[摘要]目的探討枸櫞酸鐵銨(FAC)對(duì)小鼠黑質(zhì)多巴胺能神經(jīng)元電活動(dòng)影響。方法取出生15~20 d的C57BL/6小鼠制備腦片,應(yīng)用全細(xì)胞膜片鉗技術(shù)觀察FAC對(duì)黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電活動(dòng)及膜電位的影響。結(jié)果小鼠黑質(zhì)腦片置于FAC溶液(100 μmol/L)中5 min后,多巴胺能神經(jīng)元自發(fā)放電頻率明顯降低(t=5.533,P<0.01)。10 min后,多巴胺能神經(jīng)元自發(fā)放電頻率則顯著減慢(t=7.297,P<0.001)。神經(jīng)元膜電位明顯向超級(jí)化方向移動(dòng)(t=4.227,P<0.01)。結(jié)論FAC能夠抑制正常小鼠黑質(zhì)多巴胺能神經(jīng)元的電活動(dòng)。
[關(guān)鍵詞]帕金森??;鐵;多巴胺能神經(jīng)元;膜片鉗術(shù);小鼠,近交C57BL
[中圖分類(lèi)號(hào)]R742.5;R591.1[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2024)03-0341-04
doi:10.11712/jms.2096-5532.2024.60.044[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240419.1405.001;2024-04-2309:35:52
Effect of ferric ammonium citrate on the electricalactivity of dopaminergic neurons in the substantia ingra of mice XIE Ruyi, XIU Minxia, SHI Limin(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the effect of ferric ammonium citrate (FAC) on the electrical activity of dopaminergic neurons in the substantia nigra of mice.MethodsBrain slices were prepared from the C57BL/6 mice of 15-20 days of postnatal age, and the whole-cell patch clamp technique was used to observe the effect of FAC on the spontaneous discharge and membrane potential of substantia nigra dopaminergic neurons. ResultsAfter the brain slices of the substantia nigra of mice infiltrated with 100 μmol/L FAC solution for 5 minutes, there was a significant reduction in the frequency of spontaneous discharge of dopaminergic neurons (t=5.533,Plt;0.01), and after 10 minutes, there was a significant reduction in the frequency of spontaneous discharge of dopaminergic neurons (t=7.297,Plt;0.001). The neuronal membrane potential moved towards hyperpolarization (t=4.227,Plt;0.01). ConclusionFAC can inhibit the electrical activity of dopaminergic neurons in the substantia nigra of normal C57BL/6 mice.
[Key words]Parkinson disease; iron; dopaminergic neurons; patch-clamp techniques; mice, inbred C57BL
