摘 要: 旨在揭示冷凍后的豬GV期卵母細(xì)胞體外成熟過(guò)程中細(xì)胞骨架與皮質(zhì)顆粒遷移之間的相互關(guān)系和影響。所采集豬卵巢樣品來(lái)自上海市嘉定區(qū)五豐上食屠宰場(chǎng)的健康經(jīng)產(chǎn)母豬,每次采樣選用體重70~90 kg、生產(chǎn)性能良好的浦東白母豬300頭左右采取卵巢樣品,采集卵巢數(shù)量120~150枚·次-1,挑選胞質(zhì)分布均勻且緊密的GV期卵母細(xì)胞按試驗(yàn)要求隨機(jī)分為3組,每組設(shè)3個(gè)重復(fù),每組至少30枚細(xì)胞,利用細(xì)胞骨架穩(wěn)定劑細(xì)胞松弛素B (cytochalasin B,CB)凍前處理豬GV期卵母細(xì)胞,冷凍解凍后經(jīng)體外成熟培養(yǎng),檢測(cè)卵母細(xì)胞存活率、各時(shí)間點(diǎn)微絲與皮質(zhì)顆粒熒光共定位情況、卵丘擴(kuò)散程度、第一極體排出率、谷胱甘肽(glutathione,GSH)水平和發(fā)育能力等指標(biāo)。結(jié)果顯示,冷凍前用CB處理可有效提高GV期卵母細(xì)胞解凍后存活率(44.11% vs. 27.91%, P<0.01)。在新鮮卵母細(xì)胞成熟過(guò)程中,可觀察到皮質(zhì)顆粒與微絲存在共遷移。冷凍會(huì)引起皮質(zhì)顆粒-微絲遷移異常,而冷凍前CB的添加會(huì)緩解冷凍引起的遷移障礙,表現(xiàn)為CB處理組的微絲與皮質(zhì)顆粒均成功遷移至質(zhì)膜的比例更高,遷移均勻分布于質(zhì)膜效果更好。冷凍卵母細(xì)胞體外成熟后,CB預(yù)處理的第一極體排出率((26.79±2.37)% vs. (8.13±0.30)%,P<0.01)、GSH水平(23.12±2.65 vs. 7.27±0.79, P<0.01)和孤雌激活后的卵裂率((20.91±2.84)% vs. (5.64±0.37)%, P<0.01)與囊胚率((5.00±0.03)% vs. (0.41± 0.01)%, P<0.05)均有顯著提高。本研究表明,微絲細(xì)胞骨架對(duì)卵母細(xì)胞體外成熟過(guò)程中胞內(nèi)皮質(zhì)顆粒由內(nèi)部向質(zhì)膜遷移有一定的調(diào)節(jié)作用,且兩者存在一定共定位關(guān)系,通過(guò)凍前添加CB孵育可有效影響細(xì)胞微絲骨架與皮質(zhì)顆粒的遷移程度,減輕了冷凍引起的細(xì)胞骨架異常分布,緩解了由冷凍引起的皮質(zhì)顆粒-微絲遷移障礙,進(jìn)而提升細(xì)胞抗凍能力,表現(xiàn)為促進(jìn)胞質(zhì)成熟的同時(shí),提高了冷凍卵母細(xì)胞存活率、核成熟率與胚胎體外發(fā)育潛能。
關(guān)鍵詞: 皮質(zhì)顆粒;微絲;玻璃化冷凍;豬卵母細(xì)胞
中圖分類號(hào):S828.3
文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):0366-6964(2024)05-1999-12
收稿日期:2023-12-11
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1200301);國(guó)家自然基金青年基金(32202640);上海市“科技創(chuàng)新行動(dòng)計(jì)劃”啟明星培育(揚(yáng)帆專項(xiàng))(23YF1439000)
作者簡(jiǎn)介:李婉君(1999-),女,河南商丘人,碩士生,主要從事動(dòng)物胚胎工程研究,E-mail:qiujun0516@sina.com
*通信作者:戴建軍,主要從事動(dòng)物遺傳育種研究,E-mail:blackman0520@126.com
Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes
LI" Wanjun1,2, XU" Jiehuan2,3,4, HE" Mengxian2, KONG" Yuting1,2, ZHANG" Defu2,3,4, DAI" Jianjun2,3,4*
(1.College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306," China;
2.Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Animal
Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences,
Shanghai 201106," China;
3.Key Laboratory of Livestock and Poultry Resources (Pig)
Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106," China;
4.Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302," China)
Abstract: The purpose of this study was to reveal the interrelationships and effects of cytoskeleton and cortical granule migration during in vitro maturation of frozen porcine GV-stage oocytes.
Pig ovary samples were collected from healthy multiparous sows.
For each sampling, about 300 Pudong White sows weighing 70-90 kg with good production performance were used to take ovarian samples, the number of ovaries collected was 120-150 per time, and the GV stage oocytes with homogeneous and compact cytoplasmic distribution were selected and randomly divided into 3 groups according to the experimental requirements, and 3 replicates were set up in each group, with at least 30 cells in each group, and cytoskeleton stabilizers, cytochalasin B (CB) were used to treat the frozen porcine oocytes before freezing. Porcine GV oocytes were treated with cytoskeleton stabilizer CB before freezing, and then matured in vitro after freezing and thawing. Oocyte survival, fluorescence co-localization of microfilaments and cortical granules at each time point, degree of spreading of the oval mound, rate of discharge of the first polar body, level of glutathione (GSH), and developmental ability were examined. The result showed that treatment with CB before freezing effectively increased the survival rate of GV stage oocytes after thawing (44.11% vs. 27.91%, Plt;0.01). During the maturation of fresh oocytes, co-migration of cortical granules with microfilaments was observed. Freezing caused abnormal cortical granule-microfilament migration, and the addition of CB prior to freezing alleviated the freezing-induced migration obstacles, as evidenced by a higher proportion of both microfilaments and cortical granules successfully migrating to the plasma membrane in the CB-treated group, and a better homogeneous distribution of migration to the plasma membrane. After in vitro maturation of frozen oocytes, CB pretreatment was associated with a higher rate of discharge of first polar body ((26.79±2.37)% vs. (8.13±0.30)%, Plt;0.01), GSH levels (23.12±2.65 vs. 7.27±0.79, Plt;0.01), cleavage rate after parthenogenetic activation ((20.91±2.84)% vs. (5.64±0.37)%, Plt;0.05) and blastocyst rate ((5.00±0.03)% vs. (0.41±0.01)%, Plt;0.05) were significantly increased. The present study showed that the microfilament cytoskeleton has a certain regulatory effect on the migration of intracellular cortical particles from the interior to the plasma membrane during oocyte maturation in vitro, and there exists a certain co-localization relationship between the two, and that the addition of CB incubation before freezing can effectively affect the degree of migration of the cellular microfilament cytoskeleton and cortical particles, mitigate the abnormal distribution of the cytoskeleton induced by freezing, and ease the migration obstruction of cortical particles and microfilaments induced by freezing, thereby enhancing cellular resistance, which is manifested as promoting cytoplasmic maturation, improving the survival rate of frozen oocytes, nuclear maturation rate and embryo development potential in vitro.
