摘 要:隨著奶牛產(chǎn)奶量的提高,我國奶業(yè)產(chǎn)業(yè)鏈也在不斷優(yōu)化和升級,朝著現(xiàn)代化、規(guī)范化和國際化的方向邁進(jìn)。然而,高產(chǎn)奶牛的繁殖性能卻在逐漸降低,目前,這已成為奶牛相關(guān)研究工作者面臨的共同問題。卵泡發(fā)育與繁殖效率關(guān)系密切,卵泡正常發(fā)育是奶牛發(fā)情、排卵等繁殖活動的先決條件。其中,卵泡顆粒細(xì)胞能夠與卵母細(xì)胞和卵泡膜細(xì)胞相互作用分泌多種激素和因子,同時,作為多種激素和細(xì)胞因子的受體影響卵泡發(fā)育。因此,本文總結(jié)了關(guān)于卵泡顆粒細(xì)胞功能與卵泡發(fā)育的相關(guān)研究,并以卵泡顆粒細(xì)胞在卵泡發(fā)育過程中的作用和顆粒細(xì)胞對卵母細(xì)胞的影響為重點(diǎn)進(jìn)行綜述,以期為今后相關(guān)研究提供理論參考。
關(guān)鍵詞:顆粒細(xì)胞;卵泡發(fā)育;奶牛;繁殖性能;相互作用
中圖分類號:S823.3
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)06-2313-12
收稿日期:2023-12-11
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃政府間重點(diǎn)專項(xiàng)(2022YFE0100200);農(nóng)業(yè)農(nóng)村部和財政部資助:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-36);國家家養(yǎng)動物種質(zhì)資源庫;中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS06)
作者簡介:宋浩然(2001-),男,山東泰安人,碩士生,主要從事動物繁殖研究,E-mail:1315503802@qq.com
*通信作者:趙學(xué)明,主要從事家畜胚胎生物技術(shù)研究,E-mail:zhaoxueming@caas.cn
The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows
SONGHaoran1,2,F(xiàn)ENGXiaoyi1,2,ZHANGPeipei1,ZHANGHang1,NIUYifan1,
YUZhou1,WANPengcheng3,CUIKai2,ZHAOXueming1*
(1.Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing100193,China;
2.College of Animal Science and Technology,Qingdao Agricultural University,Qingdao266000,
China; 3.Institute of Animal Science and Veterinary Medicine,Xinjiang Academy of
Agricultural and Reclamation Science,Shihezi Xinjiang832000,China)
Abstract:With the improvement of milk production of dairy cows,China′s dairy industry chain is also continuously optimized and upgraded,making progress towards modernization,standardization and internationalization.However,the reproductive performance of high producing dairy cows is gradually decreasing,which has become acommon problem faced by dairy cows related researchers.Follicle development is closely related to reproductive efficiency,and normal follicle development is aprerequisite for reproductive activities such as estrus and ovulation.During follicle development,follicular granulosa cells can interact with oocytes and theca cells to produce avariety of hormones and factors,and act as receptors for avariety of hormones and factors to affect follicular development.Therefore,this paper summarized the research on the function of follicular granulosa cells and follicular development,and focused on the role of follicular granulosa cells in follicular development and the influence of granulosa cells on oocytes,in order to provide theoretical reference for future related studies.
Key words:granulosa cells; follicle development; cows; reproductive performance; interaction
*Corresponding author:ZHAO Xueming,E-mail:zhaoxueming@caas.cn
近年來,我國經(jīng)濟(jì)高速發(fā)展,人民對綠色健康食品的需求不斷提高,對牛奶及其乳制品的需求也日益增長[1]。2007年,國務(wù)院發(fā)布的《關(guān)于促進(jìn)奶業(yè)持續(xù)健康發(fā)展的意見》中提到:奶業(yè)是農(nóng)業(yè)的重要組成部分,乳品是重要的“菜籃子”產(chǎn)品,與人民生活息息相關(guān)[2]。2018年《關(guān)于推進(jìn)奶業(yè)振興保障乳品質(zhì)量安全的意見》指出:奶業(yè)是健康中國、強(qiáng)壯民族不可或缺的產(chǎn)業(yè),是食品安全的代表性產(chǎn)業(yè),是農(nóng)業(yè)現(xiàn)代化的標(biāo)志性產(chǎn)業(yè)和一二三產(chǎn)業(yè)協(xié)調(diào)發(fā)展的戰(zhàn)略性產(chǎn)業(yè)[3]。2023年7月31日中新經(jīng)緯研究院發(fā)布《中國奶業(yè)質(zhì)量報告(2023)》統(tǒng)計(jì)得:2022年全國奶類產(chǎn)量4 026.5萬噸,同比增長6.6%,位居世界第四位;乳制品產(chǎn)量突破3 117.7萬噸,同比增長2.0%[4]。