帕金森?。≒D)是一種常見(jiàn)的中老年神經(jīng)系統(tǒng)退行性疾病。其顯著病理學(xué)特征為中腦黑質(zhì)致密帶多巴胺能神經(jīng)元進(jìn)行性缺失、紋狀體區(qū)多巴胺含量相應(yīng)減少、鐵沉積等[1-2]。臨床尸檢結(jié)果證實(shí),PD病人黑質(zhì)鐵含量升高了30%~35%[3-4]。隨后大量影像學(xué)及生化分析、核磁共振技術(shù)等研究也證實(shí)了此結(jié)果[5-7]。PD病人黑質(zhì)中的鐵負(fù)荷與運(yùn)動(dòng)障礙呈正相關(guān)[8-9]。鐵離子超負(fù)載可以促進(jìn)羥基自由基、超氧陰離子的形成,引起脂質(zhì)過(guò)氧化等[10-12]。多巴胺能神經(jīng)元在正常生理情況下具有規(guī)則的自發(fā)放電活動(dòng)[13],在運(yùn)動(dòng)調(diào)控中發(fā)揮重要作用[14-16]。因此,闡明鐵對(duì)多巴胺能神經(jīng)元電活動(dòng)的影響至關(guān)重要。本實(shí)驗(yàn)從電生理的角度出發(fā),旨在探討急性灌流枸櫞酸鐵銨(FAC)對(duì)黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電活動(dòng)及膜電位的影響。
1材料與方法
1.1實(shí)驗(yàn)材料
1.1.1實(shí)驗(yàn)動(dòng)物出生15~20 d的C57BL/6小鼠由北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司提供。小鼠飼養(yǎng)于25 ℃、12 h晝夜循環(huán)光照的SPF級(jí)清潔環(huán)境中,可自由飲水、攝食和活動(dòng)。動(dòng)物實(shí)驗(yàn)通過(guò)青島大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.1.2實(shí)驗(yàn)試劑及其配制①FAC溶液配制:將FAC(由美國(guó)Sigma公司提供)使用三蒸水配制成10 mmol/L的儲(chǔ)存液,置于4 ℃下保存。在應(yīng)用前稀釋至100 μmol/L[17]。②人工腦脊液(ACSF)的配制:為含有124.0 mmol/L NaCl、3.0 mmol/L KCl、2.4 mmol/L CaCl2、1.3 mmol/L MgCl2、1.3 mmol/L NaH2PO4、26.0 mmol/L NaHCO3和10.0 mmol/L葡萄糖混合溶液,調(diào)整pH值為7.4(用1 mol/L的NaOH稀釋?zhuān)?、溶液滲透量濃度為310 mmol/L。③低鈣切片液的配制:為含有124.0 mmol/L NaCl、3.0 mmol/L KCl、0.5 mmol/L CaCl2、1.0 mmol/L的MgCl2、1.3 mmol/L的NaH2PO4、26.0 mmol/L NaHCO3和10.0 mmol/L 葡萄糖混合溶液,調(diào)整pH值為7.4(用1 mol/L NaOH稀釋?zhuān)B透量濃度為310 mmol/L,并持續(xù)注入體積分?jǐn)?shù)0.05 CO2與體積分?jǐn)?shù)0.95 O2的混合氣體進(jìn)行氧合(切片液需提前放入冰箱-80 ℃冷凍40 min,成冰沙狀)。④電極內(nèi)液的配制:為含有120.0 mmol/L 葡萄糖酸鉀、10.0 mmol/L 4-羥乙基哌嗪乙磺酸、10.0 mmol/L的C14H24N2O10、2.0 mmol/L MgCl2、2.0 mmol/L Na2ATP、0.3 mmol/L Na2GTP和20.0 mmol/L KCl混合溶液,調(diào)整pH值為7.3(用1 mol/L KOH稀釋?zhuān)?、滲透量濃度為290 mmol/L,-20 ℃分裝保存?zhèn)溆谩?/p>
1.2實(shí)驗(yàn)方法
1.2.1離體黑質(zhì)腦片制備小鼠迅速斷頭取腦,置于ACSF冰水混合物中,1 min后將修剪好的腦組織切成250 μm厚度的腦切片,轉(zhuǎn)移至連續(xù)通入含體積分?jǐn)?shù)0.95 O2及體積分?jǐn)?shù)0.05 CO2混合氣體的ACSF中,孵育1 h,隨后將腦片于室溫下放置。每次隨機(jī)取其中1片進(jìn)行腦片全細(xì)胞膜片鉗實(shí)驗(yàn),其余腦片依然培養(yǎng)在ACSF中,以備后續(xù)實(shí)驗(yàn)。
1.2.2腦片全細(xì)胞膜片鉗電生理學(xué)記錄將離體腦片轉(zhuǎn)移至持續(xù)灌流ACSF(持續(xù)通入體積分?jǐn)?shù)0.95 O2及體積分?jǐn)?shù)0.05 CO2的混合氣體)的浴槽內(nèi),首先在低倍光鏡下找到黑質(zhì)區(qū)域,然后轉(zhuǎn)換到高倍光鏡下選擇健康、飽滿、邊界清晰的細(xì)胞進(jìn)行全細(xì)胞膜片鉗電生理學(xué)記錄。選定細(xì)胞后,將拋光的玻璃微電極注入1/3~1/2的電極內(nèi)液,去除其中的氣泡,微加正壓于電極后端,避免電極尖端沾染雜質(zhì)。直至電極尖端進(jìn)入液面以下,使電極尖端慢慢接近細(xì)胞表面直至在細(xì)胞表面壓出類(lèi)似“酒窩”的形狀,此時(shí)電流變小,電阻慢慢變大。迅速釋放正壓,快速達(dá)到1 kΩ封接。如果電阻沒(méi)有達(dá)到1 kΩ,則可以通過(guò)注射器給予細(xì)胞膜片一個(gè)負(fù)壓,使之完成封接,此時(shí)補(bǔ)償快電容。之后,采用負(fù)壓法打破電極腔正下方的膜片,使電極與細(xì)胞內(nèi)液相通,此時(shí)補(bǔ)償慢電容。轉(zhuǎn)換鉗制模式至電流鉗模式,將電流鉗置于0 pA,判斷為黑質(zhì)多巴胺能神經(jīng)元后,記錄細(xì)胞的自發(fā)放電活動(dòng)與膜電位。實(shí)驗(yàn)數(shù)據(jù)用Patchmaster軟件采集并儲(chǔ)存,用Minianalysis、Clamfit等軟件進(jìn)行分析。