Key words: cortical granules; microfilament; vitrification; pig oocyte
*Corresponding author:DAI Jianjun, E-mail:blackman0520@126.com
玻璃化冷凍法是公認(rèn)的安全有效的卵母細(xì)胞冷凍保存方法之一[1],已廣泛應(yīng)用于人、牛、羊等[2-4]哺乳動(dòng)物的卵母細(xì)胞冷凍保存。與牛、羊等家畜相比,豬卵母細(xì)胞的特點(diǎn)是胞漿內(nèi)脂質(zhì)含量相對(duì)較高,是細(xì)胞抗凍能力差內(nèi)因之一。超微結(jié)構(gòu)觀察發(fā)現(xiàn),冷凍可造成卵母細(xì)胞的皮質(zhì)顆粒遷移異常和細(xì)胞骨架損傷,但二者是否存在關(guān)聯(lián)尚不為人所知[5]。目前為止,豬卵母細(xì)胞的冷凍保存至今仍處于試驗(yàn)研究階段[6]。皮質(zhì)顆粒是卵母細(xì)胞所特有的一種細(xì)胞器,它在保證卵母細(xì)胞單精子受精及胚胎正常發(fā)育中起著重要作用。皮質(zhì)顆粒的大量增殖外遷并沿質(zhì)膜線性排列是卵母細(xì)胞胞質(zhì)充分成熟的一個(gè)重要標(biāo)志。
細(xì)胞松弛素B(CB)作為細(xì)胞骨架穩(wěn)定劑,已運(yùn)用于卵母細(xì)胞的冷凍保護(hù)過(guò)程中,可穩(wěn)定細(xì)胞骨架,提高凍后存活與發(fā)育能力[7-8]。盡管關(guān)于CB目前已有一些研究報(bào)道,大部分提出了CB影響細(xì)胞的成熟率和發(fā)育率等指標(biāo),關(guān)于細(xì)胞骨架在體外成熟培養(yǎng)過(guò)程中的遷移如何影響皮質(zhì)顆粒的遷移,兩者之間如何關(guān)聯(lián)仍然有大部分空白。
本試驗(yàn)創(chuàng)新點(diǎn)在于除了CB對(duì)卵母細(xì)胞骨架作用的影響之外,CB對(duì)于GV期卵母細(xì)胞進(jìn)行預(yù)處理后,通過(guò)熒光染色后熒光共聚焦顯微鏡觀察,探討了不同分組不同時(shí)間點(diǎn)(22、28、36、44 h)細(xì)胞骨架與皮質(zhì)顆粒的定位變化?;诖耍狙芯繑M在豬GV期卵母細(xì)胞玻璃化冷凍前進(jìn)行CB孵育處理,玻璃化冷凍保存-解凍后體外成熟培養(yǎng),檢測(cè)其微絲骨架與皮質(zhì)顆粒熒光染色共定位、44 h細(xì)胞核染色統(tǒng)計(jì)卵母細(xì)胞成熟過(guò)程的分布時(shí)期(GV、GVBD、MⅠ、MⅡ)、體外成熟率、GSH水平和孤雌激活后的胚胎發(fā)育潛能,評(píng)價(jià)凍后細(xì)胞骨架損傷和皮質(zhì)顆粒異常遷移之間的相關(guān)性,并探討CB能否通過(guò)改善細(xì)胞骨架狀態(tài),提高凍后卵母細(xì)胞的皮質(zhì)顆粒遷移能力,繼而改善GV期凍卵的體外成熟與后續(xù)胚胎發(fā)育。
1 材料與方法
1.1 試驗(yàn)分組
豬卵母細(xì)胞分組處理如下:新鮮豬GV期卵母細(xì)胞(Fresh)、冷凍GV期卵母細(xì)胞(Vitrified)、冷凍前添加7.5 μg·mL-1 CB孵育0.5 h的豬GV期卵母細(xì)胞(Vitrified+CB)。成熟培養(yǎng)22、28、36和44 h分別為22 H、28 H、36 H、44 H時(shí)間點(diǎn)。每組30枚細(xì)胞,每組設(shè)置3個(gè)重復(fù)。
1.2 試劑
1.2.1 玻璃化冷凍-解凍液配制
冷凍平衡液(冷Ⅰ)配比為EG∶DMSO∶FBS∶TCM-199=0.75∶0.75∶2∶6.5。玻璃化冷凍液(冷Ⅱ)配比為EG∶DMSO∶FBS:蔗糖=1.5 mL∶1.5 mL∶2 mL∶1. 368 g,TCM-199定容至10 mL。每 10 mL 解凍液 I中含1.026 g蔗糖,2 mL FBS,TCM-199定容至10 mL,混勻。每 10 mL解凍液II中含0.513 g蔗糖,2 mL FBS,TCM-199定容至10 mL,混勻。TCM-199:FBS=9∶1配置孵育液。
1.2.2 電激活液配制
首先稱取0.010 0 g PVA溶于70 mL的胚胎水中,水溫加熱至80℃使其完全溶解,待溫度降至室溫后加入5.465 2 g甘露醇溶解。攪拌的同時(shí)緩慢加入100×的CaCl2、MgCl2、HEPES溶液1 mL,用胚胎水定容至100 mL,調(diào)節(jié)pH至7.2,超凈臺(tái)內(nèi)用0.22 μm濾器過(guò)濾分裝,4℃保存,1個(gè)月內(nèi)用完。
1.2.3 試驗(yàn)試劑
TCM-199、胎牛血清(foetal bovine serum,F(xiàn)BS)購(gòu)自于美國(guó)Gibco。人絨毛膜促性腺激素(human chorionic gonadotropin,HCG)及孕馬血清性腺激素(pregnant mare serum gonadotropin,PMSG)購(gòu)自寧波第三激素制品有限公司。細(xì)胞骨架F-actin熒光探針購(gòu)自江蘇凱基生物公司,GSH和GSSG試劑盒購(gòu)自碧云天公司(Beyotime),豬卵泡液(porcine follicular liquid,pFF)由本試驗(yàn)室自制。其他試劑購(gòu)自美國(guó)Sigma。
1.3 卵巢采集與CB處理
所采集豬卵巢樣品來(lái)自上海市嘉定區(qū)五豐上食屠宰場(chǎng)的健康經(jīng)產(chǎn)母豬,采集卵巢數(shù)量120~150枚·次-1。自屠宰場(chǎng)采集新鮮豬卵巢放入裝有39℃加青鏈霉素生理鹽水的保溫瓶?jī)?nèi)保溫,1 h內(nèi)送至實(shí)驗(yàn)室。利用 10 mL 注射器抽吸卵巢表面2~6 mm卵泡,收集卵泡液,沉淀30 min 以上,棄上清,沉淀置于倒置顯微鏡下挑選卵丘-卵母細(xì)胞復(fù)合體 (cumulus-oocyte complexes, COCs),使用TCM-199 洗滌3次,置于直徑30 mm盛有TCM-199的培養(yǎng)皿中備用。本研究試驗(yàn)組為玻璃化冷凍前在體外成熟培養(yǎng)液中添加終濃度為7.5 μg·L-1的CB對(duì)豬GV期卵母細(xì)胞進(jìn)行預(yù)處理0.5 h。
1.4 豬GV期卵母細(xì)胞的玻璃化冷凍-解凍
