摘 要:圍產(chǎn)期奶牛受多方面因素的調(diào)控,由于生理、日糧、環(huán)境和管理等多重因素的變化,奶牛易發(fā)生能量負(fù)平衡和免疫抑制,進(jìn)而引發(fā)各種疾病,導(dǎo)致養(yǎng)殖效益下降。本文基于近年來的相關(guān)研究,對(duì)圍產(chǎn)期奶牛在能量、激素、維生素與礦物質(zhì)、細(xì)胞因子等方面的變化規(guī)律進(jìn)行綜述。發(fā)現(xiàn)這一時(shí)期奶牛血糖、胰島素、脂肪、氨基酸等關(guān)鍵物質(zhì)呈現(xiàn)出有序而規(guī)律性的動(dòng)態(tài)變化,生殖激素和其他激素也表現(xiàn)出顯著波動(dòng),維生素和礦物質(zhì)的需求發(fā)生顯著調(diào)整。鑒于這些復(fù)雜的生理變化,為圍產(chǎn)期奶牛的飼養(yǎng)管理提供合理建議對(duì)防控奶牛能量代謝紊亂、改善乳品質(zhì)量、提高奶牛生產(chǎn)效益至關(guān)重要。
關(guān)鍵詞:奶牛;圍產(chǎn)期;能量物質(zhì);能量負(fù)平衡
中圖分類號(hào):S823.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)06-2325-09
收稿日期:2023-09-04
基金項(xiàng)目:自治區(qū)重點(diǎn)研發(fā)一般項(xiàng)目(2022BBF03022)
作者簡介:張馨蕊(2000-),女,山西太原人,碩士生,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:iszhangxinr@163.com
*通信作者:陶金忠,主要從事家畜繁殖研究,E-mail:tao_jz@nxu.edu.cn
Physiological Regulation and Feeding Management of Periparturient Dairy Cows
ZHANGXinrui,F(xiàn)UYu,MASijia,YANGZhuo,TAOJinzhong*
(School of Animal Science and Technology,Ningxia University,Yinchuan750021,China)
Abstract:Periparturient cows undergo intricate regulation influenced by multifaceted factors.Owing to alterations in physiology,diet,environment,and management practices,these cows become predisposed to negative energy balance and immunosuppression,potentially culminating in various diseases and areduction in reproductive efficiency.Drawing upon recent research,this article systematically examines the nuanced alterations in energy dynamics,hormonal profiles,as well as vitamin and mineral levels,and cytokine patterns within periparturient cows.The investigation reveals that pivotal components such as blood glucose,insulin,fat,and amino acids undergo systematic and rhythmic changes during this critical period for dairy cows.Furthermore,reproductive hormones and other regulatory factors exhibit marked fluctuations.Additionally,there are noteworthy adjustments in the requirements for vitamins and minerals.Given the intricacy of these physiological transformations,it becomes imperative to offer well-founded recommendations for the dietary management of periparturient cows.This not only aids in averting and managing energy metabolism disorders but also contributes to the enhancement of milk quality and the amplification of overall production efficiency in dairy cows.
Key words:dairy cows; peripartum; energy substances; negative energy balance
*Corresponding author:TAO Jinzhong,E-mail:tao_jz@nxu.edu.cn
圍產(chǎn)期是指奶牛從產(chǎn)犢前大約3周到產(chǎn)犢后3周的過渡時(shí)期,是奶牛生產(chǎn)周期中的關(guān)鍵階段。圍產(chǎn)期間奶牛會(huì)發(fā)生一系列生理變化,包括內(nèi)分泌變化、瘤胃功能變化、能量代謝變化、免疫力變化等,大多數(shù)奶牛在圍產(chǎn)期食欲減退、干物質(zhì)采食量下降。圍產(chǎn)期結(jié)束后奶牛進(jìn)入泌乳盛期,在產(chǎn)犢后4~5周內(nèi)達(dá)到泌乳高峰并持續(xù)3周左右,但干物質(zhì)采食量直到產(chǎn)后8~14周才恢復(fù)到最高[1]。干奶期奶牛日糧以能量較低的粗飼料為主,瘤胃內(nèi)產(chǎn)乳酸菌減少,乳酸無法被充分利用,揮發(fā)性脂肪酸濃度降低,生糖先質(zhì)丙酸供給不足,易發(fā)生能量負(fù)平衡和酮病[2]。圍產(chǎn)期奶牛生理功能變化復(fù)雜,是奶牛代謝性疾病、繁殖機(jī)能恢復(fù)障礙的高發(fā)期,因此明確其在圍產(chǎn)期能量與生理指標(biāo)變化規(guī)律,對(duì)提高奶牛生產(chǎn)質(zhì)量與生產(chǎn)效益具有重要意義。