穩(wěn)定的奶源是奶業(yè)健康發(fā)展的基礎(chǔ)保證[2],近年來,生殖管理、營養(yǎng)和牛群健康等方面的改善使產(chǎn)奶量減少和遺傳進(jìn)展延遲等問題已得到了初步解決[5]。隨著奶牛產(chǎn)奶量的提高,奶牛的繁殖能力卻一直在降低[6-7],高產(chǎn)奶牛繁殖性能日益降低已成為目前繁殖業(yè)亟待解決的重要問題[8-9]。保證奶源的穩(wěn)定就要保證高產(chǎn)奶牛的繁殖性能,其中發(fā)情對奶牛的繁殖性能至關(guān)重要,同時影響著牛奶產(chǎn)量和奶牛場的經(jīng)濟(jì)效益[5]。因此,解決奶牛的繁殖障礙已成為決定奶業(yè)發(fā)展的關(guān)鍵因素之一[10]。
近期研究表明,影響奶牛繁殖性能的因素有很多,這些因素主要通過影響卵泡的正常發(fā)育進(jìn)而影響奶牛的繁殖力[11]。卵泡能夠正常發(fā)育是奶牛發(fā)情、排卵等繁殖活動的先決條件[12],在卵泡發(fā)育過程中,卵泡顆粒細(xì)胞能夠與卵母細(xì)胞和卵泡膜細(xì)胞相互作用分泌多種激素和因子,同時作為多種激素和因子的受體影響卵泡發(fā)育[13]。因此,本文綜述了關(guān)于卵泡顆粒細(xì)胞功能和卵泡發(fā)育的相關(guān)研究,重點(diǎn)探討了卵泡顆粒細(xì)胞在卵泡發(fā)育中的作用以及顆粒細(xì)胞對卵母細(xì)胞的影響,旨在為未來的相關(guān)研究提供理論參考。
1 卵泡
1.1 卵泡的組成與功能
卵泡(follicle)是雌性動物卵巢內(nèi)主要生殖功能單位[14],主要由卵母細(xì)胞(oocytes)、顆粒細(xì)胞(granulosa cells,GCs)、卵泡膜細(xì)胞(theca cells)和卵泡液(follicular fluid)共同組成[15-16]。卵泡的主要功能是生產(chǎn)和儲存卵母細(xì)胞,每個卵泡中僅含有一個卵母細(xì)胞,因此雌性動物卵巢功能高度依賴卵泡的數(shù)量[17]。卵母細(xì)胞是卵泡的核心組成部分,是雌性動物的基本生殖細(xì)胞,卵母細(xì)胞早在雌性動物胚胎時期就已形成[18]。在卵泡發(fā)育至有腔卵泡時會產(chǎn)生卵泡液,卵泡液會為卵母細(xì)胞生長發(fā)育與成熟提供重要的微環(huán)境[19],卵泡液中富含營養(yǎng)物質(zhì)和包括微小核糖核酸(micro ribonucleic acid,miRNA)在內(nèi)的信號分子,它們能夠維持顆粒細(xì)胞與生長中的卵母細(xì)胞之間的通信并對卵母細(xì)胞提供營養(yǎng)以支持卵母細(xì)胞發(fā)育成熟[20]。此外,卵泡液激素水平的穩(wěn)定性可作為衡量卵泡健康發(fā)育的一個標(biāo)準(zhǔn)[21-22]。多種miRNA可在哺乳動物卵母細(xì)胞發(fā)育的不同階段發(fā)揮作用,以調(diào)節(jié)顆粒細(xì)胞的增殖和存活,并直接影響卵母細(xì)胞發(fā)育[23]。
1.2 卵泡的發(fā)育階段
卵泡發(fā)育是由各種內(nèi)分泌、旁分泌和自分泌因子協(xié)調(diào)作用來選擇卵泡進(jìn)行排卵的過程,是決定奶牛生殖性能的關(guān)鍵因素[24]。根據(jù)卵泡在不同發(fā)育階段表現(xiàn)出的不同特征,可以將發(fā)育的卵泡分為原始卵泡、初級卵泡、次級卵泡、三級卵泡及成熟卵泡(格拉夫氏卵泡)5個階段[25]。包括奶牛在內(nèi)大多數(shù)哺乳動物的卵泡早在胎兒時期就已形成并開始發(fā)育[26],原始卵泡在啟動生長后先發(fā)育為初級卵泡并維持在第一次減數(shù)分裂前期雙線期(GV期),初情期后卵泡受到促黃體素(luteinizing hormone,LH)的激活后繼續(xù)進(jìn)行減數(shù)分裂,逐漸發(fā)育成熟并排卵[27]。
原始卵泡、初級卵泡、次級卵泡又合稱為無腔卵泡(腔前卵泡),三級卵泡、成熟卵泡合稱為有腔卵泡[25]。原始卵泡的發(fā)育因不需要促性腺激素的參與,只由細(xì)胞因子與卵母細(xì)胞分泌的細(xì)胞因子控制,又稱為促性腺激素獨(dú)立期;從次級卵泡開始,顆粒細(xì)胞與卵母細(xì)胞開始表達(dá)促性腺激素受體,稱為促性腺激素依賴期[28]。原始卵泡由未成熟的GV期卵母細(xì)胞組成,并被顆粒細(xì)胞包圍[29]。奶牛的卵泡發(fā)育是波浪狀的[30],大多情況下一個卵泡生長為優(yōu)勢卵泡,其他卵泡會受到優(yōu)勢卵泡分泌的抑制素的影響而發(fā)生卵泡退化形成閉鎖卵泡[21]。
2 卵泡顆粒細(xì)胞
2.1 卵泡顆粒細(xì)胞定義
顆粒細(xì)胞存在于卵泡內(nèi),因其胞漿內(nèi)含有蛋白質(zhì)、激素和其他分子的沉積物形成的小顆粒,故稱為顆粒細(xì)胞[31]。顆粒細(xì)胞是卵巢中一種重要的體細(xì)胞[32],也是最接近于生殖細(xì)胞的體細(xì)胞[33]。
1955年,英國生理學(xué)家Geoffrey Harris首次闡明了下丘腦-垂體-卵巢軸的內(nèi)分泌機(jī)制,在這之后,卵泡顆粒細(xì)胞成為研究卵泡生長發(fā)育和閉鎖機(jī)制的焦點(diǎn)[34-35]。顆粒細(xì)胞在卵泡發(fā)育全過程中均起著十分重要的作用[36-37],其可以作為卵泡發(fā)育過程的標(biāo)志,有報道稱,卵泡生長的臨界點(diǎn)是當(dāng)卵泡有40個左右的顆粒細(xì)胞時,卵母細(xì)胞的直徑第一次發(fā)生明顯變化[38-39]。顆粒細(xì)胞在卵泡生長過程中增殖,在閉鎖過程中分化或凋亡,同時產(chǎn)生對卵泡生長、卵母細(xì)胞成熟和排卵至關(guān)重要的類固醇,是卵泡發(fā)生過程的關(guān)鍵調(diào)節(jié)細(xì)胞[34,40]。若顆粒細(xì)胞發(fā)生功能障礙,會導(dǎo)致卵泡發(fā)育異常,進(jìn)而導(dǎo)致不孕現(xiàn)象[41]。
2.2 卵泡顆粒細(xì)胞的作用
2.2.1 分泌激素與生長因子
在卵泡發(fā)育過程中,顆粒細(xì)胞能夠分泌各種類固醇激素以及多種生長因子來影響卵泡生長,是卵巢內(nèi)分泌功能重要的組成部分[14,40,42]。顆粒細(xì)胞在產(chǎn)生類固醇激素的同時進(jìn)行分化,類固醇激素對控制卵泡生長、卵母細(xì)胞成熟和排卵至關(guān)重要[43]。此外,顆粒細(xì)胞是哺乳動物類固醇激素雌二醇(estradiol,E2)和孕酮(progesterone,P4)的主要來源,E2和P4是兩種重要的類固醇激素,能夠調(diào)節(jié)雌性生殖過程中的許多生理過程[44]。E2能夠促進(jìn)卵泡發(fā)育成熟,P4主要起到維持妊娠的作用,促進(jìn)顆粒細(xì)胞上FSH受體的表達(dá)以及抑制卵泡閉鎖等[25]。除了類固醇激素,顆粒細(xì)胞還會分泌多種生長因子影響卵泡的發(fā)育,例如胰島素樣生長因子(insulin-like growth factor,IGF)和腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)等[21,34,42,45]。
2.2.2 存在多種激素受體
