【摘要】 背景 肝細(xì)胞癌是癌癥相關(guān)死亡的主要原因,目前的防治形勢依然嚴(yán)峻,對新的肝細(xì)胞癌治療藥物進(jìn)行探索研究具有科學(xué)意義。目的 通過網(wǎng)絡(luò)藥理學(xué)方法分析漢黃芩素干預(yù)肝細(xì)胞癌的作用機(jī)制,并進(jìn)行體外實(shí)驗(yàn)驗(yàn)證。方法 在TCMSP數(shù)據(jù)庫中檢索漢黃芩素的藥物靶點(diǎn),從TTD、GenCard、OMIM、DisGent數(shù)據(jù)庫中收集肝細(xì)胞癌的疾病靶點(diǎn)。將收集的藥物靶點(diǎn)和疾病靶點(diǎn)取交集,作為藥物干預(yù)疾病的潛在靶點(diǎn)。對交集靶點(diǎn)運(yùn)用R軟件進(jìn)行富集分析,使用STRING數(shù)據(jù)庫和Cytoscape軟件對交集靶點(diǎn)構(gòu)建蛋白互作網(wǎng)絡(luò)和篩選核心靶點(diǎn)。在GIEPA數(shù)據(jù)庫對核心靶點(diǎn)行進(jìn)一步分析。最后通過體外實(shí)驗(yàn)對前期分析結(jié)果進(jìn)行驗(yàn)證:采用CCK-8試劑盒測定細(xì)胞活性;采用平板克隆形成實(shí)驗(yàn)測定細(xì)胞增殖;采用劃痕實(shí)驗(yàn)測定細(xì)胞遷移;采用Western-blotting(WB)實(shí)驗(yàn)測定蛋白質(zhì)表達(dá)水平。結(jié)果 分析結(jié)果發(fā)現(xiàn)漢黃芩素的吸收、分布、代謝、排泄特性符合小分子藥物成藥規(guī)則并且毒性分析結(jié)果表明無毒性。收集到漢黃芩素靶點(diǎn)135個,肝細(xì)胞癌靶點(diǎn)8 238個,兩者交集靶點(diǎn)113個。通過對構(gòu)建的蛋白互作網(wǎng)絡(luò)篩選出的前10位的核心基因進(jìn)行分析,發(fā)現(xiàn)細(xì)胞周期蛋白依賴性激酶1(CDK1)、原癌基因酪氨酸蛋白激酶Src(SRC)在肝細(xì)胞癌組織中mRNA水平較正常肝組織上調(diào)(P<0.05),并且在肝細(xì)胞癌患者中高表達(dá)與不良預(yù)后相關(guān)(P<0.05)。KEGG富集分析發(fā)現(xiàn)交集基因富集在PI3K/AKT信號通路上最多,分子對接結(jié)果顯示漢黃芩素與CDK1、SRC結(jié)合構(gòu)型活力較強(qiáng)。CCK-8試劑盒檢測結(jié)果顯示,加入漢黃芩素75.0、150.0、300.0 μmol/L組HepG2細(xì)胞活性均低于對照組(P<0.05);平板克隆形成實(shí)驗(yàn)結(jié)果顯示,加入漢黃芩素37.5、75.0、150.0 μmol/L組HepG2細(xì)胞克隆形成數(shù)均低于對照組(P<0.05);劃痕實(shí)驗(yàn)結(jié)果表明,加入漢黃芩素37.5、75.0、150.0 μmol/L組HepG2細(xì)胞遷移率均低于對照組(P<0.05);WB實(shí)驗(yàn)結(jié)果表明,加入漢黃芩素75.0、150.0 μmol/L組PI3K、P-AKT/AKT、CDK1、SRC蛋白表達(dá)水平均低于對照組(P<0.05)。結(jié)論 漢黃芩素通過下調(diào)CDK1、SRC蛋白表達(dá),減弱PI3K/AKT通路信號,抑制肝癌細(xì)胞增殖和遷移,誘導(dǎo)細(xì)胞凋亡,從而達(dá)到干預(yù)肝細(xì)胞癌發(fā)生和進(jìn)展的目的。
【關(guān)鍵詞】 癌,肝細(xì)胞;漢黃芩素;網(wǎng)絡(luò)藥理學(xué);體外實(shí)驗(yàn)
【中圖分類號】 R 730.261 【文獻(xiàn)標(biāo)識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0238
Mechanism and in Vitro Experiment of Wogonin in Treatment of Hepatocellular Carcinoma Based on Network Pharmacology
YANG Anyin1,LIU Hongli2,CHEN Miaoyang1,ZHENG Yufeng1,XU Zhiyuan3,YANG Yongfeng1*
1.Department of Liver Disease,the Second Hospital of Nanjing/Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine,Nanjing 210000,China
2.School of Medicine,Southeast University,Nanjing 210000,China
3.School of Public Health,Nanjing Medical University,Nanjing 210000,China
*Corresponding author:YANG Yongfeng,Chief physician/Doctoral supervisor;E-mail:yyf1997@163.com