1 奶牛圍產(chǎn)期物質(zhì)能量變化規(guī)律
圍產(chǎn)前期到臨近產(chǎn)犢時(shí)奶牛的內(nèi)分泌發(fā)生急劇變化,胎兒營養(yǎng)需求增加,初乳開始分泌。期間奶牛能量需求增加但干物質(zhì)采食量下降,而圍產(chǎn)后期大量泌乳所需要的能量超過干物質(zhì)采食量所能提供的能量,造成奶牛能量負(fù)平衡,因此奶牛通過調(diào)節(jié)葡萄糖、脂肪酸和礦物質(zhì)等代謝途徑來維持其妊娠晚期和泌乳早期所需能量。
1.1 奶牛圍產(chǎn)期血糖及胰島素變化規(guī)律
葡萄糖是動(dòng)物體內(nèi)重要能量來源,在產(chǎn)犢前后葡萄糖濃度呈現(xiàn)先增高再下降的趨勢,直至恢復(fù)正常[3]。Yang等[4]研究發(fā)現(xiàn)從產(chǎn)犢前7d到產(chǎn)犢日,血漿中葡萄糖濃度顯著升高至最大值,產(chǎn)犢后第7天顯著下降。Radcliff等[5]發(fā)現(xiàn)血漿葡萄糖濃度在分娩前兩周都維持在較高水平,分娩當(dāng)天大幅增加至峰值1900mg·dL-1左右,產(chǎn)后下降,兩周內(nèi)仍未恢復(fù)至產(chǎn)前水平,兩者對(duì)于葡萄糖濃度變化規(guī)律的研究結(jié)果基本一致。夏成等[6]研究發(fā)現(xiàn),當(dāng)奶牛在泌乳早期發(fā)生能量負(fù)平衡時(shí),血漿葡萄糖濃度在產(chǎn)后明顯下降,并在產(chǎn)后第14天降到最低,奶牛出現(xiàn)低血糖癥狀。
胰島素是細(xì)胞攝取葡萄糖的關(guān)鍵調(diào)節(jié)劑,其主要作用是促進(jìn)細(xì)胞對(duì)葡萄糖的攝取和利用以維持血糖水平,妊娠末期和泌乳早期奶牛經(jīng)歷了高產(chǎn)奶和脂肪分解,導(dǎo)致奶牛組織對(duì)正常劑量胰島素的生物學(xué)效應(yīng)減弱的生理狀態(tài),即胰島素抵抗的發(fā)生[7]。胰島素抵抗包括胰島素敏感性和胰島素反應(yīng)性,這種抵抗導(dǎo)致胰島素效力下降,需要更高水平的胰島素來維持正常的血糖水平,出現(xiàn)胰島素抵抗可能是由于胰島素反應(yīng)性下降、胰島素敏感性下降,或兩者結(jié)合作用[8]。奶牛分娩前胰島素抵抗程度逐漸升高,分娩后達(dá)到峰值,隨著乳汁產(chǎn)量的穩(wěn)定后逐漸減弱[9],這可能與其適應(yīng)從非泌乳狀態(tài)到泌乳狀態(tài)的轉(zhuǎn)變有關(guān)[10]。Grtner等[11]研究發(fā)現(xiàn),母牛血清胰島素濃度從產(chǎn)前第10天開始增加,產(chǎn)后2~4d下降,直至產(chǎn)后第20天仍處于較低水平。Radcliff等[5]研究發(fā)現(xiàn)血漿胰島素濃度在分娩前2周較高,分娩前4d急劇增加,在分娩當(dāng)天下降,約在第5天降至最低值,然后逐漸增加。IGF-I mRNA的表達(dá)量從產(chǎn)前2周下降到分娩時(shí)迅速下降,分娩后2~5d達(dá)到最低,隨后上升,在分娩后3周內(nèi)恢復(fù)到產(chǎn)前水平[3]。
圍產(chǎn)前期血糖濃度升高主要是因?yàn)樵谌焉锬┢跒樘汉腿橄俸铣商峁┢咸烟牵瑢?dǎo)致肝臟葡萄糖生成增多和外周組織葡萄糖氧化降低;同時(shí),產(chǎn)后早期血糖水平下降則是由于干物質(zhì)采食量不能滿足泌乳的能量需求引起,較低的血糖濃度使胰島素和IGF-I保持較低水平[12]。但當(dāng)胰島素在外周組織過度作用時(shí)會(huì)導(dǎo)致機(jī)體出現(xiàn)亞臨床、臨床酮病和脂肪肝等病理狀態(tài)[13]。在產(chǎn)犢前后血清胰島素和葡萄糖濃度相似的趨勢表明產(chǎn)犢對(duì)葡萄糖和胰島素水平有顯著的影響,IGF-I的變化則與葡萄糖和胰島素的影響有關(guān),但具體機(jī)制仍需要進(jìn)一步研究。
1.2 奶牛圍產(chǎn)期脂肪變化規(guī)律
脂肪組織是哺乳動(dòng)物能量儲(chǔ)備主體,當(dāng)干物質(zhì)攝入量減少導(dǎo)致產(chǎn)后奶牛葡萄糖供應(yīng)不足時(shí),機(jī)體將大量動(dòng)員體脂,使其分解為非酯化脂肪酸(NEFA),NEFA通過完全氧化產(chǎn)生二氧化碳和水并釋放大量能量;不完全氧化產(chǎn)生酮體(β-羥基丁酸、丙酮、乙酰乙酸)用于彌補(bǔ)機(jī)體能量供給不足;以及再次酯化形成甘油三脂。McCarthy等[14]研究顯示,血液中NEFA分娩前濃度較低,從產(chǎn)前1周開始增加,產(chǎn)犢當(dāng)天大幅增加,直至第9天前都相對(duì)穩(wěn)定升高,此后濃度略有下降,但產(chǎn)后第21天仍保持較高水平,這與Mendoza等[15]的研究結(jié)果一致;β-羥基丁酸濃度在產(chǎn)前后期開始增加,在產(chǎn)后第1周繼續(xù)增加,并在產(chǎn)后第21天仍保持升高狀態(tài)[14]。但楊開紅[16]研究顯示血清β-羥基丁酸含量在產(chǎn)前第35天開始升高,產(chǎn)前第10天達(dá)到峰值,產(chǎn)前第5天開始下降,分娩當(dāng)天降到最低??赡苡捎诙咧纠们闆r不同,前者研究的奶牛能量需求大,導(dǎo)致了持續(xù)的脂肪分解和β-羥基丁酸產(chǎn)生,后者在產(chǎn)前奶牛的脂肪分解增加,導(dǎo)致β-羥基丁酸濃度的升高,而在分娩后奶??赡苡懈嗟哪芰抗?yīng),從而減少了對(duì)脂肪分解的需求,導(dǎo)致β-羥基丁酸濃度下降,但兩者β-羥基丁酸含量均<1.0mmol·L-1,屬于正常范圍。Reist等[17]的研究結(jié)果顯示,奶牛分娩前兩周丙酮、乙酰乙酸濃度低于檢測線,分娩后濃度增加,可能與脂肪分解和能量代謝有關(guān)。NEFA和β-羥基丁酸在血漿中呈現(xiàn)高濃度時(shí)則代表了奶牛處于能量負(fù)平衡,奶牛機(jī)體能量負(fù)平衡越嚴(yán)重,脂肪組織分解的NEFA越多,血漿中NEFA濃度也越高,從而導(dǎo)致肝臟中甘油三酯蓄積,脂肪肝形成,奶牛肝臟功能下降,糖異生途徑受阻,酮體繼續(xù)大量產(chǎn)生,奶牛出現(xiàn)酮病,患酮病奶牛血液中β-羥基丁酸≥2.0mmol·L-1[18-20]。