卵泡發(fā)育受下丘腦-垂體-卵巢軸不同水平合成的激素調(diào)控,包括下丘腦分泌的促性腺激素釋放激素(gonadotropin releasing hormone,GnRH)以及垂體前葉分泌的兩種對卵泡發(fā)育至關(guān)重要的激素促卵泡激素(follicle-stimulating hormone,F(xiàn)SH)和促黃體素[46]。在顆粒細(xì)胞上存在著FSH和LH的受體,F(xiàn)SH和LH先作用于顆粒細(xì)胞,啟動并刺激顆粒細(xì)胞增殖,形成排卵期前卵泡,LH激增通過調(diào)節(jié)終端分化激活排卵[47]。在哺乳動物中,卵母細(xì)胞生長發(fā)育以及成熟在很大程度上依賴于顆粒細(xì)胞對FSH的反應(yīng)[48]。FSH刺激顆粒細(xì)胞增殖和雄激素芳香化為雌激素[49-50],雌激素刺激顆粒細(xì)胞的增殖,F(xiàn)SH受體(follicle-stimulating hormone receptor,F(xiàn)SHR)在卵泡發(fā)育初期到晚期都有表達(dá),F(xiàn)SH受體信號通過PKA和PI3K/Akt途徑誘導(dǎo)顆粒細(xì)胞中芳香化酶(CYP19A1)的表達(dá),從而刺激雌二醇的產(chǎn)生[51]。顆粒細(xì)胞不僅能夠分泌雌二醇,也是雌二醇的靶細(xì)胞[34]。雌二醇能夠促進(jìn)FSHR表達(dá)、顆粒細(xì)胞增殖,并誘導(dǎo)隨后排卵所需的LH激增[52]。有研究表明,F(xiàn)SH在竇卵泡中有促生長和抗凋亡的作用,然而,高水平的FSH會通過AKT/mTOR信號通路誘導(dǎo)顆粒細(xì)胞的自噬,導(dǎo)致卵泡閉鎖[53]。因此,F(xiàn)SH只有在一定劑量下才能夠?qū)β雅莅l(fā)育起到促進(jìn)作用[53]。
2.2.3 保護(hù)與信息交流
顆粒細(xì)胞位于卵母細(xì)胞外側(cè),根據(jù)在卵泡發(fā)育過程中所處位置與發(fā)揮作用的不同,分為卵丘細(xì)胞(cumulus cells,CCs)和壁層顆粒細(xì)胞(mural granulosa cells,MGCs),均由前顆粒細(xì)胞增殖分化而來[34,54-56]。壁層顆粒細(xì)胞主要起到保護(hù)卵母細(xì)胞和支撐卵泡結(jié)構(gòu)的作用,當(dāng)卵母細(xì)胞中活性氧(reactive oxygen species,ROS)水平升高時,會出現(xiàn)更高頻率的紡錘體缺陷和染色體錯位,這中斷了減數(shù)分裂結(jié)構(gòu)的正常組裝[57]。壁層顆粒細(xì)胞能夠分泌谷胱甘肽(glutathione,GSH),GSH能保護(hù)卵母細(xì)胞不受ROS導(dǎo)致的氧化應(yīng)激[58],谷胱甘肽過氧化物酶和過氧化物還原素催化GSH將H2O2還原為H2O和氧化谷胱甘肽[59],以此減少卵母細(xì)胞內(nèi)H2O2的含量,進(jìn)而恢復(fù)卵母細(xì)胞紡錘體的結(jié)構(gòu)和染色體的組裝[57]。
卵丘細(xì)胞在原始卵泡中與卵母細(xì)胞直接接觸,待原始卵泡被激活開始生長后,卵泡外形成透明帶,此時卵泡能夠與卵母細(xì)胞通過跨區(qū)連接(transzonal projections,TZPs)的方式形成卵丘-卵母細(xì)胞復(fù)合體(cumulus-oocyte complexs,COCs)[60]。TZPs是哺乳動物卵母細(xì)胞能夠與其卵泡環(huán)境進(jìn)行接觸依賴性交流的唯一結(jié)構(gòu)[61],起源于卵丘細(xì)胞,由肌動蛋白細(xì)絲和微管蛋白的強(qiáng)大骨干組成[20]。COCs結(jié)構(gòu)對卵母細(xì)胞發(fā)育、生長以及成熟都有著重要作用[62],卵泡發(fā)育過程中細(xì)胞通訊喪失會導(dǎo)致卵泡生長受阻、卵母細(xì)胞分裂能力受損以及排卵障礙等問題[15]。
3 卵泡發(fā)育過程中細(xì)胞間的相互作用
在卵泡發(fā)育過程中,卵母細(xì)胞、卵泡膜細(xì)胞和顆粒細(xì)胞之間會有一系列由多種生長因子與激素參與的相互作用[63-64],這些相互作用會促進(jìn)卵泡發(fā)育、卵母細(xì)胞成熟以及成功排卵[65]。
3.1 顆粒細(xì)胞與卵泡膜細(xì)胞的相互作用
顆粒細(xì)胞和卵泡膜細(xì)胞是兩種類型的體細(xì)胞,它們之間的相互作用對卵母細(xì)胞的生長發(fā)育發(fā)揮著重要的作用[34,66]。卵泡膜細(xì)胞由卵巢基質(zhì)中的成纖維細(xì)胞分化而來,分為外卵泡膜細(xì)胞和內(nèi)卵泡膜細(xì)胞[67]。外卵泡膜細(xì)胞的主要作用是為卵泡提供支撐和保護(hù),維持卵泡形狀和結(jié)構(gòu)的完整性[68];內(nèi)卵泡膜細(xì)胞主要與顆粒細(xì)胞相互作用,發(fā)揮著促進(jìn)卵泡發(fā)育、成熟的作用,卵泡膜細(xì)胞與顆粒細(xì)胞的作用方式主要是正反饋調(diào)節(jié)[69]。
3.1.1 細(xì)胞生長因子的相互作用
干細(xì)胞因子(stem cell factor,SCF)又稱為Kit配體(kit ligand,KL)是一種常見的細(xì)胞信號因子,能夠與酪氨酸激酶受體(tyrosine kinase growth factor receptor,c-kit)結(jié)合,通過多種信號通路對細(xì)胞生長發(fā)育起到調(diào)控作用[70]。SCF在顆粒細(xì)胞中表達(dá),c-kit在卵泡膜細(xì)胞中表達(dá),因此SCF可以作用于卵泡膜細(xì)胞促進(jìn)其生長發(fā)育并分泌多種信號因子與顆粒細(xì)胞相互作用,以此促進(jìn)卵泡的發(fā)育[69]。間充質(zhì)來源的卵泡膜細(xì)胞能夠產(chǎn)生角質(zhì)細(xì)胞生長因子(keratinocyte growth factor,KGF)與肝細(xì)胞生長因子(hepatocyte growth factor,HGF),KGF與HGF能夠調(diào)控顆粒細(xì)胞的生長與功能,同時顆粒細(xì)胞會產(chǎn)生KL,HGF、KGF與KL能夠協(xié)調(diào)作用[20]。HGF與KGF能夠促進(jìn)顆粒細(xì)胞生長增殖并分泌產(chǎn)生KL,KL又能夠作用于卵泡膜細(xì)胞促進(jìn)其分泌KGF與HGF[71-72]。
3.1.2 激素的相互作用
顆粒細(xì)胞能夠分泌產(chǎn)生孕酮,內(nèi)卵泡膜細(xì)胞可利用孕酮并將其轉(zhuǎn)化為雄激素[73],孕酮轉(zhuǎn)化為雄激素的過程會受到LH的影響,雄激素能夠作為合成雌激素的底物被顆粒細(xì)胞利用[37],在顆粒細(xì)胞p450芳香化酶的作用下轉(zhuǎn)化為雌激素[14,74],雄激素轉(zhuǎn)化為雌激素的過程又能夠受到FSH的影響[65,75]。雌激素能夠作用于顆粒細(xì)胞促進(jìn)其生長、增殖和分化,使顆粒細(xì)胞數(shù)目增多以此支撐卵母細(xì)胞的生長發(fā)育;同時雌激素又能反饋到卵泡膜細(xì)胞,用于調(diào)節(jié)卵泡膜細(xì)胞的功能[15,56,76]。
3.2 顆粒細(xì)胞與卵母細(xì)胞的相互作用
卵母細(xì)胞的生長發(fā)育是卵泡發(fā)育的核心目的,卵母細(xì)胞分泌多種因子影響卵泡發(fā)育,卵母細(xì)胞的發(fā)育能力是在卵泡發(fā)育過程中逐漸獲得的[23]。
3.2.1 顆粒細(xì)胞對卵母細(xì)胞的營養(yǎng)作用