【Abstract】 Background Hepatocellular carcinoma(HCC) is the leading cause of cancer-related deaths. The current prevention and treatment situation remains critical. It is of scientific significance to explore new therapeutic agents for HCC. Objective To analyze the mechanism of wogonin on HCC by network pharmacology and to verify it in vitro. Methods The drug targets of wogonin were searched in TCMSP database,and the disease targets of HCC were collected from TTD,GenCard,OMIM,DisGent databases. The collected drug targets and disease targets were intersected as potential targets for drug intervention in diseases. R software was used for enrichment analysis of intersection targets,STRING database and Cytoscape software were used to construct protein interaction network and screen core targets. The core targets were further analyzed in GIEPA database. Finally,the preliminary analysis results were verified by in vitro experiments,including cell activity determination using CCK-8 kit,cell proliferation determination using plate clone formation experiment,cell migration determination using scoring test,protein expression level determination using Western-blotting(WB) assay. Results The AMDE characteristics of wogonin were found to be in accordance with the rules for small molecule drug formation and the toxicity analysis showed no toxicity. A total of 135 wogonin targets and 8 238 HCC targets were collected,and 113 targets were intersected. Through the analysis of the core genes of TOP10 screened by the constructed protein interaction network,it was found that the mRNA levels of CDK1 and SRC in liver cancer tissues were higher than those in normal liver tissues(P<0.05),and the high expression levels in liver cancer patients were related to poor prognosis(P<0.05). KEGG enrichment analysis showed that the intersection genes were enriched in the PI3K/AKT signaling pathway,and the molecular docking results showed that wogonin had strong binding configuration activity with CDK1 and SRC. The results of CCK-8 kit showed that the activity of HepG2 cells in the 75.0,150.0,and 300.0 μmol/L wogonin groups was lower than that in the control group(P<0.05). The results of plate clone formation experiment showed that the number of colony formation of HepG2 cells in the 37.5,75.0,150.0 μmol/L wogonin groups was lower than that in the control group(P<0.05). The results of scoring test showed that the migration rate of HepG2 cells in the 37.5,75.0 and 150.0 μmol/L wogonin groups was lower than that in the control group (P<0.05). The results of the WB assay showed that the expression levels of PI3K,P-AKT/AKT,CDK1 and SRC proteins in the 75.0 and 150.0 μmol/L wogonin groups were lower than those in the control group(P<0.05). Conclusion Wogonin inhibits the proliferation and migration of HCC cells and induces apoptosis by down-regulating the expression of CDK1 and SRC proteins and attenuating the PI3K/AKT pathway signaling,to achieve the purpose of interfering with the occurrence and progression of HCC.