卵母細(xì)胞于冷凍平衡液中平衡5 min,移入玻璃化冷凍液,30 s后裝載至Cryotop 載桿,立即投入液氮,于液氮下插入冷凍套管中,轉(zhuǎn)移至液氮罐中凍存。解凍時(shí),將Cryotop細(xì)胞裝載區(qū)提出液氮面并立即置入39℃ 解凍液 I中,5 min后將卵母細(xì)胞移入解凍液II孵育5 min,再移入孵育液中洗滌3次后孵育2 h獲得冷凍-解凍卵母細(xì)胞,放入體外成熟培養(yǎng)液培養(yǎng)。成熟后的 COCs置于2 mg·L-1透明質(zhì)酸酶中反復(fù)吹打,直至顆粒細(xì)胞完全洗脫,Medium-199洗滌3次后備用。以上涉及溶液配制參照蔡紹莉等[9-10]的研究。
1.5 卵母細(xì)胞體外成熟培養(yǎng)
取1 mL FBS、1 mL pFF、100 μL 1 000 IU· mL-1 PMSG、100 μL 1 000 IU·mL-1 hCG、100 μL 雙抗、100 μL 6.9 mg·mL-1 L-Cys、10 μL 10 μg· mL-1 EGF、4 μL 25 μg· mL-1 FGF、2 μL 100 μg· mL-1 IGF溶于 8 mL" TCM-199中混勻配置成熟培養(yǎng)液(IVM)[9]。新鮮或解凍后的COCs置于細(xì)胞成熟培養(yǎng)液中培養(yǎng) 44 h,培養(yǎng)條件39℃、50 mL·L-1 CO2和飽和濕度[9]。成熟后的 COCs置于2 mg·L-1透明質(zhì)酸酶中反復(fù)吹打,直至顆粒細(xì)胞完全洗脫,TCM-199洗滌3次后備用。
1.6 皮質(zhì)顆粒-微絲熒光共定位
將各時(shí)期(22 H、28 H、36 H、44 H)已洗脫顆粒細(xì)胞的卵母細(xì)胞以1%鏈酶蛋白酶處理消化透明帶(zona pellucida,ZP),4%多聚甲醛固定10 min,PBS洗滌3次,通透溶液(PBS中為0.01%(w/v)Triton X-100)處理10 min,封閉(PBS中7.5%(w/v)BSA)處理30 min,并在100 μg·mL-1 FITC標(biāo)記的小扁豆凝集素(LCA-FITC, Sigma, L9262)中在避光孵育1 h。含0.1% Triton X-100的PBS洗滌3~5 min,于含1% BSA的PBS預(yù)孵育固定的細(xì)胞20~30 min,以減少非特異性背景。取5 μL LCA-FITC原液加入200 μL含1%BSA的PBS中預(yù)染色細(xì)胞。選擇合適的染色液體積室溫下孵育1 h,PBS洗滌兩遍。利用1 μg·mL-1" Hoechst 33342染色5 min后細(xì)胞壓片,激光掃描共聚焦顯微鏡觀察。
1.7 ImageJ 熒光分析
對(duì)于多通道照片的熒光共定位可以通過(guò)一系列不同的參數(shù)進(jìn)行表征,現(xiàn)在常用的兩種參數(shù)是皮爾森系數(shù)(Pearson correlation coefficient, PCC)和曼德斯共定位系數(shù)(Manders’ colocalization coefficients, MCC),其中MCC這一參數(shù)使用最為廣泛。MCC最明顯的優(yōu)勢(shì)在于它比PCC更直觀地衡量共定位情況,能夠顯示熒光之間的重疊比例。對(duì)于PCC不能很好測(cè)量的非線性比例的情況,MCC也能很好表征,MCC分析也更適合于3D共定位分析。參考公式如下:
M1=∑iRi,colocal∑iRi;
M2=∑iGi,colocal∑iRi。
Manders系數(shù)(M1,fraction of blue overlapping green;M2,fraction of green overlapping blue)表示為兩通道熒光的共定位程度相關(guān)性[11]。M1、M2代表一種物質(zhì)與另一種物質(zhì)共定位的部分占該物質(zhì)總量的比例,與每個(gè)顏色通道中共定位像素或體素的熒光量成正比,值范圍為0~1,表示位于另一個(gè)顏色通道中強(qiáng)度高于零(或閾值)的像素的通道中的強(qiáng)度分?jǐn)?shù)。這兩個(gè)共定位系數(shù)被定義為不依賴于信號(hào)的強(qiáng)度系數(shù),即使在兩個(gè)組件中的信號(hào)強(qiáng)度不同也可以確定共定位情況。其中如果Ggt;0,Ri,colocal=Ri,如果Gi=0,Ri,colocal=0;如果Rigt;0,Gi,colocal=Gi,如果Ri=0,Gi,colocal=0。M1和M2與圖像的每個(gè)組件中的共定位對(duì)象的熒光量成正比,相對(duì)于該組件中的總熒光[12]。
1.8 卵母細(xì)胞存活率檢測(cè)
至少30個(gè)卵母細(xì)胞于終濃度為5 μg·mL-1 二乙酸熒光素(fluorescein diacetate, FDA)工作液中39℃ 孵育15 min,PBS洗3遍,置于熒光顯微鏡下檢測(cè),激發(fā)后觀察到熒光的視為活細(xì)胞,未觀察到熒光的視為無(wú)活性細(xì)胞。
1.9 卵丘擴(kuò)散及卵母細(xì)胞成熟率檢測(cè)
各組豬GV期卵母細(xì)胞經(jīng)44 h體外成熟培養(yǎng)后,于顯微鏡下檢測(cè)卵丘擴(kuò)散程度。利用0.1%透明質(zhì)酸酶洗脫顆粒細(xì)胞后,觀察卵母細(xì)胞第一極體排出情況,排出第一極體的視為卵母細(xì)胞成熟。
1.10 卵母細(xì)胞GSH含量檢測(cè)
1.10.1 制作標(biāo)準(zhǔn)曲線
將10 mmol·L-1 GSSG儲(chǔ)備液用蛋白去除試劑M溶液依次稀釋為15、10、5、2、1、0.5 μmol·L-1 GSSG溶液。取此6個(gè)濃度GSSG溶液做標(biāo)準(zhǔn)曲線,酶標(biāo)儀測(cè)定A412,每5 min測(cè)定一次或?qū)崟r(shí)測(cè)定,共測(cè)定25 min,測(cè)得5個(gè)數(shù)據(jù)。本次測(cè)定需同時(shí)測(cè)定總谷胱甘肽含量和GSSG含量,由于兩者的檢測(cè)體系不同,須分別單獨(dú)做出標(biāo)準(zhǔn)曲線。
1.10.2 細(xì)胞檢測(cè)樣品的制備
PBS洗滌細(xì)胞一次,離心收集細(xì)胞,吸盡上清,加入細(xì)胞沉淀體積3倍量的蛋白去除試劑M溶液,充分漩渦震蕩。利用液氮和37℃水浴對(duì)樣品進(jìn)行兩次快速凍融。4℃放置5 min后4℃、10 000 g離心10 min。取離心管內(nèi)上清測(cè)定總谷胱甘肽。
1.10.3 樣品中總谷胱甘肽含量的計(jì)算
反應(yīng)25 min后僅測(cè)定一次吸光度,樣品對(duì)照標(biāo)準(zhǔn)曲線即可計(jì)算出總谷胱甘肽(標(biāo)準(zhǔn)曲線計(jì)算得到的GSSG濃度×2)或GSSG的含量。
1.11 卵母細(xì)胞發(fā)育能力檢測(cè)