關(guān)于顆粒細(xì)胞對于卵母細(xì)胞的營養(yǎng)作用最早是由Biggers等[77]在1967年通過試驗(yàn)提出,該試驗(yàn)發(fā)現(xiàn)卵母細(xì)胞無法獨(dú)自在含有葡萄糖的培養(yǎng)基中發(fā)育成熟,在加入顆粒細(xì)胞后卵母細(xì)胞開始發(fā)育直至成熟。卵母細(xì)胞發(fā)育中需要的ATP主要由卵丘細(xì)胞進(jìn)行糖酵解分解葡萄糖獲得[78-79]。卵丘細(xì)胞對葡萄糖進(jìn)行糖酵解,使葡萄糖分解為ATP以及生成代謝物丙酮酸與乳酸,產(chǎn)生的丙酮酸可以再經(jīng)過三羧酸循環(huán)在卵母細(xì)胞和卵丘細(xì)胞中代謝,以此產(chǎn)生大量的ATP[60,62]。同樣通過TZPs,顆粒細(xì)胞能夠?qū)被岬葼I養(yǎng)物質(zhì)和用于能量生產(chǎn)的底物運(yùn)送到卵母細(xì)胞[80]。顆粒細(xì)胞為卵母細(xì)胞的生長發(fā)育提供各種能量底物,卵母細(xì)胞通過分泌多種旁分泌因子來控制顆粒細(xì)胞內(nèi)的代謝活動[26]。
3.2.2 顆粒細(xì)胞與卵母細(xì)胞的信息交流
卵母細(xì)胞與顆粒細(xì)胞之間有著密切的信息交流,主要通過間隙連接的方式進(jìn)行雙向交流[81],顆粒細(xì)胞與卵母細(xì)胞之間的間隙連接蛋白為Cx37[40],這種交流對于卵母細(xì)胞的發(fā)育成熟和卵泡發(fā)育具有十分重要的作用[80]。在原始卵泡的發(fā)育過程中,生長分化因子9(growth differentiation factor9,GDF9)已被證明在早期卵泡中介導(dǎo)卵母細(xì)胞與周圍顆粒細(xì)胞之間的通訊,并增加原始卵泡的激活和生長[82]。
c-kit配體在卵母細(xì)胞中也有表達(dá),顆粒細(xì)胞來源的SCF與卵母細(xì)胞上的c-kit結(jié)合激活PI3/AKT信號途徑調(diào)節(jié)卵母細(xì)胞的生長發(fā)育并促進(jìn)顆粒細(xì)胞產(chǎn)生類固醇激素[83]??姑缋帐瞎芗に兀ˋnti-mullerian hormone,AMH)是目前已知的唯一能抑制原始卵泡生長的細(xì)胞因子[84],據(jù)研究,SCF是AMH作用于卵母細(xì)胞的媒介之一,AMH通過抑制SCF對卵母細(xì)胞的促進(jìn)生長作用間接抑制卵母細(xì)胞生長[56,85]。
3.2.3 顆粒細(xì)胞與卵母細(xì)胞間的相互調(diào)控作用
KL和KIT酪氨酸激酶受體介導(dǎo)卵丘-卵母細(xì)胞相互作用,并在產(chǎn)后卵巢的發(fā)育卵泡和排卵前卵泡中表達(dá)[20]。卵母細(xì)胞通過分泌能夠直接作用于顆粒細(xì)胞和卵泡膜細(xì)胞可溶解的旁分泌生長因子(如BMP15和GDF9)[86]來調(diào)控顆粒細(xì)胞與卵泡膜細(xì)胞的增殖分化,間接控制卵母細(xì)胞的自我發(fā)育和調(diào)節(jié)卵泡的發(fā)育[42,62,64,87-88],進(jìn)而產(chǎn)生作用于自身的旁分泌因子(即KL、激活素、抑制素、AMH、轉(zhuǎn)化生長因子α等),以協(xié)調(diào)卵母細(xì)胞生長、顆粒細(xì)胞增殖和卵泡發(fā)育[62]。
卵泡顆粒細(xì)胞會通過間隙連接控制卵母細(xì)胞內(nèi)環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)的濃度來調(diào)控卵母細(xì)胞的減數(shù)分裂,通過調(diào)控卵母細(xì)胞的減數(shù)分裂間接調(diào)控卵泡的發(fā)育[89-90]。在卵泡發(fā)育過程中,卵泡在初情期到達(dá)之前都是停滯在第一次減數(shù)分裂前期雙線期(GV期),減數(shù)分裂阻滯通過cAMP介導(dǎo)的蛋白激酶A(proteinkinase A,PKA)激活,通過直接調(diào)節(jié)成熟促進(jìn)因子(maturation promoting factor,MPF)活性的激酶和磷酸酶來維持的[91],維持GV期需要卵母細(xì)胞中含有高水平的cAMP[92]。卵母細(xì)胞中的cAMP有兩個來源,一是卵母細(xì)胞自身合成;二是由顆粒細(xì)胞合成,再經(jīng)由卵母細(xì)胞與顆粒細(xì)胞的間隙連接將cAMP擴(kuò)散至卵母細(xì)胞內(nèi)[28]。卵母細(xì)胞自身產(chǎn)出的cAMP非常有限,維持卵母細(xì)胞內(nèi)高水平的cAMP主要依靠顆粒細(xì)胞的合成[28]。顆粒細(xì)胞中的腺苷酸環(huán)化酶(adenylate cyclase,AC)能夠使ATP合成cAMP,cAMP會通過間隙連接擴(kuò)散到卵母細(xì)胞內(nèi)使其cAMP水平升高[93],高水平的cAMP抑制PKA信號途徑[94],激活Wee1/Myt1并失活蛋白酪氨酸酯酶(cell division cycle25,CDC25),使MPF失活,導(dǎo)致卵母細(xì)胞停滯于GV期[91,95]。
PDE蛋白家族具有降解第二信使cAMP與cGMP的功能,顆粒細(xì)胞中主要是PDE4發(fā)揮作用,卵母細(xì)胞中主要是PDE3發(fā)揮作用[94]。LH能夠激活PKC信號途徑,提高顆粒細(xì)胞中PDE4的活性,促進(jìn)cAMP的水解[96]。LH峰值會降低卵丘細(xì)胞上2型利鈉肽受體(natriuretic peptide receptor type-2,NPR2)的活性和壁層顆粒細(xì)胞中促尿鈉排泄肽前體C(natriuretic peptide precursor C,NPPC)含量[97],減少cGMP的合成[28,98]。由于cGMP是PDE3的競爭性抑制劑,cGMP的減少會使PDE3的活性提高[91]。PDE家族蛋白活性提高,降解了顆粒細(xì)胞中的cAMP使其含量降低,進(jìn)而導(dǎo)致進(jìn)入卵母細(xì)胞的cAMP含量不足以維持卵母細(xì)胞內(nèi)高水平cAMP的環(huán)境,cAMP對于PKA信號途徑的抑制作用降低,導(dǎo)致MPF恢復(fù)活性,此時卵母細(xì)胞減數(shù)分裂Ⅰ恢復(fù)[62,99]。
4 顆粒細(xì)胞對卵泡發(fā)育過程的作用
4.1 排卵
在卵泡發(fā)生的最后階段,卵母細(xì)胞完成減數(shù)分裂并排出,并在后期I和末期I中進(jìn)行了減數(shù)分裂I,當(dāng)?shù)谝淮螠p數(shù)分裂完成時,第一極體被排出,排卵的卵母細(xì)胞減數(shù)分裂停滯在中期II,直到受精后[92]。卵泡發(fā)育的最后階段LH激增,作用于壁層顆粒細(xì)胞上的受體來誘導(dǎo)排卵[20,28]。在排卵前,卵母細(xì)胞被透明帶(zona pellucida,ZP)和卵丘細(xì)胞包圍,這些細(xì)胞與排列在卵泡壁內(nèi)層的壁層顆粒細(xì)胞相連[100]。卵泡壁分為顆粒細(xì)胞層與卵泡膜細(xì)胞層,基底膜將顆粒細(xì)胞層與卵泡膜細(xì)胞層分離,卵泡膜細(xì)胞層高度血管化,血管中存在白細(xì)胞[101]。在LH激增后,基底膜受到破壞并允許血管延伸到顆粒細(xì)胞層,卵泡膜細(xì)胞和白細(xì)胞進(jìn)入顆粒細(xì)胞層,COCs與周圍的顆粒細(xì)胞分離,發(fā)生卵丘擴(kuò)張[100]。卵泡頂端的卵巢表面上皮被破壞,基底膜和卵泡頂端破裂,卵母細(xì)胞排出[101]。排卵后卵泡經(jīng)過黃體化過程分化成黃體組織[102]。黃體化的過程中,卵泡中的壁層顆粒細(xì)胞在短時間內(nèi)分化成黃體細(xì)胞[103],當(dāng)顆粒細(xì)胞發(fā)生黃體化時,細(xì)胞功能發(fā)生變化,黃體化的顆粒細(xì)胞將合成和分泌大量的孕酮[101]。如果動物受孕,孕酮將用于維持正常的妊娠[104];如果沒有受孕,黃體組織將會逐漸退化形成白體,最終被吸收[105]。
4.2 卵泡閉鎖