由于NEFA測定并不便捷,因此常用體況評(píng)分(BCS)監(jiān)測奶牛體脂與能量平衡狀態(tài),產(chǎn)犢時(shí)BCS最佳范圍在3.0~3.5,低于3.0與生產(chǎn)和繁殖性能下降有關(guān),大于3.5則與干物質(zhì)采食量和泌乳性能減少以及代謝紊亂有關(guān)[21]。產(chǎn)犢后BCS下降,Banuelos和Stevenson[22]研究顯示初產(chǎn)和經(jīng)產(chǎn)奶牛BCS在第0天為3.0±0.03,到第3周下降至2.5±0.03,到第9周下降并穩(wěn)定在2.4±0.03。產(chǎn)犢后奶牛的體脂下降,這與NEFA和β-羥基丁酸的增高趨勢相符。但BCS過高或過低會(huì)導(dǎo)致奶牛生產(chǎn)和生長性能下降,如產(chǎn)奶量下降、發(fā)生亞臨床酮病,伴隨低血糖等[23]。Kafi和Mirzaei[24]研究顯示與健康奶牛相比,排卵延遲和黃體期延長牛在產(chǎn)后第56天BCS仍持續(xù)下降。圍產(chǎn)期奶牛經(jīng)歷了顯著的能量調(diào)整,體內(nèi)脂肪動(dòng)員以應(yīng)對(duì)大量能量需求,NEFA和β-羥基丁酸的濃度變化則反映了奶牛在這一時(shí)期的能量平衡狀態(tài),而BCS的變化也可對(duì)奶牛體脂情況進(jìn)行評(píng)估。
1.3 奶牛圍產(chǎn)期氨基酸變化規(guī)律
隨著奶牛進(jìn)入泌乳期以及乳蛋白合成率的增加,乳腺對(duì)氨基酸的需求顯著增加[25]。圍產(chǎn)期間奶牛骨骼肌組織蛋白動(dòng)員增加,通過肝內(nèi)的糖異生產(chǎn)生更多的葡萄糖來滿足機(jī)體對(duì)能量的需求。丙氨酸和谷氨酸鹽在糖異生途徑中發(fā)揮主要作用,并且除亮氨酸和賴氨酸外,其他氨基酸都參與糖異生途徑為機(jī)體供能。3-甲基組氨酸存在于肌動(dòng)蛋白和肌球蛋白中,蛋白分解導(dǎo)致血漿中的3-甲基組氨酸升高,有研究發(fā)現(xiàn)血漿中的3-甲基組氨酸從分娩前2周相對(duì)高濃度迅速上升到產(chǎn)犢后1周達(dá)到最高濃度,隨后逐漸下降[26]。說明在奶牛分娩前就出現(xiàn)了體蛋白的分解,到分娩后1周體蛋白分解達(dá)到最大水平,隨后分解逐漸減弱。
Fetter等[27]研究發(fā)現(xiàn)奶牛圍產(chǎn)期血漿氨基酸發(fā)生顯著變化,與產(chǎn)前3周相比,產(chǎn)后第1、2和3周內(nèi)必需氨基酸濃度分別下降20%、17%和16%,并且在產(chǎn)后第3周仍未恢復(fù)到產(chǎn)前濃度。Zhou等[28]研究也發(fā)現(xiàn)幾乎所有的血漿氨基酸都遵循產(chǎn)犢前3周濃度下降,產(chǎn)后1天達(dá)到最低點(diǎn),在產(chǎn)后28天前逐漸增加恢復(fù)至產(chǎn)前水平,例如亮氨酸、賴氨酸、苯丙氨酸等氨基酸,但蛋氨酸和組氨酸濃度在產(chǎn)前21d至產(chǎn)后10d之間顯著下降達(dá)到最低值,并在產(chǎn)后第28天仍未恢復(fù)至產(chǎn)前水平。非必需氨基酸如丙氨酸、脯氨酸、天冬氨酸等氨基酸從產(chǎn)前第21天起濃度下降,可能是作為葡萄糖前體發(fā)揮作用。高酮血癥會(huì)對(duì)氨基酸代謝產(chǎn)生額外的影響,Lisuzzo[29]研究發(fā)現(xiàn)健康奶牛與高酮血癥奶牛相比,高酮血癥奶牛體內(nèi)谷氨酸、脯氨酸、絲氨酸、天冬氨酸、異戊酸顯著減少,賴氨酸、丙氨酸、精氨酸呈減少趨勢,而異亮氨酸、纈氨酸呈增加趨勢。由于乳腺對(duì)氨基酸的需求增加以及圍產(chǎn)期能量和代謝的變化,導(dǎo)致血漿氨基酸濃度在產(chǎn)犢前3周下降,產(chǎn)后第1天達(dá)到最低點(diǎn),隨后逐漸恢復(fù)至產(chǎn)前水平,這一過程可能涉及體蛋白的分解和再合成,乳蛋白的合成以及糖異生途徑的調(diào)節(jié)。這些變化強(qiáng)調(diào)了圍產(chǎn)期奶牛機(jī)體代謝的復(fù)雜性,深入了解該生理過程對(duì)于提高奶牛生產(chǎn)性能和維持健康狀態(tài)至關(guān)重要。
2 奶牛圍產(chǎn)期激素變化規(guī)律
激素在分娩和泌乳過程中起著重要作用。圍產(chǎn)期間奶牛受激素水平、營養(yǎng)代謝和產(chǎn)后應(yīng)激等因素的影響,機(jī)體防御機(jī)制發(fā)生顯著變化,而激素水平的改變與奶牛在圍產(chǎn)期的各種疾病密切相關(guān)。
2.1 奶牛圍產(chǎn)期生殖激素變化規(guī)律
圍產(chǎn)期分娩和泌乳相關(guān)激素的變化會(huì)影響奶牛分娩,Radcliff等[5]研究顯示血漿中孕酮在分娩前2周呈下降趨勢,分娩前4d迅速下降,分娩時(shí)降至最低(<1ng·mL-1),并在接下來的2周內(nèi)保持極低水平;血漿中雌二醇濃度在分娩前2周期間增加,在分娩前4天出現(xiàn)大幅增加,分娩時(shí)達(dá)到峰值1750pg·mL-1左右,分娩后雌二醇迅速下降并在兩周內(nèi)保持較低水平在10pg·mL-1左右。催乳素濃度在整個(gè)妊娠期含量低,在產(chǎn)前20h由基礎(chǔ)水平升高到最大值,產(chǎn)后30h又恢復(fù)到產(chǎn)前水平[30]。子宮靜脈中前列腺素2α(PGF2α)在產(chǎn)犢前2d開始上升,從小于1ng·mL-1增加到大于5ng·mL-1,產(chǎn)犢后第1天達(dá)到峰值后開始下降;催乳素產(chǎn)前1周維持在50ng·mL-1左右,產(chǎn)前2d增加至大于200ng·mL-1,產(chǎn)后下降至50ng·mL-1左右[31]。奶牛圍產(chǎn)期孕酮濃度的變化可能與泌乳的開始或黃體溶解相關(guān),可促使乳腺對(duì)其他激素的響應(yīng)和促進(jìn)乳汁產(chǎn)生[32]。在分娩過程中羊水和外周血漿中PGF2α水平會(huì)升高。由于外源性PGF2α在反芻動(dòng)物中具有黃體溶解作用,因此其作用機(jī)制被認(rèn)為與孕酮濃度的降低和由此產(chǎn)生的免疫功能的上調(diào)有關(guān)[33]。雌二醇和催乳素在分娩前期的顯著增加提示乳腺為泌乳所做的充分準(zhǔn)備,催乳素的急劇升高與產(chǎn)后乳汁分泌密切相關(guān),而雌二醇的峰值則可能反映了乳腺組織結(jié)構(gòu)與功能的改變,上述激素變化是奶牛為適應(yīng)生產(chǎn)和泌乳而在圍產(chǎn)期間生理狀態(tài)的調(diào)整。
2.2 奶牛圍產(chǎn)期其他激素變化規(guī)律