【Key words】 Carcinoma,hepatocellular;Wogonin;Network pharmacology;In vitro experiments
肝細(xì)胞癌(HCC)占原發(fā)性肝癌的大多數(shù),是世界上許多地區(qū)癌癥相關(guān)死亡的主要原因[1]。多數(shù)亞洲國家、美國和歐盟批準(zhǔn)Sorafenib和lenvatinib為HCC的一線治療藥物[2]。在過去的20年,學(xué)者研究了HCC的臨床管理,顯著改善了治療方案,其中包括新的藥物組合。盡管已經(jīng)取得了較大進(jìn)展,但HCC的總體治療結(jié)果仍不能令人滿意[3]。所以對新的HCC治療方法進(jìn)行探索研究具有重要意義。
藥物治療是癌癥治療的重要方法[4-5]。在藥物研發(fā)的過程中,臨床前研究的先導(dǎo)化合物篩選起著至關(guān)重要的作用[6-7]。藥用植物能產(chǎn)生許多具有藥理活性的代謝產(chǎn)物,是藥物研發(fā)中先導(dǎo)化合物的重要資源[8]。但是傳統(tǒng)的先導(dǎo)化合物篩選方法周期長,工作量大并且價格昂貴[9-10],網(wǎng)絡(luò)藥理學(xué)的發(fā)展,為從藥用植物的有效成分中篩選先導(dǎo)化合物開辟了新的途徑[11]。
漢黃芩素(wogonin)是一種黃酮類天然化合物,是黃芩屬植物的主要活性成分[12]。既往研究表明漢黃芩素具有良好的抗腫瘤活性[13]。本研究旨在通過網(wǎng)絡(luò)藥理學(xué)方法分析漢黃芩素治療HCC的作用機(jī)制,并通過體外實(shí)驗(yàn)進(jìn)行驗(yàn)證,期望為HCC新的治療選擇進(jìn)行探索。
1 材料與方法
1.1 漢黃芩素AMDE及毒性預(yù)測
在Pubchem數(shù)據(jù)庫(https://pubchem.ncbi.nlm.nih.gov/)中收集漢黃芩素的SMILES式,將檢索到的SMILES分別導(dǎo)入SWISS AMDE在線服務(wù)網(wǎng)站(http://www.swissadme.ch/)分析漢黃芩素的吸收、分布、代謝、排泄(AMDE)特性及生物利用度。導(dǎo)入ProTox-Ⅱ-Prediction of TOXicity of Chemicals在線服務(wù)網(wǎng)站(https://tox-new.charite.de/protox_II/index.php?site=compound_input)預(yù)測漢黃芩素的肝毒性、致癌性、致突變性、免疫毒性、細(xì)胞毒性。
1.2 漢黃芩素及HCC靶點(diǎn)收集
在TCMSP數(shù)據(jù)庫(https://tcmsp-e.com/tcmsp.php)中檢索“wogonin”,收集漢黃芩素藥物靶點(diǎn)。以關(guān)鍵詞“hepatocellular carcinoma”在TTD(https://db.idrblab.net/ttd/)、GenCards(https://www.genecards.org/)、OMIM(https://www.omim.org/)、DisGnet(https://www.disgenet.org/)數(shù)據(jù)庫中檢索并收集HCC疾病靶點(diǎn)。將藥物靶點(diǎn)與疾病靶點(diǎn)取交集,獲得藥物干預(yù)疾病的潛在靶點(diǎn)。
1.3 蛋白互作網(wǎng)絡(luò)構(gòu)建和核心靶點(diǎn)篩選
將藥物干預(yù)疾病潛在靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫(https://cn.string-db.org/),選擇物種為“Homo sapiens”,設(shè)置required score為“highest confidence(0.900)”構(gòu)建蛋白互作網(wǎng)絡(luò)。將蛋白互作網(wǎng)絡(luò)導(dǎo)入Cytoscape 3.9.0軟件(隱藏連接度為0的節(jié)點(diǎn)),并使用“Cytohubba”插件篩選出前10位的基因,然后使用GIEPA數(shù)據(jù)庫(http://gepia2.cancer-pku.cn/#index)分析核心基因在HCC組織和正常肝組織中mRNA表達(dá)水平(|logFC|>1和P<0.05表示基因有顯著差異)以及核心基因與HCC患者生存預(yù)后的關(guān)聯(lián)(Log-rank P<0.05視為有統(tǒng)計學(xué)差異)。
1.4 GO和KEGG富集分析
在R軟件中使用“clusterProfiler”包進(jìn)行GO和KEGG富集分析,P<0.01視為具有顯著性。利用“ggplot2”包對分析結(jié)果進(jìn)行可視化。
