal programming in dairy cows:effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions[J].Anim Reprod Sci,2020,216:106348.
[3]BECKER CA,COLLIER RJ,STONE AE.Invited review:physiological and behavioral effects of heat stress in dairy cows[J].J Dairy Sci,2020,103(8):6751-6770.
[4]NARANJO-GOMEZ JS,URIBE-GARCIA HF,HERRERA-SANCHEZ MP,et al.Heat stress on cattle embryo:gene regulation and adaptation[J].Heliyon,2021,7(3):e06570.
[5]DE AGUIAR LH,HYDE KA,PEDROZA GH,et al.Heat stress impairs in vitro development of preantral follicles of cattle[J].Anim Reprod Sci,2020,213:106277.
[6]WANG JJ,LI JH,WANG FX,et al.Heat stress on calves and heifers:a review[J].J Anim Sci Biotechnol,2020,11:79.
[7]SAKATANI M.Effects of heat stress on bovine preimplantation embryos produced in vitro[J].J Reprod Dev,2017,63(4):347-352.
[8]DE BARROS FR O,PAULA-LOPES FF.Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos[J].Mol Reprod Dev,2018,85(11):810-820.
[9]MITKIEWSKA K,KORDOWITZKI P,PAREEK CS.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells,2022,11(24):4073.
[10]MAREI WF A,LEROY JL MR.Cellular stress responses in oocytes:molecular changes and clinical implications[M]∥TURKSEN K.Cell Biology and Translational Medicine.Cham:Springer,2022:171-189.
[11]STAMPERNA K,GIANNOULIS T,NANAS I,et al.Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes,cumulus cells and blastocysts in cattle[J].Theriogenology,2020,156:36-45.
[12]DOHERTY R,O′FARRELLY C,MEADE KG.Comparative epigenetics:relevance to the regulation of production and health traits in cattle[J].Anim Genet,2014,45Suppl1:3-14.
[13]WANG MQ,IBEAGHA-AWEMU EM.Impacts of epigenetic processes on the health and productivity of livestock[J].Front Genet,2021,11:613636.
[14]CHEN HH,ZHANG L,DENG TF,et al.Effects of oocyte vitrification on epigenetic status in early bovine embryos[J].Theriogenology,2016,86(3):868-878.
[15]VAN ESCH BC AM,PORBAHAIE M,ABBRING S,et al.The impact of milk and its components on epigenetic programming of immune function in early life and beyond:implications for allergy and asthma[J].Front Immunol,2020,11:2141.
[16]HALU?KOVáJ,HOLE?KOVáB,STANI?OVáJ.DNA methylation studies in cattle[J].J Appl Genet,2021,62(1):121-136.
[17]YAN R,CHENG X,GU C,et al.Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development[J].Nat Genet,2023,55(1):130-143.
[18]ANDREWS S,KRUEGER C,MELLADO-LOPEZ M,et al.Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B[J].Nat Commun,2023,14(1):371.
[19]BRACKETT BG,OLIPHANT G.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod,1975,12(2):260-274.
[20]DIAZ FA,GUTIERREZ-CASTILLO EJ,F(xiàn)OSTER BA,et al.Evaluation of seasonal heat stress on transcriptomic profiles and global DNA methylation of bovine oocytes[J].Front Genet,2021,12:699920.
[21]LEE J,KIM D,SON J,et al.Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro[J].J Anim Sci Techno,2023,65(2):324-335.
[22]PAYTON RR,ROMAR R,COY P,et al.Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro[J].Biol Reprod,2004,71(4):1303-1308.
[23]KHAN I,MESALAM A,HEO YS,et al.Heat stress as abarrier to successful reproduction and potential alleviation strategies in cattle[J].Animals(Basel),2023,13(14):2359.
[24]ROTH Z.Symposium review:reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function[J].J Dairy Sci,2018,101(4):3642-3654.
[25]ROTH Z,HANSEN PJ.Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation[J].Biol Reprod,2004,71(6):1898-1906.
[26]SMITH ZD,MEISSNER A.DNA methylation:roles in mammalian development[J].Nat Rev Genet,2013,14(3):204-220.
[27]ZHU JQ,LIU JH,LIANG XW,et al.Heat stress causes aberrant DNA methylation of H19and Igf-2r in mouse blastocysts[J].Mol Cells,2008,25(2):211-215.
[28]LI S,SHI Y,DANG YN,et al.Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J].Biol Reprod,2022,107(6):1425-1438.
[29]FU G,GHADAM P,SIROTKIN A,et al.Mouse oocytes and early embryos express multiple histone H1subtypes[J].Biol Reprod,2003,68(5):1569-1576.
[30]FUNAYA S,OOGA M,SUZUKI MG,et al.Linker histone H1FOO regulates the chromatin structure in mouse zygotes[J].FEBS Lett,2018,592(14):2414-2424.
[31]JOO HY,JONES A,YANG CY,et al.Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12and USP46[J].J Biol Chem,2011,286(9):7190-7201.
[32]RINALDO C,MONCADA A,GRADI A,et al.HIPK2controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody[J].Mol Cell,2012,47(1):87-98.
[33]DE LA BARRE AE,ANGELOV D,MOLLA A,et al.The N-terminus of histone H2B,but not that of histone H3or its phosphorylation,is essential for chromosome condensation[J].EMBO J,2001,20(22):6383-6393.
[34]KAFER GR,LEHNERT SA,PANTALEON M,et al.Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos[J].Gene Expr Patterns,2010,10(6):299-305.