在圍產(chǎn)期奶牛處于能量負(fù)平衡狀態(tài),采食不足,此時(shí)生長激素、瘦素和甲狀腺激素等需要協(xié)調(diào)維持代謝穩(wěn)態(tài)[34]。雷金龍[35]對(duì)57頭圍產(chǎn)期奶牛進(jìn)行了生長激素含量檢測,結(jié)果顯示血清中生長激素的含量呈現(xiàn)先緩慢上升的趨勢,產(chǎn)前第1天達(dá)最高值4.8ng·mL-1,然后逐漸下降,產(chǎn)后1~2周達(dá)到最低值3.5ng·mL-1后上升;患酮病奶牛血清中生長激素含量在產(chǎn)前呈波浪式變化,在產(chǎn)前第1天較高,產(chǎn)后第1天下降,但是在產(chǎn)后1~7d又迅速升高至峰值6.3ng·mL-1左右后下降。關(guān)文怡等[36]發(fā)現(xiàn)奶牛產(chǎn)前第7天時(shí)的生長激素濃度在47.15μg·L-1左右,高于其他時(shí)間點(diǎn);瘦素水平在妊娠后期維持在較高水平,產(chǎn)前1周上升至7.50μg·L-1左右,產(chǎn)后1周下降后再次回升至產(chǎn)前2周水平。這些結(jié)果表明奶牛產(chǎn)后體脂動(dòng)員明顯,可能與生長激素、瘦素等激素的調(diào)控有關(guān)。蔡志凱[37]檢測了圍產(chǎn)期奶牛血清中甲狀腺激素(T3、T4)和促甲狀腺激素水平,結(jié)果顯示健康的經(jīng)產(chǎn)奶牛血清中T3含量在整個(gè)圍產(chǎn)期內(nèi)呈先緩慢升高再下降再升高的波浪式動(dòng)態(tài)變化,其中產(chǎn)后第1天為最低值,產(chǎn)后第22天為最高值;T4含量變化趨勢呈現(xiàn)先升高,分娩后驟降,然后緩慢升高的波浪式動(dòng)態(tài)變化,其中產(chǎn)后第1天為最低值,產(chǎn)前第1天為最高值;經(jīng)產(chǎn)奶牛血清中促甲狀腺激素含量呈現(xiàn)先升高后緩慢下降的倒“V”字型動(dòng)態(tài)變化,產(chǎn)后第1天為最高值,產(chǎn)前第15天為最低值。但也有研究表示,奶牛在分娩前由于采食量的下降而對(duì)于碘的吸收減少,因此T3、T4在分娩前2周含量很低,產(chǎn)犢后隨著采食量逐漸恢復(fù)T3和T4的分泌逐漸上升[16]。皮質(zhì)醇激素可用于評(píng)估奶牛的生理和應(yīng)激水平,Grewal等[38]發(fā)現(xiàn)血漿皮質(zhì)醇濃度從產(chǎn)前3周開始增加,在產(chǎn)犢時(shí)達(dá)到最大值,此后逐漸下降;并且與冬季相比,夏季奶牛血漿中皮質(zhì)醇的濃度和各種炎性細(xì)胞因子的相對(duì)mRNA表達(dá)更高。表明在溫度較高的夏季時(shí),奶牛易發(fā)生炎癥反應(yīng)、免疫紊亂和應(yīng)激激素水平的升高。圍產(chǎn)期奶牛生長激素的波動(dòng)可能與代謝調(diào)節(jié)有關(guān),尤其是在產(chǎn)前第7天存在生長激素的峰值可能與胎兒生長發(fā)育有關(guān)。甲狀腺激素和促甲狀腺激素的波動(dòng)則可能與新陳代謝的調(diào)整和產(chǎn)后能量需求的變化有關(guān)。瘦素的升高反映了產(chǎn)后體脂動(dòng)員的過程,與生長激素等激素的相互調(diào)控作用。皮質(zhì)醇屬于應(yīng)激激素,其變化與熱應(yīng)激和季節(jié)變化有關(guān),尤其是在夏季可能導(dǎo)致炎癥反應(yīng)和免疫紊亂。
3 奶牛圍產(chǎn)期維生素及礦物質(zhì)變化規(guī)律
維生素及礦物質(zhì)對(duì)奶牛的免疫、氧化、能量代謝以及維持生殖道健康和功能具有重要作用,缺乏會(huì)引起體內(nèi)糖類、蛋白質(zhì)、核酸等的代謝變化,導(dǎo)致機(jī)體激素的合成紊亂,進(jìn)而影響產(chǎn)后卵巢與子宮生理機(jī)能的恢復(fù)[39]。維生素A、B、D、E和微量元素鋅(Zn)、銅(Cu)、硒(Se)等具有良好的抗氧化作用,具有一定的免疫調(diào)節(jié)能力,可顯著降低奶牛產(chǎn)后疾病發(fā)生。Meglia等[40]在產(chǎn)犢前1個(gè)月、產(chǎn)犢當(dāng)天和產(chǎn)犢后1個(gè)月采集10頭奶牛血樣,通過紫外線、熒光檢測、電感耦合等離子體原子發(fā)射光譜法等評(píng)估維生素A、維生素E,礦物質(zhì)鈣(Ca)、磷(P)、鎂(Mg)、鉀(K)、鈉(Na),微量元素Cu、Zn在血液中濃度的變化,結(jié)果表明維生素A、維生素E、Zn、Ca的濃度在產(chǎn)犢時(shí)顯著降低,而Cu和Na升高,在產(chǎn)犢后1個(gè)月維生素A、維生素E、Ca、Zn、Cu濃度上升;血磷、血鉀濃度從產(chǎn)前1個(gè)月至產(chǎn)后1個(gè)月持續(xù)降低,并且產(chǎn)奶量與血漿磷濃度之間存在反比關(guān)系。Meglia等[41]、Gong和Xiao[42]研究顯示Se在產(chǎn)犢前上升,產(chǎn)犢后下降,產(chǎn)犢時(shí)達(dá)到最小值并顯著低于泌乳早期。但Se的濃度變化并不明顯,產(chǎn)后濃度的升高有可能由于奶牛從干奶期到哺乳期飼料成分發(fā)生改變,從而攝入更多的Se。這些維生素及礦物質(zhì)濃度的下降與免疫功能受損和乳腺炎等疾病的高發(fā)病率有關(guān)[43],維生素A和E血清濃度的下降主要是由于初乳的形成,但也與干物質(zhì)攝入量和瘤胃代謝的變化相關(guān)。而血清中Zn濃度顯著下降很可能是初乳形成和應(yīng)激增加而導(dǎo)致[44]。Talukder等[45]研究表明,處于應(yīng)激期的牛血液中的銅和銅藍(lán)蛋白水平會(huì)升高,而血漿銅藍(lán)蛋白是一種急性期蛋白,其濃度會(huì)隨著損傷、感染和炎癥的發(fā)生而增加。