1.5 分子對接
在PDB數(shù)據(jù)庫(https://www.rcsb.org/)中下載核心基因的蛋白三維結(jié)構(gòu),并在Pymol軟件中完成移除水分子和小分子配體。在Pubchem數(shù)據(jù)庫中下載漢黃芩素的化合物3D結(jié)構(gòu),使用Chem3D軟件將能量最小化。最后使用Autodock vina進(jìn)行分子對接并在pymol中將對接結(jié)果可視化。
1.6 細(xì)胞培養(yǎng)
人肝癌細(xì)胞株HepG2(中喬新舟)和人正常細(xì)胞株LO2(中喬新舟)完全培養(yǎng)基條件為MEM(含NEAA)培養(yǎng)基90%+胎牛血清(FBS)10%。培養(yǎng)條件為5% CO2、37 ℃。
1.7 CCK-8試劑盒測定細(xì)胞活性
將細(xì)胞按1×104個/孔接種于96細(xì)胞培養(yǎng)板中,在5% CO2、37 ℃培養(yǎng)條件下過夜。移除培養(yǎng)基,每孔加入100 μL磷酸鹽緩沖液(PBS)洗滌,重復(fù)2次。每孔加入200 μL含漢黃芩素濃度分別為0、18.5、37.5、75.0、150.0、300.0 μmol/L的完全培養(yǎng)基,分別處理24、48、72 h。移除培養(yǎng)基,每孔加入100 μL PBS洗滌2次。將CCK-8試劑(普諾恩)按10%溶解于完全培養(yǎng)基中,每孔加入100 μL。在5% CO2、37 ℃
條件下孵育2 h。在酶標(biāo)儀450 nm波長下檢測吸光度(OD值)。
1.8 平板克隆形成實(shí)驗(yàn)
HepG2細(xì)胞按500個/孔接種于6孔細(xì)胞培養(yǎng)板中,5% CO2、37 ℃條件下孵育過夜。移除培養(yǎng)基,加入2 mL PBS洗滌2次。加入含漢黃芩素濃度分別為0、37.5、75.0、150.0 μmol/L的完全培養(yǎng)基,孵育48 h后,移除培養(yǎng)基,加入2 mL PBS洗滌2次。加入完全培養(yǎng)基,3 d換液1次,連續(xù)培養(yǎng)14 d。移除培養(yǎng)基,加入2 mL PBS洗滌2次,加入多聚甲醛固定25~30 min,使用結(jié)晶紫染色,拍照。
1.9 劃痕實(shí)驗(yàn)
HepG2細(xì)胞按5×105個/孔接種于6孔板中,培養(yǎng)至細(xì)胞完全融合后,使用無菌100 μL移液器槍頭劃傷層細(xì)胞,加入2 mL PBS洗滌2次,加入含漢黃芩素濃度分別為0、37.5、75.0、150.0 μmol/L的無血清培養(yǎng)基,分別在0 h和48 h對劃痕進(jìn)行拍照,使用Image J軟件進(jìn)行分析。細(xì)胞遷移率為劃痕恢復(fù)距離相對于原始距離。
1.10 細(xì)胞凋亡
HepG2細(xì)胞按2×105個/孔接種于24孔板中,加入含漢黃芩素濃度分別為0、37.5、75.0、150.0 μmol/L
的完全培養(yǎng)基進(jìn)行處理24 h,使用Annexin V-FITC試劑盒檢測細(xì)胞凋亡。在熒光顯微鏡下對加入Annexin V-FITC試劑的細(xì)胞進(jìn)行拍照,綠色熒光信號越強(qiáng),代表細(xì)胞凋亡越多。
1.11 蛋白質(zhì)免疫印跡
加入含漢黃芩素濃度分別為0、37.5、75.0、150.0 μmol/L的完全培養(yǎng)基處理HepG2細(xì)胞48 h。使用含蛋白酶抑制劑的RIPA裂解液分離總蛋白,BCA蛋白檢測試劑盒檢測蛋白濃度。10% SDS-PAGE分離后轉(zhuǎn)移到PVDF膜上。5%脫脂牛奶室溫封閉2 h,然后,將膜與一抗4 ℃孵育過夜。再次與IgG偶聯(lián)二抗在室溫下孵育2 h。最后,用ELC檢測蛋白條帶。
1.12 統(tǒng)計學(xué)方法
數(shù)據(jù)以(x-±s)表示(所有實(shí)驗(yàn)重復(fù)3次)。采用GraphPad Prism軟件進(jìn)行分析和作圖。多組間比較采用單因素方差分析( ANOVA )。兩組間比較采用成組t檢驗(yàn),以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 漢黃芩素AMDE及毒性預(yù)測結(jié)果
SWISS AMDE和ProTox-Ⅱ-Prediction of TOXicity of Chemicals在線服務(wù)網(wǎng)站對漢黃芩素分析結(jié)果顯示,分子式:C16H12O5,分子量(MW):284.26,可旋轉(zhuǎn)鍵:2,氫鍵受體:5,氫鍵供體:2,脂水分配系數(shù):0.77,生物利用度較高。肝毒性、致癌性、致突變性、免疫毒性、細(xì)胞毒性均為無活性的。