經(jīng)體外成熟培養(yǎng)的豬卵母細(xì)胞置于電激活液中洗滌3次,移入鋪有電激活液的0.5 mm激活槽中電激活,激活參數(shù)為1.2 kV·cm-1、30 μs、一次脈沖。電激活后,卵母細(xì)胞經(jīng)胚胎培養(yǎng)液(PZM-3)[9,13-14]洗滌3次并移入 PZM-3 中,39℃、50 mL·L-1 CO2飽和濕度下培養(yǎng),2 d觀察卵裂、5 d觀察桑椹胚、7 d觀察囊胚形成情況。
1.12 數(shù)據(jù)統(tǒng)計(jì)
每個(gè)試驗(yàn)至少使用30枚卵母細(xì)胞,每個(gè)試驗(yàn)獨(dú)立重復(fù)3次。采用SPSS 16.0對(duì)數(shù)據(jù)執(zhí)行單因素方差分析,LSD多重比較,結(jié)果以“平均值±標(biāo)準(zhǔn)誤”表示,P<0.05代表組間差異顯著,P<0.01代表組間差異極顯著。
2 結(jié) 果
2.1 新鮮卵母細(xì)胞中微絲-皮質(zhì)顆粒間存在共遷移
不同組別成熟后不同時(shí)間點(diǎn)(22H、28H、36H、44H)細(xì)胞骨架與皮質(zhì)顆粒熒光共定位圖像見(jiàn)圖1A-D。新鮮組4個(gè)時(shí)期熒光定位結(jié)果顯示,細(xì)胞骨架與皮質(zhì)顆粒有同步向質(zhì)膜遷移的趨勢(shì)。通過(guò)ImageJ統(tǒng)計(jì)MCC系數(shù)(圖1E-H),MCC共定位系數(shù)趨近于1,證明體外成熟過(guò)程中皮質(zhì)顆粒與細(xì)胞微絲骨架由胞質(zhì)內(nèi)部向質(zhì)膜存在同步遷移,44H完成遷移則標(biāo)志著胞質(zhì)成熟,研究證明新鮮組細(xì)胞微絲骨架與皮質(zhì)顆粒在體外成熟過(guò)程中細(xì)胞內(nèi)的定位與遷移具有一定程度的共定位和同步性。
2.2 冷凍阻礙皮質(zhì)顆粒-微絲向質(zhì)膜共遷移
圖1A-D Vitrified組熒光圖像顯示,冷凍卵母細(xì)胞中,皮質(zhì)顆粒與微絲由胞質(zhì)內(nèi)部向質(zhì)膜遷移過(guò)程中兩者均表現(xiàn)為不均勻分布,遷移至質(zhì)膜的進(jìn)程受阻,發(fā)生遷移障礙,甚至遷移停滯。根據(jù)圖1E-H統(tǒng)計(jì)結(jié)果,冷凍卵母細(xì)胞體外成熟培養(yǎng)過(guò)程中,皮質(zhì)顆粒與微絲的遷移共定位系數(shù)MCC系數(shù)趨近于1,表明皮質(zhì)顆粒與微絲的遷移在凍后成熟過(guò)程的遷移依然具有同步性。
經(jīng)44 h成熟培養(yǎng),各組卵母細(xì)胞核染后統(tǒng)計(jì)細(xì)胞所處時(shí)期(GV、GVBD、M Ⅰ、M Ⅱ),統(tǒng)計(jì)見(jiàn)圖1I。結(jié)果顯示,與新鮮組相比,凍后細(xì)胞停滯于GVBD期及以前比例過(guò)高(80% vs. 10%,P<0.01),這表明在皮質(zhì)顆粒和微絲共定位初期,冷凍導(dǎo)致細(xì)胞發(fā)生遷移障礙,44H細(xì)胞第一極體排出率低((8.13±0.30)% vs. (89.0±1.29)%,P<0.01),成熟發(fā)育停滯。
各組各時(shí)期卵母細(xì)胞內(nèi)部胞質(zhì)(圖1A、B、C、D紅色虛線內(nèi))皮質(zhì)顆粒染色熒光強(qiáng)度統(tǒng)計(jì)圖見(jiàn)圖1J。結(jié)果顯示,44H冷凍卵母細(xì)胞內(nèi)部胞質(zhì)熒光強(qiáng)度極顯著高于新鮮組(14.99±2.92 vs. 1.09±0.25,P<0.01),這表明冷凍卵母細(xì)胞皮質(zhì)顆粒仍停留在胞質(zhì)內(nèi)部,不能完全遷移至質(zhì)膜,皮質(zhì)顆粒遷移完成率較低,細(xì)胞質(zhì)未成熟,導(dǎo)致細(xì)胞成熟率低。
2.3 CB減輕冷凍引起的皮質(zhì)顆粒-微絲共遷移障礙
CB處理的冷凍卵母細(xì)胞(Vitrified+CB)皮質(zhì)顆粒與微絲的遷移同步率(共定位系數(shù)M)在28 H、36 H、44 H均顯著低于冷凍組(圖1E-H),且在成熟培養(yǎng)終點(diǎn)44 H,其皮質(zhì)顆粒與微絲已基本完成至質(zhì)膜的遷移(圖1D),內(nèi)部胞質(zhì)熒光強(qiáng)度顯著低于冷凍卵母細(xì)胞(vitrified),與新鮮組差異不顯著(圖1J)。證實(shí)了細(xì)胞骨架穩(wěn)定劑CB預(yù)處理可改善冷凍卵母細(xì)胞成熟培養(yǎng)期間的皮質(zhì)顆粒-微絲共遷移障礙。
冷凍卵母細(xì)胞中皮質(zhì)顆粒-微絲在22 H、28 H、36 H的共定位率與新鮮卵母細(xì)胞差異不顯著(Pgt;0.05)(圖1E-H),核染統(tǒng)計(jì)結(jié)果顯示80%冷凍卵母細(xì)胞發(fā)育停滯在GV期與GVBD期(圖1I);該結(jié)果揭示了,冷凍引起皮質(zhì)顆粒-微絲共遷移障礙的主要形式并非破壞皮質(zhì)顆粒-微絲的空間共定位關(guān)系,而是以阻礙二者的遷移為主。
與冷凍卵母細(xì)胞相比,CB預(yù)處理可顯著提升卵母細(xì)胞達(dá)到MII期的比例(圖1I),即凍前CB預(yù)處理可促進(jìn)冷凍卵母細(xì)胞成熟。另外,Vitrified+CB組細(xì)胞成熟培養(yǎng)后,仍有46.2%的卵母細(xì)胞處于MⅠ期(圖1I),證實(shí)較高比例的Vitrified+CB卵母細(xì)胞發(fā)育進(jìn)程停滯在MI向MII期過(guò)渡(36-44H)階段;此時(shí)期Vitrified+CB組皮質(zhì)顆粒-微絲共定位率與同期的新鮮與冷凍卵母細(xì)胞相比均極顯著降低(P<0.01)(圖1G),暗示了CB處理的冷凍卵母細(xì)胞未成熟可能與MI期后發(fā)生的微絲-皮質(zhì)顆粒共定位率降低有關(guān),導(dǎo)致部分細(xì)胞成熟進(jìn)程在此時(shí)受阻。
2.4 冷凍導(dǎo)致卵母細(xì)胞存活率降低
卵母細(xì)胞存活率檢測(cè)結(jié)果見(jiàn)圖2。結(jié)果顯示,冷凍卵母細(xì)胞存活率顯著低于新鮮組(27.91% vs. 98.25%,P<0.01)。CB處理組的卵母細(xì)胞凍后存活率由27.91%提高至44.12%(P<0.01)。表明冷凍會(huì)導(dǎo)致卵母細(xì)胞死亡率升高,而玻璃化冷凍前添加CB孵育0.5 h能上調(diào)冷凍后卵母細(xì)胞的存活率。
2.5 CB提高凍后豬卵母細(xì)胞體外成熟第一極體排出率