在產(chǎn)后早期母體對(duì)礦物質(zhì)元素的需求也隨之增長,但此時(shí)奶牛干物質(zhì)采食量下降,礦物質(zhì)元素含量無法滿足機(jī)體需要,這就會(huì)導(dǎo)致奶牛機(jī)體出現(xiàn)低血鈣、低血鎂、低血鉀等代謝疾病。奶牛機(jī)體內(nèi)鈣來源于腸道鈣攝入、骨鈣溶解和腎小球?qū)︹}的重吸收,血鈣濃度受甲狀旁腺素、降鈣素、維生素D和飼料鈣含量的調(diào)節(jié)和影響,通常在奶牛產(chǎn)前飼喂低鈣飼料以預(yù)防產(chǎn)后低鈣血癥。降鈣素通過促進(jìn)骨骼中鈣的沉積,降低血鈣濃度,維持骨骼穩(wěn)定;甲狀旁腺素則刺激骨骼中鈣的釋放,增加腸道對(duì)鈣的吸收,提高腎小管對(duì)鈣的重吸收以升高血鈣水平,兩者相互作用,共同維持奶牛體內(nèi)鈣平衡,并隨著分娩后乳汁分泌量下降,甲狀旁腺素、降鈣素水平逐漸回歸正常[46]。但當(dāng)日糧中含鈣量過多,機(jī)體對(duì)于鈣的吸收率反而下降,奶牛血鈣丟失到一定程度后,產(chǎn)后癱瘓等疾病的發(fā)生率上升[47]。為避免這種情況,必須促使甲狀旁腺素大量分泌、增強(qiáng)腎對(duì)鈣的重吸收、減少尿鈣的流失、抑制對(duì)磷的重吸收,從而激活對(duì)骨鈣的重吸收,排磷保鈣[48]。低鈣血癥是許多重要泌乳疾病的誘因,包括乳腺炎、酮病、真胃移位和子宮脫垂,同時(shí)也對(duì)奶牛淘汰率與繁殖障礙具有重要影響。為了降低圍產(chǎn)期疾病風(fēng)險(xiǎn),可采用強(qiáng)化管理措施來改善奶牛營養(yǎng),補(bǔ)充微量營養(yǎng)素、增強(qiáng)奶牛免疫力、提高奶牛產(chǎn)后健康。
4 奶牛圍產(chǎn)期細(xì)胞因子變化規(guī)律
細(xì)胞因子是各種免疫細(xì)胞釋放的蛋白質(zhì),在免疫反應(yīng)調(diào)節(jié)中起主要作用[49]。泌乳早期奶牛脂質(zhì)代謝的變化會(huì)影響機(jī)體炎癥反應(yīng),而細(xì)胞因子可作為奶牛脂質(zhì)代謝的標(biāo)志物,血液中細(xì)胞因子的濃度會(huì)受到脂肪分解和營養(yǎng)物質(zhì)聯(lián)合作用的影響[50]。
4.1 奶牛圍產(chǎn)期促炎因子變化規(guī)律
奶牛發(fā)生炎癥反應(yīng)時(shí)組織內(nèi)的免疫細(xì)胞會(huì)刺激促炎細(xì)胞因子釋放[51]。在能量代謝過程中,大量的脂質(zhì)分解會(huì)導(dǎo)致圍產(chǎn)期奶牛出現(xiàn)氧化應(yīng)激和炎癥反應(yīng),而炎癥反應(yīng)又會(huì)導(dǎo)致代謝性與傳染性疾病的發(fā)生。腫瘤壞死因子α(TNF-α)和白細(xì)胞介素6(IL-6)等炎癥細(xì)胞因子在刺激全身炎癥反應(yīng)中起重要作用。TNF-α可以促進(jìn)脂肪分解,血液中NEFA濃度顯著增加[52]。而由病原體誘導(dǎo)的炎癥會(huì)加劇圍產(chǎn)期奶牛血漿中NEFA濃度增加從而導(dǎo)致代謝紊亂[53]。在圍產(chǎn)期各種炎癥細(xì)胞因子和免疫反應(yīng)受到影響,從而增加宿主對(duì)感染的易感性。Yang等[4]研究發(fā)現(xiàn)從產(chǎn)犢前7d到產(chǎn)犢日,血漿中TNF-α的濃度明顯上升,IL-2的濃度則明顯下降;到產(chǎn)犢第7天TNF-α濃度顯著降低,而IL-2濃度上升。Schoenberg等[54]的研究也顯示TNF-α的濃度隨著分娩的臨近而下降,分娩當(dāng)天則略微升高,產(chǎn)后繼續(xù)下降。有研究表明產(chǎn)犢后第7天IL-6、IL-8的mRNA比在第42天時(shí)顯著降低[55]。呂建存等[56]研究顯示從產(chǎn)前第15天IL-2濃度下降,產(chǎn)犢時(shí)上升至產(chǎn)后第15天濃度高于產(chǎn)前第15天濃度,IL-6濃度從產(chǎn)前第15天上升,產(chǎn)犢時(shí)下降,產(chǎn)后繼續(xù)下降。圍產(chǎn)期促炎因子的變化會(huì)影響奶牛對(duì)病原體的抵抗力,與疾病的發(fā)生直接相關(guān)。
4.2 奶牛圍產(chǎn)期抗炎因子變化規(guī)律
抗炎因子是由單核細(xì)胞、巨噬細(xì)胞和T淋巴細(xì)胞產(chǎn)生,在分娩過程中發(fā)揮重要作用。IL-10不僅負(fù)責(zé)炎癥反應(yīng)的下調(diào),還促進(jìn)體液免疫,參與分娩的啟動(dòng)和維持。Islam等[57]研究顯示IL-10的表達(dá)在產(chǎn)前第21天最高,隨后下降,并在產(chǎn)犢當(dāng)天達(dá)到最低水平后上升。同樣,Heiser等[58]也發(fā)現(xiàn)在產(chǎn)后第1周IL-10的表達(dá)增加,產(chǎn)后第3周后恢復(fù)到產(chǎn)前水平。奶牛體內(nèi)IL-4和IL-10的濃度變化趨勢相似,IL-4濃度在產(chǎn)犢前1個(gè)月最高,隨后數(shù)周下降,在產(chǎn)犢后1周濃度最低,隨著泌乳的進(jìn)行IL-4濃度逐漸升高,并在產(chǎn)犢后第30天達(dá)到最高水平[59]。以往研究表明促炎細(xì)胞因子和抗炎細(xì)胞因子同時(shí)釋放,抗炎細(xì)胞因子IL-4和IL-10的分泌會(huì)抑制促炎因子的產(chǎn)生,并減緩組織損傷和氧化應(yīng)激[60]。奶??寡滓蜃铀皆龈弑砻髁似鋵?duì)環(huán)境的適應(yīng)性反應(yīng),代謝與免疫變化共同影響著圍產(chǎn)期奶牛的健康,因此可通過改善日糧成分、能量消耗,以盡量減少產(chǎn)犢NEFA濃度,緩解奶牛炎癥反應(yīng)。
5 圍產(chǎn)期奶牛飼養(yǎng)管理
在生產(chǎn)實(shí)踐中,了解奶牛圍產(chǎn)期代謝與生理指標(biāo)變化規(guī)律有助于制定科學(xué)的飼養(yǎng)和管理策略,以最大程度地提高奶牛的生產(chǎn)性能和健康狀況。例如,針對(duì)產(chǎn)后能量負(fù)平衡引發(fā)的低血糖癥狀,可以調(diào)整飼料組成和攝取,提供高質(zhì)量、易消化、營養(yǎng)豐富的飼料,例如優(yōu)質(zhì)青貯、濃縮飼料等。給奶牛飼喂高能量的飼料可以增加血清胰島素濃度,有研究顯示高BCS奶牛從產(chǎn)前45d到產(chǎn)后4d,血清中葡萄糖、胰島素和NEFA的濃度較高[61]。高蛋白日糧有助于提高奶牛產(chǎn)后性能,產(chǎn)后真胃輸注蛋白質(zhì)可增加荷斯坦奶牛的牛奶、牛奶蛋白和乳糖產(chǎn)量[62]。通過提高日糧中蛋白質(zhì)和能量的供應(yīng),可防止奶牛分娩時(shí)出現(xiàn)難產(chǎn)、胎衣不下等疾病。