超過99%的卵泡未能達(dá)到排卵前階段,而是經(jīng)歷了閉鎖的退行性過程[24,106]。卵泡閉鎖對于維持卵巢內(nèi)的穩(wěn)態(tài)至關(guān)重要,閉鎖失調(diào)會導(dǎo)致生殖疾病,例如多囊卵巢綜合征等[31]。卵泡閉鎖分為兩種類型,一種是由卵母細(xì)胞凋亡引起,多發(fā)于原始卵泡和初級卵泡;另一種是由顆粒細(xì)胞的凋亡引起[107],多發(fā)于成熟卵泡[31]。卵泡閉鎖在整個卵泡發(fā)育階段都會發(fā)生,在奶牛這類高等脊椎動物中,卵泡閉鎖主要由顆粒細(xì)胞凋亡介導(dǎo)[20,33,106]。根據(jù)顆粒細(xì)胞與卵泡壁的分離程度可將顆粒細(xì)胞引發(fā)的卵泡閉鎖分為兩個階段,顆粒細(xì)胞開始與卵泡壁分離時成為早期閉鎖卵泡;顆粒細(xì)胞完全與卵泡壁分離后成為進(jìn)行性閉鎖卵泡[108]。
卵泡閉鎖受到多種調(diào)控因子以及多種凋亡基因的調(diào)控,例如表皮生長因子(epidermal growth factor,EGF)與轉(zhuǎn)化生長因子α(transforming growth factor alpha,TGF-α)能夠抑制顆粒細(xì)胞凋亡[65,73];顆粒細(xì)胞中的胰島素樣生長因子Ⅰ(IGF-Ⅰ)能夠維持顆粒細(xì)胞FSHR mRNA的穩(wěn)定性,協(xié)同F(xiàn)SH促進(jìn)顆粒細(xì)胞增殖發(fā)育以抑制顆粒細(xì)胞的凋亡,有研究表明,當(dāng)顆粒細(xì)胞中IGF-Ⅰ消耗過多,會促進(jìn)卵泡閉鎖的發(fā)生[21,34,65];谷胱甘肽還原酶(在NADPH存在下)維持谷胱甘肽的還原形式,以抑制竇性卵泡閉鎖并抑制顆粒細(xì)胞凋亡[109]。p53是備受關(guān)注的抑癌基因之一,其能夠修復(fù)受損的DNA或啟動細(xì)胞死亡程序,對于顆粒細(xì)胞凋亡具有調(diào)控作用[110]。當(dāng)DNA受損時刺激p53蛋白質(zhì)表達(dá)增加,通過介導(dǎo)修復(fù)機(jī)制在DNA合成之前修復(fù)損傷,如果損傷嚴(yán)重,持續(xù)增加的p53蛋白質(zhì)將觸發(fā)活化與細(xì)胞凋亡相關(guān)的天冬氨酸特異性半胱氨酸蛋白激酶(caspases),caspases-8、caspases-9和caspases-10參與細(xì)胞凋亡啟動,caspases-3、caspases-6和caspases-7參與執(zhí)行凋亡[111]。
Bcl-2/Bax基因是一組調(diào)控卵泡閉鎖的重要基因,研究表明,Bcl-2主要起到了抗凋亡作用,Bax基因主要起到直接促進(jìn)顆粒細(xì)胞凋亡發(fā)生卵泡閉鎖的作用[88]。有研究表明,內(nèi)質(zhì)網(wǎng)應(yīng)激也能夠通過PERK/CHOP信號通路激活Bcl-2/Bax基因調(diào)控顆粒細(xì)胞凋亡調(diào)控卵泡閉鎖[112]。
Fas/Fas L系統(tǒng)是最具有代表性的凋亡受體/配體系統(tǒng),其直接參與了卵泡閉鎖[31,108]。在早期閉鎖卵泡中,顆粒細(xì)胞中表達(dá)的Fas L與在附近的顆粒細(xì)胞膜中表達(dá)的Fas結(jié)合,隨后Fas相關(guān)死亡結(jié)構(gòu)域蛋白(fas-associated deathdomain,F(xiàn)ADD)和procaspase-8被招募,procaspase-8被縮短并激活,其將凋亡信號傳遞給procaspase-3等,顆粒細(xì)胞開始凋亡,隨后導(dǎo)致卵泡閉鎖[113-115]。
5 顆粒細(xì)胞與卵泡發(fā)育主要相關(guān)的信號通路5.1 PI3K-Akt信號通路
PI3K-Akt信號通路是細(xì)胞周期、增殖和凋亡中的關(guān)鍵信號通路,在卵泡發(fā)育中,PI3K-Akt信號通路在細(xì)胞增殖、凋亡、DNA修復(fù)和蛋白質(zhì)合成等方面具有重要作用[116]。PI3K/Akt/mTOR信號通路能夠控制原始卵泡的激活、生長與閉鎖[117]。在卵泡中PI3K-Akt信號通路主要用于轉(zhuǎn)導(dǎo)FSH與IGF-Ⅰ[118]。PI3K是一種細(xì)胞內(nèi)信號蛋白,具有催化活性,在控制細(xì)胞生長和增殖中起著關(guān)鍵作用,而Akt是PI3K的下游效應(yīng)因子,參與細(xì)胞存活和抗凋亡信號[56]。在與奶牛卵泡發(fā)育相關(guān)的研究中,IGF-1通過維持PI3K-Akt信號通路在顆粒細(xì)胞中的信號傳導(dǎo),進(jìn)而影響PI3K-Akt信號通路下游基因的表達(dá)來抑制顆粒細(xì)胞凋亡[108]。此外,miR-21-3p通過減弱PI3K/AKT信號傳導(dǎo)來抑制BGCs自噬[119]。
5.2 Wnt信號通路
Wnt信號通路可根據(jù)是否依賴β-catenin分為經(jīng)典WNT信號通路和非經(jīng)典WNT信號通路[120-121],Wnt/β-catenin信號通路又稱為經(jīng)典Wnt通路,也是研究最為深入的一條信號轉(zhuǎn)導(dǎo)通路[121]。有研究表明,經(jīng)典Wnt通路在顆粒細(xì)胞中完整存在[65],Wnt/β-catenin通路對卵巢發(fā)育的影響體現(xiàn)在對細(xì)胞命運(yùn)的決定,多種性腺激素參與了對發(fā)育進(jìn)程的調(diào)控,與顆粒細(xì)胞的增殖、卵泡排卵和卵泡閉鎖等重要的卵巢發(fā)育過程息息相關(guān)[65]。其中WNT2蛋白可以通過β-catenin來調(diào)節(jié)顆粒細(xì)胞的DNA合成以此促進(jìn)顆粒細(xì)胞的增殖[122],Wnt通路紊亂促進(jìn)了顆粒細(xì)胞的凋亡[65]。
6 總結(jié)與展望
卵泡顆粒細(xì)胞是奶牛卵泡發(fā)育過程中重要的體細(xì)胞,顆粒細(xì)胞為卵母細(xì)胞提供保護(hù)與營養(yǎng)支持,同時分泌多種激素與細(xì)胞因子與卵母細(xì)胞相互作用,調(diào)控卵母細(xì)胞的減數(shù)分裂。對于劣勢卵泡,顆粒細(xì)胞的凋亡會導(dǎo)致卵泡的閉鎖。近幾年,全國奶牛產(chǎn)奶量呈現(xiàn)穩(wěn)步上升的趨勢,現(xiàn)代奶牛養(yǎng)殖業(yè)規(guī)模也逐步增大,集約化養(yǎng)殖越來越普及,大大提高了奶牛養(yǎng)殖效率和產(chǎn)奶質(zhì)量。然而,現(xiàn)代奶牛繁殖障礙越來越嚴(yán)重,形成因素較多,無論是以多囊卵巢綜合癥為代表的疾病因素還是以熱應(yīng)激為代表的環(huán)境因素均會導(dǎo)致奶牛繁殖障礙,這都影響了卵泡發(fā)育。對于奶牛繁殖問題,現(xiàn)有多種技術(shù)能夠利用,例如人工授精以及卵細(xì)胞體外成熟、體外受精、體外胚胎冷凍、體外胚胎移植等。顆粒細(xì)胞作為卵泡發(fā)育過程中重要的體細(xì)胞成分,在各種生殖技術(shù)中都占據(jù)了十分重要的地位。目前,對于存在的諸多問題,重點(diǎn)之一是研究卵泡發(fā)育障礙的形成因素與機(jī)制,進(jìn)而找到解決卵泡發(fā)育障礙的方法,繼續(xù)研發(fā)新理論新技術(shù),以提高高產(chǎn)奶牛的繁殖性能。
參考文獻(xiàn)(References):
[1]譚金菁,李夢雅,劉簫儀,等.RCEP背景下中國乳制品的市場潛力研究[J].上海第二工業(yè)大學(xué)學(xué)報,2023,40(3):254-260.