圖3結(jié)果表明,F(xiàn)resh組卵丘擴(kuò)散程度最好,第一極體排出率也最高(89%±1.29 vs. 8.13%±0.30,P<0.01)。而經(jīng)CB處理后,Vitrified+CB組的卵母細(xì)胞經(jīng)體外成熟培養(yǎng)后卵丘均勻擴(kuò)散程度相較Vitrified組有所改善,其第一極體排出率相較于Vitrified組差異顯著((26.79±2.37)% vs. (8.13±0.30)%,P<0.01)。
2.6 CB上調(diào)豬GV期卵母細(xì)胞凍后體外成熟GSH水平
卵母細(xì)胞胞內(nèi)GSH含量檢測(cè)結(jié)果如圖4。結(jié)果表明,新鮮組GSH含量最高,較冷凍卵母細(xì)胞組差異極顯著(139.32±0.03 vs.7.27±0.79,P<0.01)。添加CB的冷凍試驗(yàn)組GSH含量高于冷凍組,GSH水平(23.12±2.65 vs.7.27±0.79,P<0.01)顯著提高。
2.7 CB提高豬GV期卵母細(xì)胞凍后體外發(fā)育能力
卵母細(xì)胞孤雌激活后的體外發(fā)育能力檢測(cè)結(jié)果見(jiàn)圖5。結(jié)果表明,添加CB可以上調(diào)凍后豬GV期卵母細(xì)胞體外成熟后的發(fā)育率,卵裂率由5.64%提高至20.91%(P<0.01),桑椹胚率由1.78%提高8.72%(P<0.01),囊胚率由0.41%提高至5.00%(P<0.05)。
3 討 論
豬卵母細(xì)胞凍后造成的細(xì)胞骨架損傷是豬卵母細(xì)胞冷凍效率低下的重要原因之一,盡管目前冷凍豬卵母細(xì)胞復(fù)原后可獲得存活后代,但尚不足以得以推廣和應(yīng)用[15]。穩(wěn)定細(xì)胞骨架已成為提高豬卵母細(xì)胞冷凍效率的一個(gè)重要途徑[16]。CB是從霉菌中提取的代謝物,是一種真菌代謝產(chǎn)物,研究最多的微絲定向劑之一,具有多種生物學(xué)功能[17-19]。有研究發(fā)現(xiàn),CB在許多生物實(shí)例中可以誘導(dǎo)細(xì)胞DNA片段化而不會(huì)造成質(zhì)膜損傷,該發(fā)現(xiàn)支持了CB通過(guò)其對(duì)肌動(dòng)蛋白絲的作用誘導(dǎo)DNA片段化的解釋,CB 能夠修飾與 DNA 合成相關(guān)的多種細(xì)胞功能,證明CB 能夠在許多細(xì)胞系中誘導(dǎo) DNA 片段化[20]。據(jù)Dobrinsky等[21]報(bào)道,超低溫冷凍保存擾亂了胚胎細(xì)胞膜和微絲的有序結(jié)構(gòu),使這些微絲系統(tǒng)得到重構(gòu),形成新的骨架系統(tǒng)以支撐整個(gè)細(xì)胞。CB是肌動(dòng)蛋白聚合的抑制劑,結(jié)合在F-肌動(dòng)蛋白的正(+)端,阻止F-肌動(dòng)蛋白的功能。有研究表明,用CB對(duì)肌動(dòng)蛋白的功能進(jìn)行研究發(fā)現(xiàn)在細(xì)胞質(zhì)中肌動(dòng)蛋白構(gòu)成細(xì)胞骨架的微絲,與胞質(zhì)流動(dòng)、變形運(yùn)動(dòng)、細(xì)胞形態(tài)的維持、細(xì)胞膜的動(dòng)態(tài)變化、細(xì)胞器的運(yùn)動(dòng)等多種生命活動(dòng)有關(guān)[22]。CB應(yīng)用于小鼠,在卵泡漿內(nèi)單精子注射 (ICSI)期間對(duì)小鼠卵母細(xì)胞進(jìn)行CB 處理可提高胚胎存活率,而不會(huì)損害發(fā)育,CB是一種有毒的微絲抑制劑,已知可重構(gòu)細(xì)胞骨架并增強(qiáng)卵母細(xì)胞的柔韌性,CB已被廣泛用于核轉(zhuǎn)移試驗(yàn),以提高顯微操作的成功率,CB不干擾紡錘體旋轉(zhuǎn)、第二極體形成或原核遷移,對(duì)微管無(wú)影響[23]。此外,CB影響小鼠紡錘體移植后重構(gòu)卵細(xì)胞骨架及囊胚發(fā)育[24]。盡管目前已有一些CB應(yīng)用于卵母細(xì)胞上的研究報(bào)道,本研究創(chuàng)新點(diǎn)在于除了探究CB對(duì)卵母細(xì)胞骨架作用的影響之外[25-27],CB對(duì)于GV期卵母細(xì)胞進(jìn)行預(yù)處理后,探討了不同分組不同時(shí)間點(diǎn)(22、28、36、44 h)細(xì)胞骨架與皮質(zhì)顆粒的定位變化,結(jié)果表明,細(xì)胞骨架與皮質(zhì)顆粒存在共定位且在CB處理組,即添加CB對(duì)于細(xì)胞內(nèi)骨架重構(gòu)均勻皮質(zhì)顆粒的分布具有一定的積極作用。
減數(shù)分裂過(guò)程中肌動(dòng)蛋白和微管網(wǎng)絡(luò)驅(qū)動(dòng)卵母細(xì)胞中的染色體聚集[28]。人類和豬卵母細(xì)胞中的肌動(dòng)蛋白和微管網(wǎng)絡(luò)在核膜破裂后不久依次將染色體聚集在一個(gè)簇中,以確保它們被減數(shù)分裂紡錘體完全捕獲[28]。通過(guò)免疫細(xì)胞化學(xué)和激光掃描共聚焦顯微鏡對(duì)豬卵母細(xì)胞成熟過(guò)程中體內(nèi)和體外的微管和微絲組織進(jìn)行成像,觀察到微絲是細(xì)胞皮層周圍相對(duì)較厚的均勻區(qū)域,并且在生發(fā)囊泡階段卵母細(xì)胞的整個(gè)細(xì)胞質(zhì)中也發(fā)現(xiàn)了微絲,生發(fā)囊泡分解后,微絲集中在雌性染色質(zhì)附近[29]。在前中期,微絲被染色質(zhì)移動(dòng)到外圍位置。在中期I,卵皮層中存在兩個(gè)結(jié)構(gòu)域,一個(gè)粗絲區(qū)和一個(gè)細(xì)絲區(qū),染色體位于皮層的粗微絲結(jié)構(gòu)域中,這些結(jié)果表明,微管和微絲都與豬卵母細(xì)胞生發(fā)囊泡破裂后的染色體動(dòng)力學(xué)和減數(shù)分裂成熟密切相關(guān)[29-30]。