奶牛圍產(chǎn)期生理水平的顯著變化會(huì)增加脂肪肝、酮病等疾病發(fā)生率,在飼養(yǎng)上應(yīng)從飼料供應(yīng)、飼料添加劑、飼喂管理、環(huán)境管理等多方面綜合管理。對(duì)圍產(chǎn)期奶牛針對(duì)性補(bǔ)充氨基酸有助于緩解能量負(fù)平衡,研究顯示對(duì)圍產(chǎn)期奶牛補(bǔ)充蛋氨酸可改善其泌乳性能[63]。同時(shí)補(bǔ)充維生素C、維生素E和β-胡蘿卜素可以減輕奶牛圍產(chǎn)期氧化應(yīng)激情況[64]。Lean等[65]添加微量元素作為抗氧化劑,發(fā)現(xiàn)有效緩解了細(xì)胞氧化應(yīng)激。在日糧中適量添加礦物質(zhì)可促進(jìn)使體內(nèi)Ca、P、Mg含量維持在正常水平,但由于礦物質(zhì)拮抗劑作用,當(dāng)K攝入過多會(huì)抑制Mg的吸收,所以圍產(chǎn)前期需要使用優(yōu)質(zhì)的低鉀粗飼料,如燕麥草、玉米等[66]。此外,環(huán)境的變化也會(huì)影響奶牛的健康,飼養(yǎng)者應(yīng)提供干凈、安靜的飼養(yǎng)環(huán)境,避免應(yīng)激;定期監(jiān)測奶牛的采食量、體溫、產(chǎn)奶量、糞便等指標(biāo),并隨之調(diào)整日糧結(jié)構(gòu),確保盡快恢復(fù)能量平衡??傊畤a(chǎn)期的飼養(yǎng)管理需要考慮奶牛的食欲、生理和代謝的變化,注重能量和蛋白質(zhì)供給,以確保奶牛的產(chǎn)后恢復(fù)、減少潛在的健康風(fēng)險(xiǎn)、提高生產(chǎn)性能。
6 結(jié) 論
圍產(chǎn)期奶牛由非泌乳到泌乳、妊娠到非妊娠狀態(tài)的轉(zhuǎn)變與多種圍產(chǎn)期疾病的發(fā)生密切相關(guān),對(duì)奶牛圍產(chǎn)期能量、激素、維生素與礦物質(zhì)、細(xì)胞因子變化規(guī)律分析可以反映其從干奶期、分娩期、泌乳期3個(gè)不同生理階段的轉(zhuǎn)變,進(jìn)而改善飼養(yǎng)技術(shù)、預(yù)防圍產(chǎn)期疾病。明確奶牛圍產(chǎn)期間的生理代謝變化規(guī)律,從飼料供應(yīng)、飼料添加劑、飼喂管理、環(huán)境管理等多方面綜合管理,有效地防治圍產(chǎn)期奶牛能量代謝紊亂,對(duì)于構(gòu)建有效的規(guī)模養(yǎng)殖過程的診斷與監(jiān)控系統(tǒng)至關(guān)重要。未來研究應(yīng)致力于深入探討圍產(chǎn)期奶牛生理調(diào)控的分子機(jī)制,結(jié)合轉(zhuǎn)錄組學(xué)、代謝組學(xué)和蛋白質(zhì)組學(xué)等技術(shù)手段,更精準(zhǔn)的預(yù)測圍產(chǎn)期疾病、制定防治計(jì)劃。在飼養(yǎng)管理方面深入探討飼料配制中微量元素和維生素等物質(zhì)的最佳比例,以最大程度地提高圍產(chǎn)期奶牛的生產(chǎn)性能。總體而言,應(yīng)將科研與實(shí)際相結(jié)合,構(gòu)建更系統(tǒng)、實(shí)用的飼養(yǎng)管理模型,推動(dòng)奶牛飼養(yǎng)領(lǐng)域的進(jìn)一步發(fā)展。
參考文獻(xiàn)(References):
[1]吳志立,姚軍虎,雷新建.過瘤胃葡萄糖對(duì)圍產(chǎn)期奶畜營養(yǎng)調(diào)控的研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(8):3173-3182.
WU ZL,YAO JH,LEI XJ.Research progress of rumen-protected glucose on nutritional regulation in perinatal dairy animals[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3173-3182.(in Chinese)
[2]MONTEIRO HF,LELIS AL J,F(xiàn)AN P,et al.Effects of lactic acid-producing bacteria as direct-fed microbials on the ruminal microbiome[J].J Dairy Sci,2022,105(3):2242-2255.
[3]VAN DER KOLK JH,GROSS JJ,GERBER V,et al.Disturbed bovine mitochondrial lipid metabolism:a review[J].Vet Quart,2017,37(1):262-273.
[4]YANG Z,LUO F,LIU GL,et al.Plasma metabolomic analysis reveals the relationship between immune function and metabolic changes in Holstein Peripartum dairy cows[J].Metabolites,2022,12(10):953.
[5]RADCLIFF RP,MCCORMACK BL,CROOKER BA,et al.Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows[J].J Dairy Sci,2003,86(12):3920-3926.
[6]夏 成,王洪斌,張洪友,等.能量負(fù)平衡對(duì)泌乳早期奶牛生產(chǎn)性能、繁殖性能和機(jī)體代謝的影響[J].中國畜牧雜志,2009,45(21):32-35.
XIA C,WANG HB,ZHANG HY,et al.Effect of negative energy balance on productive performance,reproductive performance and body metabolism in early lactation dairy cows[J].Chinese Journal of Animal Science,2009,45(21):32-35.(in Chinese)
[7]CHIRIVI M,RENDON CJ,MYERS MN,et al.Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows[J].J Dairy Sci,2022,105(1):842-855.
[8]ALEGRíA KG,GAONA RC,TERRANOVA MV,et al.Insulin resistance indexes of grazing cows and mineral or vitamin supplementation under tropical conditions[J].Open Vet J,2021,11(4):587-597.