TAN JJ,LI MY,LIU XY,et al.An analysis on market potential of Chinese dairy products under the background of RCEP[J].Journal of Shanghai Second Polytechnic University,2023,40(3):254-260.(in Chinese)
[2]中華人民共和國國務(wù)院.國務(wù)院關(guān)于促進(jìn)奶業(yè)持續(xù)健康發(fā)展的意見[J].中國乳業(yè),2007(12):3-5.
State Council of the People′s Republic of China.Opinions of the state council on promoting the sustainable and healthy development of the dairy industry[J].China Dairy,2007(12):3-5.(in Chinese)
[3]推進(jìn)奶業(yè)振興,保障乳品質(zhì)量安全[J].農(nóng)經(jīng),2018(7):13-15.
Promote the revitalization of the dairy industry and ensure the quality and safety of dairy products[J].Agriculture Economics,2018(7):13-15.(in Chinese)
[4]暴夢川.我國民族奶業(yè)競爭力持續(xù)增強(qiáng)[N].消費(fèi)日報,2023-07-24(A01).
PU MC.The competitiveness of China′s national dairy industry continues to increase[N].Consumption Daily,2023-07-24(A01).(in Chinese)
[5]PE?AGARICANO F.Genomics and dairy bull fertility[J].Vet Clin North Am Food Anim Pract,2024,40(1):185-190.
[6]LUCY MC.Reproductive loss in high-producing dairy cattle:where will it end?[J].J Dairy Sci,2001,84(6):1277-1293.
[7]DOBSON H,SMITH RF,ROYAL M,et al.The high-producing dairy cow and its reproductive performance[J].Reprod Domest Anim,2007,42(Suppl2):17-23.
[8]FAIR T.Mammalian oocyte development:checkpoints for competence[J].Reprod Fertil Dev,2010,22(1):13-20.
[9]MAKAREVICH AV,F(xiàn)?LDE?IOVáM,PIVKO J,et al.Histological characteristics of ovarian follicle atresia in dairy cows with different milk production[J].Anat Histol Embryol,2018,47(6):510-516.
[10]YIN BY,UMAR T,MA XF,et al.MiR-193a-3p targets LGR4to promote the inflammatory response in endometritis[J].Int Immunopharmacol,2021,98:107718.
[11]ENDO N.Possible causes and treatment strategies for the estrus and ovulation disorders in dairy cows[J].J Reprod Dev,2022,68(2):85-89.
[12]?ENGI?B,VARATANOVI?N,MUTEVELI?T,et al.Distribution of dominant follicles in postpartum dairy cows[J].Biotechnol Anim Husb,2017,33(2):181-191.
[13]KHAN I,MESALAM A,HEO YS,et al.Heat stress as abarrier to successful reproduction and potential alleviation strategies in cattle[J].Animals(Basel),2023,13(14):2359.
[14]BABAYEV E,XU M,SHEA LD,et al.Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J].Mol Hum Reprod,2022,28(10):gaac033.
[15]SIMON LE,KUMAR TR,DUNCAN FE.In vitro ovarian follicle growth:a comprehensive analysis of key protocol variables[J].Biol Reprod,2020,103(3):455-470.
[16]ZHANG J,DENG YF,LI JJ,et al.Theca cell-conditioned medium enhances steroidogenesis competence of buffalo(Bubalus bubalis)granulosa cells[J].Reprod Domest Anim,2021,56(2):254-262.
[17]WU GM J,CHEN AC H,YEUNG WS B,et al.Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells[J].Front Cell Dev Biol,2023,11:1166351.
[18]ALBAMONTE MI,ALBAMONTE MS,BOU-KHAIR RM,et al.The ovarian germinal reserve and apoptosis-related proteins in the infant and adolescent human ovary[J].J Ovarian Res,2019,12(1):22.
[19]DIPALI SS,SUEBTHAWINKUL C,BURDETTE JE,et al.Human follicular fluid elicits select dose-and age-dependent effects on mouse oocytes and cumulus-oocyte complexes in aheterologous in vitro maturation assay[J].Mol Hum Reprod,2023,29(11):gaad039.
[20]DOMPE C,KULUS M,STEFA?SKA K,et al.Human granulosa cells-stemness properties,molecular cross-talk and follicular angiogenesis[J].Cells,2021,10(6):1396.
[21]AZARI-DOLATABAD N,BENEDETTI C,VELEZ DA,et al.Oocyte developmental capacity is influenced by intrinsic ovarian factors in abovine model for individual embryo production[J].Anim Reprod Sci,2023,249:107185.
[22]COSTERMANS NG J,SOEDE NM,BLOKLAND M,et al.Steroid profile of porcine follicular fluid and blood serum:relation with follicular development[J].Physiol Rep,2019,7(24):e14320.
[23]PAULINO LR FM,DE ASSIS EI T,AZEVEDO VA N,et al.Why is it so difficult to have competent oocytes from in vitro cultured preantral follicles?[J].Reprod Sci,2022,29(12):3321-3334.
[24]FONTANA J,MARTINKOVáS,PETR J,et al.Metabolic cooperation in the ovarian follicle[J].Physiol Res,2020,69(1):33-48.
[25]EMORI C,SUGIURA K.Role of oocyte-derived paracrine factors in follicular development[J].Anim Sci J,2014,85(6):627-633.
[26]SUGIURA K,PENDOLA FL,EPPIG JJ.Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells:energy metabolism[J].Dev Biol,2005,279(1):20-30.
[27]DRUMMOND AE.The role of steroids in follicular growth[J].Reprod Biol Endocrinol,2006,4:16.
[28]ANDRADE GM,COLLADO MD,MEIRELLES FV,et al.Intrafollicular barriers and cellular interactions during ovarian follicle development[J].Anim Reprod,2019,16(3):485-496.
[29]STR CZY?SKA P,PAPIS K,MORAWIEC E,et al.Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J].Reprod Biol Endocrinol,2022,20(1):37.
[30]RAMESH V,DEVI LS,JOSHI V,et al.Ovarian follicular dynamics,hormonal profiles and ovulation time in Mithun cows(Bos frontalis)[J].Reprod Domest Anim,2022,57(10):1218-1229.
[31]STRINGER JM,ALESI LR,WINSHIP AL,et al.Beyond apoptosis:evidence of other regulated cell death pathways in the ovary throughout development and life[J].Hum Reprod Update,2023,29(4):434-456.
[32]YANG X,MA J,MO LY,et al.Molecular cloning and characterization of STC1gene and its functional analyses in yak(Bos grunniens)cumulus granulosa cells[J].Theriogenology,2023,208:185-193.
[33]TU JJ,CHEUNG AH H,CHAN CL K,et al.The role of microRNAs in ovarian granulosa cells in health and disease[J].Front Endocrinol(Lausanne),2019,10:174.
[34]MATSUDA F,INOUE N,MANABE N,et al.Follicular growth and atresia in mammalian ovaries:regulation by survival and death of granulosa cells[J].J Reprod Dev,2012,58(1):44-50.
[35]PLANT TM.60Years of Neuroendocrinology:the hypothalamo-pituitary-gonadal axis[J].J Endocrinol,2015,226(2):T41-T54.
[36]ZHANG J,WANG HX,LU JK,et al.Granulosa cells affect in vitro maturation and subsequent parthenogenetic development of buffalo(Bubalus bubalis)oocytes[J].Reprod Domest Anim,2022,57(2):141-148.
[37]ZHANG J,SUN JM,XIAO LL,et al.Testosterone supplementation improves estrogen synthesis of buffalo(Bubalus bubalis)granulosa cells[J].Reprod Domest Anim,2023,58(11):1628-1635.
[38]BRAW-TAL R,YOSSEFI S.Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary[J].J Reprod Fertil,1997,109(1):165-171.
[39]ARAúJO VR,GASTAL MO,F(xiàn)IGUEIREDO JR,et al.In vitro culture of bovine preantral follicles:a review[J].Reprod Biol Endocrinol,2014,12:78.