1.3統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS 22.0和Graph Pad Prism 5統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)處理。計(jì)量資料數(shù)據(jù)以±s形式表示,兩組均數(shù)比較采用配對(duì)t檢驗(yàn)。以Plt;0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1FAC對(duì)黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電影響
參考本實(shí)驗(yàn)室之前的研究方法確定多巴胺能神經(jīng)元[18]:位于中腦腹側(cè)邊緣;細(xì)胞一般呈紡錘或三角形,胞體較大,直徑大于25 μm;在電流鉗模式下,給予神經(jīng)元-100 pA的超極化電流刺激后,神經(jīng)元膜電位出現(xiàn)顯著的內(nèi)向整流(Sag)特征;在全細(xì)胞模式下,神經(jīng)元大多表現(xiàn)出頻率1~5 Hz的自發(fā)放電活動(dòng),少數(shù)神經(jīng)元無(wú)自發(fā)放電。
本次實(shí)驗(yàn)共記錄到6個(gè)具有自發(fā)放電的多巴胺能神經(jīng)元,基礎(chǔ)放電頻率為(1.40±0.35)Hz,當(dāng)灌流含有100 μmol/L FAC的ACSF溶液5 min后,放電頻率降低為(0.36±0.49)Hz,差異具有統(tǒng)計(jì)學(xué)意義(t=5.533,P<0.01)。當(dāng)繼續(xù)灌流ACSF溶液至10 min時(shí),多巴胺能神經(jīng)元的放電頻率進(jìn)一步降低至(0.22±0.37)Hz,與灌流前相比較顯著減慢,差異具有統(tǒng)計(jì)學(xué)意義(t=7.297,P<0.001)。隨后應(yīng)用ACSF沖洗腦片,上述記錄的6個(gè)神經(jīng)元均未能恢復(fù)自發(fā)放電活動(dòng)。見(jiàn)圖1A。
2.2FAC對(duì)黑質(zhì)多巴胺能神經(jīng)元膜電位影響
本次實(shí)驗(yàn)記錄到6個(gè)沒(méi)有自發(fā)放電的多巴胺能神經(jīng)元,其膜電位為-(53.10±3.88)mV;在灌流100 μmol/L FAC 10 min后,膜電位為-(58.78±2.92)mV。與灌流FAC前相比,膜電位明顯向超級(jí)化方向移動(dòng),差異均有統(tǒng)計(jì)學(xué)意義(t=4.227,P<0.01)。見(jiàn)圖1B~E。
3討論
在腦內(nèi)神經(jīng)元生長(zhǎng)代謝過(guò)程中,金屬元素鐵發(fā)揮著重要的生理作用,如參與線粒體中能量產(chǎn)生、合成血紅蛋白參與氧轉(zhuǎn)運(yùn)、髓鞘形成、神經(jīng)遞質(zhì)的合成與代謝等[19]。然而,鐵因其自身理化性質(zhì)也具有一定細(xì)胞毒性作用:通過(guò)Fenton反應(yīng)產(chǎn)生羥自由基等活性氧(ROS),介導(dǎo)ROS損傷DNA、蛋白質(zhì)和脂質(zhì),造成氧化應(yīng)激損傷,引發(fā)細(xì)胞衰老或死亡[20-24]。
因此,鐵在大腦特定區(qū)域的過(guò)度積累會(huì)導(dǎo)致一系列代謝失常,引發(fā)PD、阿爾茨海默病、肌萎縮側(cè)索硬化癥等多種神經(jīng)退行性疾病。就PD而言,確有研究表明在多巴胺能神經(jīng)元損傷過(guò)程中超負(fù)載鐵離子引起了級(jí)聯(lián)反應(yīng)[25],而減少腦內(nèi)鐵含量可減輕神經(jīng)元死亡,延緩疾病進(jìn)程[26]。不過(guò)這些研究多為探討分子反應(yīng)機(jī)制,而未關(guān)注多巴胺能神經(jīng)元的電活動(dòng)與鐵含量升高之間是否存在關(guān)聯(lián)。
黑質(zhì)多巴胺能神經(jīng)元正常狀態(tài)下的電活動(dòng)是維持其基本功能的關(guān)鍵,在黑質(zhì)紋狀體系統(tǒng)功能的調(diào)節(jié)以及PD發(fā)病中發(fā)揮重要作用。在全細(xì)胞電流鉗模式下其主要表現(xiàn)為規(guī)則的緊張性放電,即起搏放電,本實(shí)驗(yàn)記錄到的多巴胺能神經(jīng)元基礎(chǔ)放電頻率為1~2 Hz,少數(shù)細(xì)胞無(wú)自發(fā)放電。而當(dāng)放電頻率降低1 Hz即可導(dǎo)致多巴胺的釋放下降10%,影響機(jī)體的運(yùn)動(dòng)功能[27]。因此,闡明鐵對(duì)黑質(zhì)多巴胺能神經(jīng)元放電活動(dòng)的影響,對(duì)于研究PD的病理機(jī)制及治療措施是極其關(guān)鍵的。