與細(xì)胞骨架共定位分布的皮質(zhì)顆粒,其遷移與核成熟是分離的兩個(gè)過(guò)程,皮質(zhì)顆粒的遷移更可能反映的是胞質(zhì)成熟,皮質(zhì)顆粒遷移方式為皮質(zhì)區(qū)附近的皮質(zhì)顆粒先聚集到質(zhì)膜下,在皮質(zhì)區(qū)附近形成不連續(xù)的環(huán),然后其它皮質(zhì)顆粒逐漸移向皮質(zhì)區(qū),最后在質(zhì)膜下形成一個(gè)單層[29-30]。本試驗(yàn)使用小扁豆凝集素LCA-FITC熒光探針、Hoechst333342、 F-actin 細(xì)胞骨架藍(lán)色熒光探針對(duì)各試驗(yàn)組進(jìn)行熒光染色,測(cè)試了CB處理引起的卵母細(xì)胞皮質(zhì)顆粒與細(xì)胞微絲骨架定位的變化,結(jié)果表明在細(xì)胞成熟過(guò)程中細(xì)胞微絲骨架與皮質(zhì)顆粒均由胞質(zhì)向質(zhì)膜遷移,這與Fuku等[31]的研究結(jié)果一致。在44 H體外成熟時(shí)間點(diǎn)處,新鮮組胞內(nèi)細(xì)胞骨架遷移至質(zhì)膜下排布,與武彩紅等[30,32]的研究結(jié)果一致;經(jīng)CB處理后的豬卵母細(xì)胞共定位MCC系數(shù)與新鮮組(Fresh)對(duì)比差異不顯著(P>0.05),與冷凍組對(duì)比差異顯著(P<0.05),表明添加CB可以促進(jìn)凍后44 h體外成熟過(guò)程中細(xì)胞微絲骨架與皮質(zhì)顆粒的共遷移順利進(jìn)行,與新鮮組共遷移速率基本保持一致。而圖1I和圖1J結(jié)果表明,盡管在44 H時(shí),冷凍組共定位系數(shù)高于其它組別,但其體外成熟進(jìn)程和皮質(zhì)顆粒遷移大多受阻,細(xì)胞多停留于GVBD期,因此皮質(zhì)顆粒多分布于胞質(zhì)內(nèi)部而無(wú)法向質(zhì)膜層均勻遷移,卵母細(xì)胞成熟進(jìn)程阻滯。該結(jié)果證明,CB對(duì)凍后細(xì)胞微絲骨架可起到有效保護(hù)作用。
哺乳動(dòng)物的卵母細(xì)胞與相鄰的體細(xì)胞之間以相互依賴的方式生長(zhǎng)發(fā)育。一般而言,卵丘細(xì)胞負(fù)責(zé)收集細(xì)胞增殖與代謝相關(guān)的轉(zhuǎn)錄物,而顆粒細(xì)胞則負(fù)責(zé)細(xì)胞分化和信號(hào)轉(zhuǎn)導(dǎo)相關(guān)的轉(zhuǎn)錄物[33-34]。與顆粒細(xì)胞相比,卵丘細(xì)胞表現(xiàn)出更高的細(xì)胞增殖率,更高的抗繆勒氏激素(AMH)表達(dá)水平,并且具有分泌透明質(zhì)酸用于卵丘擴(kuò)展的高能力[34]。卵丘細(xì)胞與卵母細(xì)胞之間有多種方式相互交流對(duì)話,主要是通過(guò)縫隙連接蛋白和旁分泌因子,形成卵母細(xì)胞生長(zhǎng)發(fā)育的微環(huán)境,并貫穿于整個(gè)卵泡發(fā)育過(guò)程。卵丘細(xì)胞通過(guò)縫隙連接蛋白向卵子傳遞一些小分子物質(zhì),參與卵母細(xì)胞胞漿和胞核的成熟,此外還改善體外卵母細(xì)胞的發(fā)育潛能[33]。對(duì)于GV期卵母細(xì)胞的玻璃化冷凍,卵丘細(xì)胞在玻璃化過(guò)程中對(duì)于細(xì)胞的保護(hù)作用更大,更利于細(xì)胞解凍后的IVM培養(yǎng)。
本研究通過(guò)對(duì)各組預(yù)處理卵母細(xì)胞的成熟率統(tǒng)計(jì),發(fā)現(xiàn)玻璃化冷凍前用7.5 μg·mL-1CB孵育30 min的冷凍豬GV期卵母細(xì)胞成熟率最高,發(fā)育潛能大,這與Fujihira等[35]用濃度7.5 μg·mL-1 CB處理30 min卵母細(xì)胞的玻璃化冷凍效果最好結(jié)論一致。Isachenko等[36]報(bào)道,成熟卵母細(xì)胞經(jīng)7.5 μg·mL-1 CB處理后,能改善冷凍后的發(fā)育,這與本試驗(yàn)添加CB后孤雌激活發(fā)育率對(duì)比冷凍組,卵裂率((20.91±2.84)% vs. (5.64±0.37)%, P<0.01)和囊胚率((5.00±0.03)% vs. (0.41±0.01)%, P<0.05)得到顯著提高,結(jié)果一致。兩者均表明7.5 μg·mL-1 CB凍前預(yù)處理可以提高凍后GV期卵母細(xì)胞體外成熟率和改善凍后發(fā)育的作用。通過(guò)檢測(cè)凍后豬GV期卵母細(xì)胞存活率,添加CB解凍后細(xì)胞存活率明顯高于冷凍組(44.11% vs. 27.91%,P<0.01),證明CB確實(shí)起到保護(hù)細(xì)胞的作用,有益于降低細(xì)胞在冷凍過(guò)程中受到的損傷。這與Somfai等[37]報(bào)道CB可能會(huì)提高固體表面(SSV)玻璃化冷凍豬卵母細(xì)胞成熟后的存活率和發(fā)育率結(jié)果一致。
CB凍前處理豬GV期卵母細(xì)胞是否會(huì)影響到卵母細(xì)胞成熟和體外發(fā)育是本研究重點(diǎn)之一。GSH是細(xì)胞中最重要的抗氧化劑巰基化合物,在細(xì)胞抗氧化、蛋白質(zhì)巰基保護(hù)和氨基酸跨膜轉(zhuǎn)運(yùn)中起重要作用,通過(guò)檢測(cè)各試驗(yàn)組卵母細(xì)胞內(nèi) GSH 和 GSSG 含量,能夠很好地反映細(xì)胞所處的氧化還原狀態(tài),是細(xì)胞胞質(zhì)成熟的一個(gè)重要指標(biāo)[38-39]。本研究結(jié)果表明,經(jīng)CB處理的玻璃化冷凍細(xì)胞經(jīng)體外成熟到MⅡ期的GSH含量較冷凍組(47.10±3.05 vs.17.17±0.47,P<0.05)有顯著提升,表明CB預(yù)處理凍前豬GV期卵母細(xì)胞可以上調(diào)其凍后成熟過(guò)程抗氧化能力,從而顯著提升冷凍效率,這可能是CB提升冷凍效率的關(guān)鍵原因之一。De Matos等[40]報(bào)道,體外成熟卵母細(xì)胞GSH含量的增加能改善胚胎的質(zhì)量和發(fā)育能力。這與本研究結(jié)果一致。
4 結(jié) 論
本研究證實(shí)了通過(guò)添加CB可有效影響細(xì)胞微絲骨架與皮質(zhì)顆粒的遷移程度,微絲細(xì)胞骨架對(duì)卵母細(xì)胞體外成熟過(guò)程中胞內(nèi)皮質(zhì)顆粒由內(nèi)部向質(zhì)膜遷移有一定的調(diào)節(jié)作用,且兩者存在一定共定位關(guān)系,凍前添加CB穩(wěn)定細(xì)胞骨架改善了因玻璃化冷凍造成的細(xì)胞骨架損傷,減輕了冷凍引起的細(xì)胞骨架異常分布,緩解了由冷凍引起的皮質(zhì)顆粒-微絲遷移障礙,進(jìn)而提升了細(xì)胞抗凍能力,表現(xiàn)為促進(jìn)胞質(zhì)成熟的同時(shí),提高了冷凍卵母細(xì)胞存活率、核成熟率與胚胎體外發(fā)育潛能,從而顯著提升冷凍效率。本研究為CB于玻璃化冷凍豬GV期卵母細(xì)胞前添加能穩(wěn)定細(xì)胞骨架的應(yīng)用提供了理論和現(xiàn)實(shí)依據(jù)。
參考文獻(xiàn)(References):
[1] WHITTINGHAM D G.Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 ℃[J].J Reprod Fertil,1977,49(1):89-94.