[40]ARCHILIA EC,BELLO CA P,BATALHA IM,et al.Effects of follicle-stimulating hormone,insulin-like growth factor1,fibroblast growth factor2,and fibroblast growth factor9on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J].Theriogenology,2023,210:1-8.
[41]GAO YY,ZOU YG,WU GJ,et al.Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J].Front Med(Lausanne),2023,10:1193749.
[42]ZHANG J,DENG YF,XU JC,et al.Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo(Bubalus bubalis)theca cells[J].In Vitro Cell Dev Biol Anim,2020,56(9):799-807.
[43]YAO GD,YIN MM,LIAN J,et al.MicroRNA-224is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4[J].Mol Endocrinol,2010,24(3):540-551.
[44]KRANC W,BRZERT M,CELICHOWSKI P,et al.Heart development and morphogenesis′is anovel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach[J].Mol Med Rep,2019,19(3):1705-1715.
[45]ZHAO X,DU FJ,LIU XL,et al.Brain-derived neurotrophic factor(BDNF)is expressed in buffalo(Bubalus bubalis)ovarian follicles and promotes oocyte maturation and early embryonic development[J].Theriogenology,2019,130:79-88.
[46]ALAM MH,MIYANO T.Interaction between growing oocytes and granulosa cells in vitro[J].Reprod Med Biol,2020,19(1):13-23.
[47]SPICER LJ,SCHüTZ LF.Effects of grape phenolics,myricetin and piceatannol,on bovine granulosa and theca cell proliferation and steroid production in vitro[J].Food Chem Toxicol,2022,167:113288.
[48]WEI XL,ZHENG LP,TIAN YP,et al.Tyrosine phosphatase SHP2in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling[J].J Mol Cell Biol,2022,14(7):mjac048.
[49]KASEDER M,SCHMID N,EUBLER K,et al.Evidence of arole for cAMP in mitochondrial regulation in ovarian granulosa cells[J].Mol Hum Reprod,2022,28(10):gaac030.
[50]PAN Y,ZHU JZ,LV Q,et al.Follicle-stimulating hormone regulates glycolysis of water buffalo follicular granulosa cells through AMPK/SIRT1signalling pathway[J].Reprod Domest Anim,2022,57(2):185-195.
[51]ZHANG L,ZHANG XX,ZHANG XJ,et al.MiRNA-143mediates the proliferative signaling pathway of FSH and regulates estradiol production[J].J Endocrinol,2017,234(1):1-14.
[52]HILKER RE,PAN B,ZHAN XS,et al.MicroRNA-21enhances estradiol production by inhibiting WT1expression in granulosa cells[J].J Mol Endocrinol,2021,68(1):11-22.
[53]TANG XR,MA LZ,GUO S,et al.High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J].Reprod Domest Anim,2021,56(2):324-332.
[54]艾 愛.卵巢顆粒干細(xì)胞的研究[D].上海:上海交通大學(xué),2017.
AI A.Study of granulosa stem cells in the ovary[D].Shanghai:Shanghai Jiao Tong University,2017.(in Chinese)
[55]楊鑫宇,賈振偉.顆粒細(xì)胞EGF類因子信號通路在調(diào)控卵母細(xì)胞成熟和發(fā)育中的作用[J].遺傳,2019,41(2):137-145.
YANG XY,JIA ZW.The role of EGF-like factor signaling pathway in granulosa cells in regulation of oocyte maturation and development[J].Hereditas(Beijing),2019,41(2):137-145.(in Chinese)
[56]JOZKOWIAK M,PIOTROWSKA-KEMPISTY H,KOBYLAREK D,et al.Endocrine disrupting chemicals in polycystic ovary syndrome:the relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction[J].Cells,2022,12(1):174.
[57]HE QY,ZHANG X,YANG XJ.Glutathione mitigates meiotic defects in porcine oocytes exposed to beta-cypermethrin by regulating ROS levels[J].Toxicology,2023,494:153592.
[58]DE MATOS DG,F(xiàn)URNUS CC,MOSES DF,et al.Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro[J].Mol Reprod Dev,1995,42(4):432-436.
[59]ZHANG JR,LI FX,ZHANG XY,et al.Melatonin improves turbot oocyte meiotic maturation and antioxidant capacity,inhibits apoptosis-related genes mRNAs in vitro[J].Antioxidants(Basel),2023,12(7):1389.
[60]RICHANI D,DUNNING KR,THOMPSON JG,et al.Metabolic co-dependence of the oocyte and cumulus cells:essential role in determining oocyte developmental competence[J].Hum Reprod Update,2021,27(1):27-47.
[61]CLARKE HJ.Transzonal projections:essential structures mediating intercellular communication in the mammalian ovarian follicle[J].Mol Reprod Dev,2022,89(11):509-525.
[62]CLARKE HJ.Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle[J].Wiley Interdiscip Rev Dev Biol,2018,7(1):e294.
[63]SAEED-ZIDANE M,LINDEN L,SALILEW-WONDIM D,et al.Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress[J].PLoS One,2017,12(11):e0187569.
[64]SALILEW-WONDIM D,GEBREMEDHN S,HOELKER M,et al.The role of micrornas in mammalian fertility:from gametogenesis to embryo implantation[J].Int JMol Sci,2020,21(2):585.
[65]UJU CN,UNNIAPPAN S.Growth factors and female reproduction in vertebrates[J].Mol Cell Endocrinol,2024,579:112091.
[66]ZAREIFARD A,BEAUDRY F,NDIAYE K.Janus Kinase3phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone(FSH)in bovine granulosa cells[J].BMC Mol Cell Biol,2023,24(1):21.
[67]LONG X,YANG QY,QIAN JJ,et al.Obesity modulates cell-cell interactions during ovarian folliculogenesis[J].iScience,2021,25(1):103627.
[68]RICHARDS JS,REN YA,CANDELARIA N,et al.Ovarian follicular theca cell recruitment,differentiation,and impact on fertility:2017update[J].Endocr Rev,2018,39(1):1-20.
[69]YOUNG JM,MCNEILLY AS.Theca:the forgotten cell of the ovarian follicle[J].Reproduction,2010,140(4):489-504.
[70]TAN J,ZOU Y,WU XW,et al.Increased SCF in follicular fluid and granulosa cells positively correlates with oocyte maturation,fertilization,and embryo quality in humans[J].Reprod Sci,2017,24(11):1544-1550.
[71]PARROTT JA,VIGNE JL,CHU BZ,et al.Mesenchymal-epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells[J].Endocrinology,1994,135(2):569-575.
[72]PARROTT JA,SKINNER MK.Thecal cell-granulosa cell interactions involve apositive feedback loop among keratinocyte growth factor,hepatocyte growth factor,and kit ligand during ovarian follicular development[J].Endocrinology,1998,139(5):2240-2245.
[73]REGAN SL P,KNIGHT PG,YOVICH JL,et al.Granulosa cell apoptosis in the ovarian follicle-a changing view[J].Front Endocrinol(Lausanne),2018,9:61.
[74]LI QQ,DU X,PAN ZX,et al.The transcription factor SMAD4and miR-10b contribute to E2release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1[J].Mol Cell Endocrinol,2018,476:84-95.
[75]JOZKOWIAK M,HUTCHINGS G,JANKOWSKI M,et al.The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs-a review based on cellular and molecular knowledge[J].Cells,2020,9(6):1418.
[76]SKINNER MK,SCHMIDT M,SAVENKOVA MI,et al.Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J].Mol Reprod Dev,2008,75(9):1457-1472.
[77]BIGGERS JD,WHITTINGHAM DG,DONAHUE RP.The pattern of energy metabolism in the mouse o?cyte and zygote[J].Proc Natl Acad Sci US A,1967,58(2):560-567.
[78]HAUG LM,WILSON RC,GAUSTAD AH,et al.Cumulus cell and oocyte gene expression in prepubertal gilts and sows identifies cumulus cells as aprime informative parameter of oocyte quality[J].Biology(Basel),2023,12(12):1484.