[9]PASCOTTINI OB,LEROY JL MR,OPSOMER G.Metabolic stress in the transition period of dairy cows:focusing on the prepartum period[J].Animals(Basel),2020,10(8):1419.
[10]MANN S,NYDAM DV,ABUELO A,et al.Insulin signaling,inflammation,and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed acontrolled-energy diet[J].J Dairy Sci,2016,99(8):6737-6752.
[11]G?RTNER T,GERNAND E,GOTTSCHALK J,et al.Relationships between body condition,body condition loss,and serum metabolites during the transition period in primiparous and multiparous cows[J].J Dairy Sci,2019,102(10):9187-9199.
[12]OVERTON TR,WALDRON MR.Nutritional management of transition dairy cows:strategies to optimize metabolic health[J].J Dairy Sci,2004,87:E105-E119.
[13]SHAHREZA FD,SEIFI HA,MOHRI M.The relationship between body condition score,thyroxin,and health condition and serum energy indices,insulin like growth factor-1,and lipids profile over the transition period in Holstein dairy cows[J].Iran JVet Res,2022,23(2):111-119.
[14]MCCARTHY MM,MANN S,NYDAM DV,et al.Short communication:concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during the transition period[J].J Dairy Sci,2015,98(9):6284-6290.
[15]MENDOZA A,LA MANNA A,CRESPI D,et al.Whole sunflower seeds as asource of polyunsaturated fatty acids for grazing dairy cows:effects on metabolic profiles and resumption of postpartum ovarian cyclicity[J].Livest Sci,2008,119(1/3):183-193.
[16]楊開紅.奶牛圍產(chǎn)期血液生理生化指標(biāo)動(dòng)態(tài)變化的研究[D].揚(yáng)州:揚(yáng)州大學(xué),2013.
YANG KH.The dynamic changes of blood physiological and biochemical indexes in transition cows[D].Yangzhou:Yangzhou University,2013.(in Chinese)
[17]REIST M,KOLLER A,BUSATO A,et al.First ovulation and ketone body status in the early postpartum period of dairy cows[J].Theriogenology,2000,54(5):685-701.
[18]LEBLANC S.Monitoring metabolic health of dairy cattle in the transition period[J].J Reprod Dev,2010,56(S):S29-S35.
[19]REYNOLDS CK,AIKMAN PC,LUPOLI B,et al.Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation[J].J Dairy Sci,2003,86(4):1201-1217.
[20]ZHANG Q,SU HW,WANG FW,et al.Effects of energy density in close-up diets and postpartum supplementation of extruded full-fat soybean on lactation performance and metabolic and hormonal status of dairy cows[J].J Dairy Sci,2015,98(10):7115-7130.
[21]ROCHE JR,F(xiàn)RIGGENS NC,KAY JK,et al.Invited review:body condition score and its association with dairy cow productivity,health,and welfare[J].J Dairy Sci,2009,92(12):5769-5801.
[22]BANUELOS S,STEVENSON JS.Transition cow metabolites and physical traits influence days to first postpartum ovulation in dairy cows[J].Theriogenology,2021,173:133-143.
[23]MCART JA A,NYDAM DV,OETZEL GR.Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle[J].J Dairy Sci,2013,96(1):198-209.
[24]KAFI M,MIRZAEI A.Effects of first postpartum progesterone rise,metabolites,milk yield,and body condition score on the subsequent ovarian activity and fertility in lactating Holstein dairy cows[J].Trop Anim Health Prod,2010,42(4):761-767.
[25]ELSAADAWY SA,WU ZH,BU DP.Feasibility of supplying ruminally protected lysine and methionine to periparturient dairy cows on the efficiency of subsequent lactation[J].Front Vet Sci,2022,9:892709.
[26]ZANG Y,SILVA LH P,GENG YC,et al.Dietary starch level and rumen-protected methionine,lysine,and histidine:effects on milk yield,nitrogen,and energy utilization in dairy cows fed diets low in metabolizable protein[J].J Dairy Sci,2021,104(9):9784-9800.
[27]FETTER ME,CUNNINGHAM DM,GAMBONINI F,et al.Short communication:postpartum plasma amino acid concentration in primi-and multiparous Holstein cows[J].Anim Feed Sci and Tech,2021,281:115101.
[28]ZHOU Z,LOOR JJ,PICCIOLI-CAPPELLI F,et al.Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index[J].J Dairy Sci,2016,99(3):2257-2267.
[29]LISUZZO A,LAGHI L,F(xiàn)AILLACE V,et al.Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy(1H-NMR)[J].Sci Rep,2022,12(1):2525.
[30]杜兵耀,馬 晨,楊開倫,等.圍產(chǎn)期奶牛的生理特點(diǎn)及營養(yǎng)代謝特征研究進(jìn)展[J].乳業(yè)科學(xué)與技術(shù),2016,39(1):14-18.
DU BY,MA C,YANG KL,et al.Progress in physiological,nutritional and metabolic characterization of periparturient dairy cows[J].Journal of Dairy Science and Technology,2016,39(1):14-18.(in Chinese)
[31]ALDRICH SL,BERGER LL,REILING BA,et al.Parturition and periparturient reproductive and metabolic hormone concentrations in prenatally androgenized beef heifers[J].J Anim Sci,1995,73(12):3712-3718.
[32]姚路連.奶牛圍產(chǎn)期血清相關(guān)激素水平動(dòng)態(tài)變化的研究[D].揚(yáng)州:揚(yáng)州大學(xué),2014.
YAO LL.Study on the dynamic changes of serum hormone indexes in perinatal dairy cows[D].Yangzhou:Yangzhou University,2014.(in Chinese)
[33]RODRIGUEZ-SALLABERRY C,CALDARI-TORRES C,COLLANTE W,et al.Plasma prostaglandin and cytokine concentrations in periparturient Holstein cows fed diets enriched in saturated or trans fatty acids[J].J Dairy Sci,2007,90(12):5446-5452.
[34]KIM JW.Modulation of the somatotropic axis in periparturient dairy cows[J].Asian-Australas JAnim Sci,2014,27(1):147-154.
[35]雷金龍.圍產(chǎn)期奶牛血清中GH、IGF-Ⅰ及部分生化指標(biāo)變化規(guī)律的研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2008.
LEI JL.Studies on the changes of the GH,IGF-I and part of the biochemical indices in peripartum dairy Cow Serum[D].Hohhot:Inner Mongolia Agricultural University,2008.(in Chinese)
[36]關(guān)文怡,喬立東,張凡建.圍產(chǎn)期奶牛血清代謝物和相關(guān)激素水平的變化規(guī)律研究[J].中國畜牧雜志,2019,55(6):128-130.
GUAN WY,QIAO LD,ZHANG FJ.Study on changes of serum metabolites and related hormones in dairy cows during transition period[J].Chinese Journal of Animal Science,2019,55(6):128-130.(in Chinese)
[37]蔡志凱.圍產(chǎn)期奶牛血清中甲狀腺激素和碘硒含量動(dòng)態(tài)變化的比較研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2007.