[2] MUKAIDA T,MATSUBARA T,TAKAHASHI K,et al.Birth after vitrified human oocytes using cryoloop technique[J].Fertil Steril,2005,84(S1):S454.
[3] GUTNISKY C,MORADO S,GADZE T,et al.Morphological,biochemical and functional studies to evaluate bovine oocyte vitrification[J].Theriogenology,2020,143:18-26.
[4] BRAIR V L,MAIA A L R,CORREIA L F L,et al.Gene expression patterns of in vivo-derived sheep blastocysts is more affected by vitrification than slow freezing technique[J].Cryobiology,2020,95:110-115.
[5] 周 悅,吳亞輝,盧俊求,等.玻璃化冷凍對(duì)豬卵母細(xì)胞超微結(jié)構(gòu)的影響[J].中國(guó)獸醫(yī)雜志,2015,51(8):3-6.
ZHOU Y,WU Y H,LU J Q,et al.Effects of Vitrification on ultrastructure of porcine oocytes[J].Chinese Journal of Veterinary Medicine,2015,51(8):3-6.(in Chinese)
[6] 唐 毓,楊鎰峰,張 穎,等.豬卵母細(xì)胞玻璃化冷凍保存的研究進(jìn)展[J].中國(guó)畜牧雜志,2022,58(8):13-19.
TANG Y,YANG Y F,ZHANG Y,et al.Research progress on vitrification cryopreservation of porcine oocytes[J].Chinese Journal of Animal Science,2022,58(8):13-19.(in Chinese)
[7] 劉躍男,金 一,方南洙,等.抗凍劑、CB和離心極化對(duì)豬GV期卵母細(xì)胞冷凍效率的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2009,37(1):29-33,38.
LIU Y N,JIN Y,F(xiàn)ANG N Z,et al.Effects of centrifugal polarization,CB and cryoprotectants on freezing efficiency of oocytes at GV stage in pigs[J].Journal of Northwest Aamp;F University:Natural Science Edition,2009,37(1):29-33,38.(in Chinese)
[8] SMITH G F,RIDLER M A C,F(xiàn)AUNCH J A.Action of cytochalasin B on cultured human lymphocytes[J]. Nature,1967, 216(5120):1134-1135.
[9] 蔡紹莉,徐皆歡,何孟纖,等.毛喉素對(duì)豬卵母細(xì)胞降脂及冷凍保護(hù)效果研究[J].畜牧獸醫(yī)學(xué)報(bào),2023,54(1):178-188.
CAI S L,XU J H,HE M Q,et al.Effects of Forskolin on lipid degradation and cryopreservation of porcine oocytes[J].Acta Veterinaria et Zootechnica Sinica,2023,54(1):178-188.(in Chinese)
[10] 屠平光,范雅婷,黃劍鋒,等.不同培養(yǎng)體系對(duì)金華豬卵母細(xì)胞體外成熟的影響[J].浙江畜牧獸醫(yī),2020,45(2):4-5.
TU P G,F(xiàn)AN Y T,HUANG J F,et al.The influence on in vitro oocytes maturation of Jinhua pig in different cultivation system[J].Zhejiang Journal Animal Science and Veterinary Medicine,2020,45(2):4-5.(in Chinese)
[11] DUNN K W,KAMOCKA M M,MCDONALD J H.A practical guide to evaluating colocalization in biological microscopy[J].Am J Physiol Cell Physiol,2011,300(4):C723-C742.
[12] MANDERS E M M,VERBEEK F J,ATEN J A.Measurement of co-localization of objects in dual-colour confocal images[J].J Microsc,1993,169(3):375-382.
[13] BOLTE S,CORDELIRES F P.A guided tour into subcellular colocalization analysis in light microscopy[J].J Microsc,2006, 224(3):213-232.
[14] 方 園.豬早期胚胎體外培養(yǎng)體系優(yōu)化及對(duì)干細(xì)胞建系影響的研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2022.
FANG Y.Optimization of in vitro culture system of porcine early embryo and its influence on the establishment of embryonic stem cell lines[D].Harbin:Northeast Agricultural University,2022.(in Chinese)
[15] 張德福,劉 東,湯琳琳,等.地方豬種種質(zhì)資源長(zhǎng)期保存技術(shù)研究進(jìn)展[J].上海農(nóng)業(yè)學(xué)報(bào),2005,21(2):104-107.