[35]IZUMI Y,MATSUO K,YOKOYA A.Secondary structural analyses of histone H2A-H2B proteins extracted from heated cells[J].Chirality,2023,35(3):165-171.
[36]FREEMAN L,KURUMIZAKA H,WOLFFE AP.Functional domains for assembly of histones H3and H4into the chromatin of Xenopus embryos[J].Proc Natl Acad Sci US A,1996,93(23):12780-12785.
[37]GHULE PN,XIE RL,COLBY JL,et al.Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos[J].Dev Biol,2016,419(2):311-320.
[38]ENDO T,IMAI A,SHIMAOKA T,et al.Histone exchange activity and its correlation with histone acetylation status in porcine oocytes[J].Reproduction,2011,141(4):397-405.
[39]ROZINEK J,MULLER S,COURTENS JL.Immunocytochemical localization of histones H2B,H3and H4in pronuclei and four-cell stages of porcine embryos.Preliminary results[J].Reprod Nutr Dev,1989,29(5):577-587.
[40]WEE G,KOO DB,SONG BS,et al.Inheritable histone H4acetylation of somatic chromatins in cloned embryos[J].J Biol Chem,2006,281(9):6048-6057.
[41]TESSADORI F,GILTAY JC,HURST JA,et al.Germline mutations affecting the histone H4core cause adevelopmental syndrome by altering DNA damage response and cell cycle control[J].Nat Genet,2017,49(11):1642-1646.
[42]SANTOS F,DEAN W.Epigenetic reprogramming during early development in mammals[J].Reproduction,2004,127(6):643-651.
[43]LIANG Y,F(xiàn)U XW,LI JJ,et al.DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos:effect of oocyte vitrification[J].Zygote,2014,22(2):138-145.
[44]WANG LJ,LIU LX,WANG YS,et al.Aberrant epigenetic reprogramming in the first cell cycle of bovine somatic cell nuclear transfer embryos[J].Cell Reprogram,2021,23(2):99-107.
[45]ZHU LK,MARJANI SL,JIANG ZL.The epigenetics of gametes and early embryos and potential long-range consequences in livestock species—filling in the picture with epigenomic analyses[J].Front Genet,2021,12:557934.
[46]DOBBS KB,RODRIGUEZ M,SUDANO MJ,et al.Dynamics of DNA methylation during early development of the preimplantation bovine embryo[J].PLoS One,2013,8(6):e66230.
[47]NABENISHI H,TAKAGI S,KAMATA H,et al.The role of mitochondrial transition pores on bovine oocyte competence after heat stress,as determined by effects of cyclosporin A[J].Mol Reprod Dev,2012,79(1):31-40.
[48]GENDELMAN M,ROTH Z.Incorporation of coenzyme Q10into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod,2012,87(5):118.
[49]VAN BLERKOM J.Mitochondrial function in the human oocyte and embryo and their role in developmental competence[J].Mitochondrion,2011,11(5):797-813.
[50]SOTO P,SMITH LC.BH4peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes[J].Mol Reprod Dev,2009,76(7):637-646.
[51]ZHAO XM,DU WH,WANG D,et al.Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes[J].Fertil Steril,2011,95(8):2786-2788.
[52]YAACOBI-ARTZI S,SHIMONI C,KALO D,et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology,2020,158:477-489.
[53]ROTH Z.Physiology and endocrinology symposium:cellular and molecular mechanisms of heat stress related to bovine ovarian function[J].J Anim Sci,2015,93(5):2034-2044.
[54]ZHANG H,GONG WB,WU S,et al.Hsp70in redox homeostasis[J].Cells,2022,11(5):829.
[55]DE CASTRO CAVALLARI F,LEAL CL V,ZVI R,et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote,2019,27(3):180-186.
[56]HIENDLEDER S,ZAKHARTCHENKO V,WOLF E.Mitochondria and the success of somatic cell nuclear transfer cloning:from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination[J].Reprod Fertil Dev,2005,17(1/2):69-83.
[57]PAVANI KC,BARON E,CORREIA P,et al.Gene expression,oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock[J].Zygote,2016,24(5):748-759.
[58]GOLDING MC,WESTHUSIN ME.Analysis of DNA(cytosine5)methyltransferase mRNA sequence and expression in bovine preimplantation embryos,fetal and adult tissues[J].Gene Expr Patterns,2003,3(5):551-558.
[59]URREGO R,BERNAL-ULLOA SM,CHAVARRIA NA,et al.Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro[J].Zygote,2017,25(2):131-140.
[60]BETTEGOWDA A,PATEL OV,IRELAND JJ,et al.Quantitative analysis of messenger RNA abundance for ribosomal protein L-15,cyclophilin-A,phosphoglycerokinase,β-glucuronidase,glyceraldehyde3-phosphate dehydrogenase,β-actin,and histone H2A during bovine oocyte maturation and early embryogenesis in vitro[J].Mol Reprod Dev,2006,73(3):267-278.
[61]LONG JE,CAI X.Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle[J].Gene,2007,388(1/2):125-134.
[62]BAI HD,LI Y,GAO HX,et al.Histone methyltransferase SMYD3regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development[J].Cytotechnology,2016,68(4):849-859.
[63]GILCHRIST RB,LANE M,THOMPSON JG.Oocyte-secreted factors:regulators of cumulus cell function and oocyte quality[J].Hum Reprod Update,2008,14(2):159-177.
(編輯 郭云雁)