CAI ZK.Comparative studies on dynamic change of thyroid horinone lodine selenium and GSH-Px in cows′serum during the perinatal period[D].Hohhot:Inner Mongolia Agricultural University,2007.(in Chinese)
[38]GREWAL S,AGGARWAL A,ALHUSSIEN MN.Seasonal alterations in the expression of inflammatory cytokines and cortisol concentrations in periparturient Sahiwal cows[J].Biol Rhythm Res,2021,52(8):1229-1239.
[39]KESHRI A,BASHIR Z,KUMARI V,et al.Role of micronutrients during peri-parturient period of dairy animals-a review[J].Biol Rhythm Res,2021,52(7):1018-1030.
[40]MEGLIA GE,JOHANNISSON A,PETERSSON L,et al.Changes in some blood micronutrients,leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows[J].Acta Vet Scand,2001,42(1):139-150.
[41]MEGLIA GE,HOLTENIUS K,PETERSSON L,et al.Prediction of vitamin A,vitamin E,selenium and zinc status of periparturient dairy cows using blood sampling during the Mid dry period[J].Acta Vet Scand,2004,45(2):119.
[42]GONG J,XIAO M.Effect of organic selenium supplementation on selenium status,oxidative stress,and antioxidant status in selenium-adequate dairy cows during the periparturient period[J].Biol Trace Elem Res,2018,186(2):430-440.
[43]KHAN MZ,MA YL,XIAO JX,et al.Role of selenium and vitamins Eand B9in the alleviation of bovine mastitis during the periparturient period[J].Antioxidants(Basel),2022,11(4):657.
[44]WILLIAMS BL,YADDANAPUDI K,KIRK CM,et al.Metallothioneins and zinc dysregulation contribute to neurodevelopmental damage in amodel of perinatal viral infection[J].Brain Pathol,2010,16(1):1-14.
[45]TALUKDER S,INGENHOFF L,KERRISK KL,et al.Plasma oxidative stress biomarkers and progesterone profiles in adairy cow diagnosed with an ovarian follicular cyst[J].Vet Q,2014,34(2):113-117.
[46]PASCOTTINI OB,LEROY JL MR,OPSOMER G.Maladaptation to the transition period and consequences on fertility of dairy cows[J].Reprod Domest Anim,2022,57(S4):21-32.
[47]MELENDEZ P,CHELIKANI PK.Review:dietary cation-anion difference to prevent hypocalcemia with emphasis on over-acidification in prepartum dairy cows[J].Animal,2022,16(10):100645.
[48]高昕星.圍產(chǎn)期低鈣血癥奶牛血液指標(biāo)比較分析與早期預(yù)警指標(biāo)篩選[D].長春:吉林大學(xué),2022.
GAO XX.Comparative analysis of blood indicators and screening of early warning indicators for hypocalcemia dairy cows in perinatal period[D].Changchun:Jilin University,2022.(in Chinese)
[49]BROWN WE,BRADFORD BJ.Invited review:mechanisms of hypophagia during disease[J].J Dairy Sci,2021,104(9):9418-9436.
[50]ARSHAD U,SANTOS JE P.Hepatic triacylglycerol associations with production and health in dairy cows[J].J Dairy Sci,2022,105(6):5393-5409.
[51]KHALID H,VAN HOOIJ A,CONNELLEY TK,et al.Protein levels of pro-inflammatory cytokines and chemokines as biomarkers of Mycobacterium bovis infection and BCG vaccination in cattle[J].Pathogens,2022,11(7):738.
[52]DE HEREDIA FP,GóMEZ-MARTíNEZ S,MARCOS A.Obesity,inflammation and the immune system[J].Proc Nutr Soc,2012,71(2):332-338.
[53]KUSHIBIKI S,HODATE K,SHINGU H,et al.Metabolic and lactational responses during recombinant bovine tumor necrosis factor-α treatment in lactating cows[J].J Dairy Sci,2003,86(3):819-827.
[54]SCHOENBERG KM,PERFIELD KL,F(xiàn)ARNEY JK,et al.Effects of prepartum2,4-thiazolidinedione on insulin sensitivity,plasma concentrations of tumor necrosis factor-α and leptin,and adipose tissue gene expression[J].J Dairy Sci,2011,94(11):5523-5532.
[55]BRADFORD BJ,YUAN K,F(xiàn)ARNEY JK,et al.Invited review:inflammation during the transition to lactation:new adventures with an old flame[J].J Dairy Sci,2015,98(10):6631-6650.
[56]呂建存,安勝英,王鳳霞.中藥對(duì)圍產(chǎn)期奶牛血漿IL-2、IL-6含量的影響[J].畜牧與獸醫(yī),2010,42(6):79-81.
LV JC,AN SY,WANG FX.Effect of traditional Chinese medicine on plasma IL-2and IL-6levels in periparturient dairy cows[J].Animal Husbandryamp;Veterinary Medicine,2010,42(6):79-81.(in Chinese)
[57]ISLAM R,KUMAR H,NANDI S,et al.Determination of anti-inflammatory cytokine in periparturient cows for prediction of postpartum reproductive diseases[J].Theriogenology,2013,79(6):974-979.
[58]HEISER A,MCCARTHY A,WEDLOCK N,et al.Grazing dairy cows had decreased interferon-γ,tumor necrosis factor,and interleukin-17,and increased expression of interleukin-10during the first week after calving[J].J Dairy Sci,2015,98(2):937-946.
[59]SOMAGOND YM,ALHUSSIEN MN,DANG AK.Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves[J].Front Immunol,2023,14:1059956.
[60]COUPER KN,BLOUNT DG,RILEY EM.IL-10:the master regulator of immunity to infection[J].J Immunol,2008,180(9):5771-5777.
[61]RICO JE,BANDARU VV R,DORSKIND JM,et al.Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation[J].J Dairy Sci,2015,98(11):7757-7770.
[62]LARSEN M,GALINDO C,OUELLET DR,et al.Abomasal amino acid infusion in postpartum dairy cows:effect on whole-body,splanchnic,and mammary amino acid metabolism[J].J Dairy Sci,2015,98(11):7944-7961.
[63]BATISTEL F,ARROYO JM,BELLINGERI A,et al.Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows[J].J Dairy Sci,2017,100(9):7455-7467.
[64]GITTO E,REITER RJ,KARBOWNIK M,et al.Causes of oxidative stress in the pre-and perinatal period[J].Biol Neonate,2002,81(3):146-157.
[65]LEAN IJ,SAUN RV,DEGARIS PJ.Mineral and antioxidant management of transition dairy cows[J].Vet Clin North Am Food AnimPract,2013,29(2):367-386.
[66]KABIR M,HASAN MM,TANNI NS,et al.Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases[J].BMC Res Notes,2022,15(1):231.
(編輯 郭云雁)