本文結(jié)果表明,F(xiàn)AC對(duì)多巴胺能神經(jīng)元電活動(dòng)的抑制作用具有時(shí)間依賴(lài)性。灌流5 min左右,多巴胺能神經(jīng)元的自發(fā)放電頻率開(kāi)始降低,隨著灌流時(shí)間的延長(zhǎng),神經(jīng)元的放電頻率開(kāi)始顯著降低甚至被完全抑制,ACSF沖洗后不能恢復(fù)放電。對(duì)于沒(méi)有自發(fā)放電活動(dòng)的多巴胺能神經(jīng)元,灌流FAC后神經(jīng)元的膜電位出現(xiàn)明顯的超極化,同樣表明神經(jīng)元的電活動(dòng)即興奮性被抑制。然而,鐵是通過(guò)何種機(jī)制對(duì)多巴胺能神經(jīng)元的電活動(dòng)產(chǎn)生上述影響尚不清楚。此前有研究結(jié)果顯示,低濃度Fe2+和Fe3+可降低大鼠海馬神經(jīng)元甘氨酸激活氯電流(IGLY)的激活閾值,而較高濃度Fe2+和Fe3+則降低了IGLY的峰值幅度[28]。不同濃度的Fe2+均可使瞬時(shí)外向鉀電流(IA)、延遲整流外向鉀電流(Ik)的激活電壓閾值降低,并使Na+通道I-V曲線左移[29]。黑質(zhì)多巴胺能神經(jīng)元的自發(fā)放電與瞬時(shí)外向鉀通道、延遲整流外向鉀通道、Na+通道相關(guān),本實(shí)驗(yàn)室前期亦證實(shí),利用4-氨基吡啶阻斷瞬時(shí)外向鉀通道會(huì)對(duì)1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的PD小鼠模型黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷具有保護(hù)作用[30]。因此,我們推測(cè)鐵可能通過(guò)影響K+通道、Na+通道而改變多巴胺能神經(jīng)元的放電活動(dòng),并且這種影響可能是不可逆的。
綜上所述,本研究證實(shí)鐵對(duì)黑質(zhì)多巴胺能神經(jīng)元電活動(dòng)確有影響,100 μmol/L的FAC可以導(dǎo)致神經(jīng)元自發(fā)放電活動(dòng)減慢和膜電位超極化,從而抑制神經(jīng)元的興奮性。由于本實(shí)驗(yàn)只采取了單一濃度FAC進(jìn)行研究,因此具體的影響機(jī)制及是否存在濃度依賴(lài)性仍需要后續(xù)實(shí)驗(yàn)探究。
[參考文獻(xiàn)]
[1]PAJARES M, I ROJO A, MANDA G, et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications[J]. Cells, 2020,9(7):1687.
[2]WEINTRAUB D, AARSLAND D, CHAUDHURI K R, et al. The neuropsychiatry of Parkinson’s disease: advances and challenges[J]. The Lancet Neurology, 2022,21(1):89-102.
[3]BERGSLAND N, ZIVADINOV R, SCHWESER F, et al. Ventral posterior substantia nigra iron increases over 3 years in Parkinson’s disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2019,34(7):1006-1013.
344青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)60卷
[4]MOCHIZUKI H, CHOONG C J, BABA K. Parkinson’s di-sease and iron[J]. Journal of Neural Transmission, 2020,127(2):181-187.
[5]AHMADI S A, BTZEL K, LEVIN J, et al. Analyzing the co-localization of substantia nigra hyper-echogenicities and iron accumulation in Parkinson’s disease: a multi-modal atlas study with transcranial ultrasound and MRI[J]. NeuroImage Clinical, 2020,26:102185.
[6]BRAMMERLOH M, MORAWSKI M, FRIEDRICH I, et al. Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry[J]. NeuroImage, 2021,239:118255.