[79]MARTINEZ CA,RIZOS D,RODRIGUEZ-MARTINEZ H,et al.Oocyte-cumulus cells crosstalk:new comparative insights[J].Theriogenology,2023,205:87-93.
[80]RUSSELL DL,GILCHRIST RB,BROWN HM,et al.Bidirectional communication between cumulus cells and the oocyte:old hands and new players?[J].Theriogenology,2016,86(1):62-68.
[81]RYBSKA M,KNAP S,JANKOWSKI M,et al.Characteristic of factors influencing the proper course of folliculogenesis in mammals[J].Med JCell Biol,2018,6(1):33-38.
[82]LI R,ALBERTINI DF.The road to maturation:somatic cell interaction and self-organization of the mammalian oocyte[J].Nat Rev Mol Cell Biol,2013,14(3):141-152.
[83]JONES RL,PEPLING ME.KIT signaling regulates primordial follicle formation in the neonatal mouse ovary[J].Dev Biol,2013,382(1):186-197.
[84]CHEN MH,GUO X,ZHONG YP,et al.AMH inhibits androgen production in human theca cells[J].J Steroid Biochem Mol Biol,2022,226:106216.
[85]HU R,LOU Y,WANG FM,et al.Effects of recombinant human AMH on SCF expression in human granulosa cells[J].Cell Biochem Biophys,2013,67(3):1481-1485.
[86]BABAYEV E,DUNCAN FE.Age-associated changes in cumulus cells and follicular fluid:the local oocyte microenvironment as adeterminant of gamete quality[J].Biol Reprod,2022,106(2):351-365.
[87]LIU JF,CAO YH,F(xiàn)ENG T,et al.Expression patterns of BMP15gene in folliculogenesis of buffalo(Bubalus bubalis)[J].Pak JZool,2019,52(1):37-47.
[88]SAFDAR M,LIANG AX,RAJPUT SA,et al.Orexin-a regulates follicular growth,proliferation,cell cycle and apoptosis in mouse primary granulosa cells via the AKT/ERK signaling pathway[J].Molecules,2021,26(18):5635.
[89]EPPIG JJ.Intercommunication between mammalian oocytes and companion somatic cells[J].Bioessays,1991,13(11):569-574.
[90]WANG FP,TANG YW,CAI YJ,et al.Intrafollicular retinoic acid signaling is important for luteinizing hormone-induced oocyte meiotic resumption[J].Genes(Basel),2023,14(4):946.
[91]CONTI M,HSIEH M,ZAMAH AM,et al.Novel signaling mechanisms in the ovary during oocyte maturation and ovulation[J].Mol Cell Endocrinol,2012,356(1/2):65-73.
[92]PEI ZL,DENG K,XU CJ,et al.The molecular regulatory mechanisms of meiotic arrest and resumption in oocyte development and maturation[J].Reprod Biol Endocrinol,2023,21(1):90.
[93]BERNAL-ULLOA SM,HEINZMANN J,HERRMANN D,et al.Cyclic AMP affects oocyte maturation and embryo development in prepubertal and adult cattle[J].PLoS One,2017,11(2):e0150264.
[94]GILCHRIST RB,LUCIANO AM,RICHANI D,et al.Oocyte maturation and quality:role of cyclic nucleotides[J].Reproduction,2016,152(5):R143-R157.
[95]JAFFE LA,EGBERT JR.Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J].Annu Rev Physiol,2017,79:237-260.
[96]WIGGLESWORTH K,LEE KB,O′BRIEN MJ,et al.Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes[J].Proc Natl Acad Sci US A,2013,110(39):E3723-E3729.
[97]FRANCIOSI F,COTICCHIO G,LODDE V,et al.Natriuretic peptide precursor cdelays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes[J].Biol Reprod,2014,91(3):61.
[98]ZHANG MJ,SU YQ,SUGIURA K,et al.Granulosa cell ligand NPPC and its receptor NPR2maintain meiotic arrest in mouse oocytes[J].Science,2010,330(6002):366-369.
[99]SATO E.Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals[J].Proc Jpn Acad Ser BPhys Biol Sci,2015,91(3):76-91.
[100]OWEN CM,JAFFE LA.Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle[J].Biol Reprod,2024,110(2):288-299.
[101]DUFFY DM,KO C,JO M,et al.Ovulation:parallels with inflammatory processes[J].Endocr Rev,2019,40(2):369-416.
[102]MARA JN,ZHOU LT,LARMORE M,et al.Ovulation and ovarian wound healing are impaired with advanced reproductive age[J].Aging(Albany NY),2020,12(10):9686-9713.
[103]KOSSOWSKA-TOMASZCZUK K,DE GEYTER C,DE GEYTER M,et al.The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J].Stem Cells,2009,27(1):210-219.
[104]ROVANI MT,GASPERIN BG,F(xiàn)ERREIRA R,et al.Methods to study ovarian function in monovulatory species using the cow as amodel[J].Anim Reprod,2017,14(2):383-391.
[105]THAQI G,BERISHA B,PFAFFL MW.Local expression dynamics of various adipokines during induced luteal regression(Luteolysis)in the bovine corpus luteum[J].Animals(Basel),2023,13(20):3221.
[106]LIU N,WANG SY,YAO QC,et al.Activin Aattenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy[J].Reprod Domest Anim,2022,57(6):625-634.
[107]XU GQ,DONG YY Y,WANG Z,et al.Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1signaling pathway[J].Int JMol Sci,2023,24(16):12854.
[108]MATSUDA-MINEHATA F,INOUE N,GOTO Y,et al.The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules[J].J Reprod Dev,2006,52(6):695-705.
[109]DUMESIC DA,MELDRUM DR,KATZ-JAFFE MG,et al.Oocyte environment:follicular fluid and cumulus cells are critical for oocyte health[J].Fertil Steril,2015,103(2):303-316.
[110]ZANJIRBAND M,HODAYI R,SAFAEINEJAD Z,et al.Evaluation of the p53pathway in polycystic ovarian syndrome pathogenesis and apoptosis enhancement in human granulosa cells through transcriptome data analysis[J].Sci Rep,2023,13(1):11648.
[111]ESCOBAR ML,ECHEVERRIA OM,PALACIOS-MARTíNEZ S,et al.Beclin1interacts with active caspase-3and bax in oocytes from atretic follicles in the rat ovary[J].J Histochem Cytochem,2019,67(12):873-889.
[112]YANG WH,LIU RF,SUN QQ,et al.Quercetin alleviates endoplasmic reticulum stress-induced apoptosis in buffalo ovarian granulosa cells[J].Animals(Basel),2022,12(6):787.
[113]JOHNSON AL,BRIDGHAM JT.Caspase-mediated apoptosis in the vertebrate ovary[J].Reproduction,2002,124(1):19-27.
[114]INOUE N,MATSUDA F,GOTO Y,et al.Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary[J].J Reprod Dev,2011,57(2):169-175.
[115]KIST M,VUCIC D.Cell death pathways:intricate connections and disease implications[J].EMBO J,2021,40(5):e106700.
[116]HU CF,ZHAO XY,CUI C,et al.miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J].Theriogenology,2023,214:173-181.
[117]ZHOU LY,XIE YQ,LI S,et al.Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo[J].J Ovarian Res,2017,10(1):56.
[118]BOYER A,GOFF AK,BOERBOOM D.WNT signaling in ovarian follicle biology and tumorigenesis[J].Trends Endocrinol Metab,2010,21(1):25-32.
[119]MA LZ,ZHENG YX,TANG XR,et al.miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J].Reproduction,2019,158(5):441-452.
[120]HABARA O,LOGAN CY,KANAI-AZUMA M,et al.WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility[J].Development,2021,148(9):dev198846.
[121]HAYAT R,MANZOOR M,HUSSAIN A.Wnt signaling pathway:a comprehensive review[J].Cell Biol Int,2022,46(6):863-877.
[122]WANG HX,LI TY,KIDDER GM.WNT2regulates DNA synthesis in mouse granulosa cells through beta-catenin[J].Biol Reprod,2010,82(5):865-875.
(編輯 郭云雁)