ZHANG D F,LIU D,TANG L L,et al.Research on techniques of long-term conservation of local pig breeds[J].Acta Agriculturae Shanghai,2005,21(2):104-107.(in Chinese)
[16] 戴建軍,芮 榮,武彩紅,等.豬GV期卵母細(xì)胞玻璃化冷凍保存技術(shù)研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2007,35(8):34-38.
DAI J J,RUI R,WU C H,et al.Study on vitrification of porcine GV stage oocytes[J].Journal of Northwest Aamp;F University:Natural Science Edition,2007,35(8):34-38.(in Chinese)
[17] 戴建軍,李婉君,蔡紹莉,等.豬卵母細(xì)胞冷凍保存技術(shù)優(yōu)化研究進(jìn)展[J].上海畜牧獸醫(yī)通訊,2023(1):1-9.
DAI J J,LI W J,CAI S L,et al.Research advances in optimization of cryopreservation technology for porcine oocytes[J].Shanghai Journal of Animal Husbandry and Veterinary Medicine,2023(1):1-9.(in Chinese)
[18] 高 妍,鄭 毅,官 員.豬胚胎冷凍技術(shù)的研究歷程與未來(lái)展望[J].中國(guó)豬業(yè),2020,15(2):40-44,50.
GAO Y,ZHENG Y,GUAN Y.The research process and future prospect of porcine embryo freezing technology[J].China Swine Industry,2020,15(2):40-44,50.(in Chinese)
[19] KOLBER M A,BROSCHAT K O,LANDA-GONZALEZ B.Cytochalasin B induces cellular DNA fragmentation[J].FASEB J,1990,4(12):3021-3027.
[20] KOBAYASHI M,ITO J,SHIRASUNA K,et al.Comparative analysis of cell-free DNA content in culture medium and mitochondrial DNA copy number in porcine parthenogenetically activated embryos[J].J Reprod Dev,2020,66(6):539-546.
[21] DOBRINSKY J R,PURSEL V G,LONG C R,et al.Birth of piglets after transfer of embryos cryopreserved by cytoskeletal stabilization and vitrification[J].Biol Reprod,2000,62(3):564-570.
[22] 高 達(dá).卵泡大小對(duì)山羊卵母細(xì)胞皮質(zhì)顆粒分布與遷移的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2010.
GAO D.Effect of follicle size on cortical granules micration and distribution of goat oocytes[D].Tai’an:Shandong Agricultural University,2010.(in Chinese)
[23] HU L L,SHEN X H,ZHENG Z,et al.Cytochalasin B treatment of mouse oocytes during intracytoplasmic sperm injection (ICSI) increases embryo survival without impairment of development[J].Zygote,2012,20(4):361-369.
[24] 王啟航,王 偉,王偉周,等.不同濃度CB對(duì)小鼠紡錘體移植后重構(gòu)卵細(xì)胞骨架及囊胚發(fā)育影響的研究[J].河北醫(yī)科大學(xué)學(xué)報(bào),2023,44(2):129-136.
WANG Q H,WANG W,WANG W Z,et al.Effects of different concentrations of CB on the reconstruction of egg cytoskeleton and embryo development after spindle transplantation in mice[J].Journal of Hebei Medical University,2023,44(2):129-136.(in Chinese)
[25] SELDEN S C,SCHWARTZ S M.Cytochalasin B inhibition of endothelial proliferation at wound edges in vitro[J].J Cell Biol,1979,81(2):348-354.
[26] TRENDOWSKI M,MITCHELL J M,CORSETTE C M,et al.Chemotherapy with cytochalasin congeners in vitro and in vivo against murine models[J].Invest New Drugs,2015,33(2):290-299.
[27] ZHUAN Q R,LI J,DU X Z,et al.Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension[J].J Anim Sci Biotechnol,2022,13(1):95.
[28] NIKALAYEVICH E,TERRET M E.Meiosis:actin and microtubule networks drive chromosome clustering in oocytes[J].Curr Biol,2023,33(7):R272-R274.
[29] KIM N H,F(xiàn)UNAHASHI H,PRATHER R S,et al.Microtubule and microfilament dynamics in porcine oocytes during meiotic maturation[J].Mol Reprod Dev,1996,43(2):248-255.
[30] 武彩紅,張 斌,芮 榮,等.豬卵母細(xì)胞中細(xì)胞骨架的激光共聚焦顯微技術(shù)[J].江蘇農(nóng)業(yè)科學(xué),2008,36(3):187-189.
WU C H,ZHANG B,RUI R,et al.Laser confocal microscope technology of cytoskeleton in porcine oocyte[J].Jiangsu Agricultural Sciences,2008,36(3):187-189.(in Chinese)
[31] FUKU E,XIA L,DOWNEY B R.Ultrastructural changes in bovine oocytes cryopreserved by vitrification[J].Cryobiology, 1995,32(2):139-156.
[32] KAMOSHITA M,KATO T,F(xiàn)UJIWARA K,et al.Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent,carboxylated ε-poly-L-lysine[J].PLoS One,2017,12(4):e0176711.
[33] FAHY G M,WOWK B.Principles of cryopreservation by vitrification[M]//WOLKERS W F,OLDENHOF H.Cryopreservation and Freeze-Drying Protocols.3rd ed.New York:Springer,2015:21-82.
[34] 毛曉燕.人卵母細(xì)胞成熟過(guò)程中卵丘細(xì)胞與卵母細(xì)胞關(guān)系的研究進(jìn)展[J].同濟(jì)大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2018,39(5):123-127.
MAO X Y.Recent research progress on interaction between cumulus cells and oocytes in process of human oocyte maturation[J]. Journal of Tongji University:Medical Science,2018,39(5):123-127.(in Chinese)
[35] FUJIHIRA T,KISHIDA R,F(xiàn)UKUI Y.Developmental capacity of vitrified immature porcine oocytes following ICSI:effects of cytochalasin B and cryoprotectants[J].Cryobiology,2004,49(3):286-290.
[36] ISACHENKO V,SOLER C,ISACHENKO E,et al.Vitrification of immature porcine oocytes:effects of lipid droplets,temperature, cytoskeleton,and addition and removal of cryoprotectant[J].Cryobiology,1998,36(3):250-253.
[37] SOMFAI T,DINNYS A,SAGE D,et al.Development to the blastocyst stage of parthenogenetically activated in vitro matured porcine oocytes after solid surface vitrification (SSV)[J].Theriogenology,2006,66(2):415-422.
[38] LUBERDA Z.The role of glutathione in mammalian gametes[J].Reprod Biol,2005,5(1):5-17.
[39] MONGE M E,MARTINEFSKI M R,BOLLINI M,et al.UHPLC-HRMS-based analysis of S-hydroxymethyl-glutathione,GSH,and GSSG in human cells[M]//PAPA S,BUBICI C.Metabolic Reprogramming:Methods and Protocols.New York:Humana,2023: 117-132.
[40] DE MATOS D G,F(xiàn)URNUS C C,MOSES D F,et al.Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability[J].Mol Reprod Dev,1996,45(4):451-457.
(編輯 郭云雁)