[7]BIONDETTI E, SANTIN M D, VALABRGUE R, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease[J]. Brain: a Journal of Neurology, 2021,144(10):3114-3125.
[8]MARTIN-BASTIDA A, LAO-KAIM N P, LOANE C, et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility[J]. Euro-pean Journal of Neurology, 2017,24(2):357-365.
[9]NADUTHOTA R M, HONNEDEVASTHANA A A, LENKA A, et al. Association of freezing of gait with nigral iron accumulation in patients with Parkinson’s disease[J]. Journal of the Neurological Sciences, 2017,382:61-65.
[10]DIONSIO P A, AMARAL J D, RODRIGUES C M P. Oxidative stress and regulated cell death in Parkinson’s disease[J]. Ageing Research Reviews, 2021,67:101263.
[11]MAHONEY-SNCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease[J]. Progress in Neurobiology, 2021,196:101890.
[12]WANG Z L, YUAN L, LI W, et al. Ferroptosis in Parkin-son’s disease: glia-neuron crosstalk[J]. Trends in Molecular Medicine, 2022,28(4):258-269.
[13]LEE L N, HUANG C S, CHUANG H H, et al. An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches[J]. Journal of Biomedical Science, 2021,28(1):85.
[14]MEZA R C, LPEZ-JURY L, CANAVIER C C, et al. Role of the axon initial segment in the control of spontaneous frequency of nigral dopaminergic neurons in vivo[J]. The Journal of Neuroscience, 2018,38(3):733-744.
[15]SARKAR S, RAYMICK J, IMAM S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives[J]. International Journal of Molecular Sciences, 2016,17(6):904.
[16]CHEN X Y, LIU C, XUE Y, et al. Changed firing activity of nigra dopaminergic neurons in Parkinson’s disease[J]. Neurochemistry International, 2023,162:105465.
[17]ZHANG N, YU X Q, SONG L M, et al. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP+-induced MES23.5 dopaminergic cells[J]. Free Radical Biology amp; Medicine, 2022,193(Pt 2):751-763.
[18]SHI L M, BIAN X L, QU Z Q, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels[J]. Nature Communications, 2013,4:1435.
[19]LAL A. Iron in health and disease: an update[J]. Indian Journal of Pediatrics, 2020,87(1):58-65.
[20]ABEYAWARDHANE D L, LUCAS H R. Iron redox chemistry and implications in the Parkinson’s disease brain[J]. Oxidative Medicine and Cellular Longevity, 2019,2019:4609702.
[21]D’MELLO S R, KINDY M C. Overdosing on iron: elevated iron and degenerative brain disorders[J]. Experimental Biology and Medicine, 2020,245(16):1444-1473.
[22]DUSEK P, HOFER T, ALEXANDER J, et al. Cerebral iron deposition in neurodegeneration[J]. Biomolecules, 2022,12(5):714.
[23]LIU J, KANG R, TANG D L. Signaling pathways and defense mechanisms of ferroptosis[J]. The FEBS Journal, 2022,289(22):7038-7050.
[24]THIRUPATHI A, CHANG Y Z. Brain iron metabolism and CNS diseases[J]. Advances in Experimental Medicine and Bio-logy, 2019,1173:1-19.
[25]NAKAMURA T, NAGURO I, ICHIJO H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochimica et Biophysica Acta General Subjects, 2019,1863(9):1398-1409.
[26]BILLINGS J L, GORDON S L, RAWLING T, et al. L-3, 4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson’s disease[J]. Journal of Neurochemistry, 2019,150(1):88-106.
[27]TOZZI A, SCIACCALUGA M, LOFFREDO V, et al. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit[J]. Brain: a Journal of Neurology, 2021,144(11):3477-3491.
[28]SOLNTSEVA E I, BUKANOVA J V, KONDRATENKO R V, et al. Fe(2+) and Fe(3+) in micromolar concentrations modulate glycine-induced Cl(-) current in rat hippocampal neurons[J]. Brain Research Bulletin, 2015,115:9-16.
[29]GE S Y, RUAN D Y, YU K, et al. Effects of Fe2+ on ion channels: Na+ channel, delayed rectified and transient outward K+ channels[J]. Food and Chemical Toxicology, 2001,39(12):1271-1278.
[30]SHI L M, JIA L, WANG Y Y, et al. 4-aminopyridine protects nigral dopaminergic neurons in the MPTP mouse model of Parkinson’s disease[J]. Neurochemical Research, 2023,48(6):1707-1715.
(本文編輯于國(guó)藝)