2.2 漢黃芩素及HCC靶點(diǎn)
在TCMSP數(shù)據(jù)庫中收集到漢黃芩素靶點(diǎn)135個,在TTD、GeneCards、OMIM、DisGenet數(shù)據(jù)庫中收集到HCC靶點(diǎn)8 238個。將化合物與疾病交集靶點(diǎn)113個作為漢黃芩素干預(yù)HCC的潛在靶點(diǎn)。
2.3 漢黃芩素干預(yù)HCC潛在靶點(diǎn)蛋白互作網(wǎng)絡(luò)構(gòu)建及核心靶點(diǎn)篩選
將化合物與疾病交集靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫,得到92個節(jié)點(diǎn)(隱藏連接度為0的節(jié)點(diǎn)),265條邊的蛋白互作網(wǎng)絡(luò)(圖1)。使用Cytoscape軟件中的“Cytohubba”插件的“MCC”算法獲得前10位的核心靶點(diǎn),分別為原癌基因酪氨酸蛋白激酶Src(SRC)、熱休克蛋白HSP90-α(HSP90AA1)、細(xì)胞腫瘤抗原p53(TP53)、細(xì)胞周期蛋白依賴性激酶1 (CDK1)、絲氨酸/蘇氨酸蛋白激酶(AKT1)、G1/S-特異性周期蛋白-D1(CCND1)、轉(zhuǎn)錄因子Jun(JUN)、RELA原癌基因(RELA)、一氧化氮合酶(NOS2)及細(xì)胞周期蛋白依賴性激酶抑制劑1(CDKN1A)(圖2)。在GEIPA數(shù)據(jù)中基于TCGA數(shù)據(jù)庫中的數(shù)據(jù)對核心基因在HCC患者及正常肝組織中mRNA表達(dá)水平(圖3)進(jìn)行分析發(fā)現(xiàn):CDK1和SRC在HCC組織中表達(dá)水平高于正常肝組織(P<0.05)。CDK1、HSP90AA1、RELA、SRC、JUN在HCC患者中高表達(dá)與不良預(yù)后相關(guān)(P<0.05)(圖4)。
2.4 GO和KEGG富集分析
GO富集(圖5A)分析顯示,交集基因主要富集的生物學(xué)過程(BP)有抗氧化反應(yīng)(response to oxidative stress),細(xì)胞對化學(xué)應(yīng)激的響應(yīng)(cellular response to chemical stress),對輻射的響應(yīng)(response to radiation)等,富集的細(xì)胞組分(CC)有膜筏(membrane raft),膜微結(jié)構(gòu)域(membrane microdomain)等,分子功能主要富集在蛋白質(zhì)絲氨酸/蘇氨酸激酶活性(protein serine/threonine kinase activity)、跨膜受體蛋白酪氨酸激酶活性(transmembrane receptor protein tyrosine kinase activity)、膽酸結(jié)合作用(bile acid binding)等。KEGG通路富集(圖5B)分析中交集基因主要富集的通路有PI3K/AKT信號通路(PI3K-Akt signaling pathway)、p53信號通路(p53 signaling pathway)、白介素(IL)-17信號通路(IL-17 signaling pathway)等。
2.5 分子對接
將核心靶點(diǎn)CDK1和SRC的三維蛋白質(zhì)結(jié)構(gòu)與漢黃芩素化合物三維結(jié)構(gòu)使用Autodock vina進(jìn)行分子對接,結(jié)果顯示CDK1、SRC與漢黃芩素的結(jié)合能均低于-7 kcal/mol,證明蛋白質(zhì)與化合物結(jié)合構(gòu)型活性較強(qiáng)(圖6)。
2.6 漢黃芩素抑制HCC細(xì)胞增殖
使用CCK-8試劑盒檢測漢黃芩素對HCC細(xì)胞增殖影響發(fā)現(xiàn),24、48、72 h時,各組HepG2細(xì)胞活性比較,差異有統(tǒng)計學(xué)意義(P<0.05),見表1。在相同濃度和時間梯度下,HepG2細(xì)胞活性低于LO2細(xì)胞活性,差異有統(tǒng)計學(xué)意義(P<0.05),見表2~4。平板克隆形成實(shí)驗(yàn)結(jié)果顯示,各組HepG2細(xì)胞克隆形成數(shù)比較,差異有統(tǒng)計學(xué)意義(P<0.05),見圖7、表5。
2.7 漢黃芩素抑制HCC細(xì)胞遷移和誘導(dǎo)HCC細(xì)胞凋亡
劃痕實(shí)驗(yàn)結(jié)果表明,各組HepG2細(xì)胞遷移率比較,差異有統(tǒng)計學(xué)意義(P<0.05),見圖8、表5。HepG2細(xì)胞在一定濃度的漢黃芩素的處理后,使用Annexin V-FITC試劑盒在熒光顯微鏡下觀察發(fā)現(xiàn),隨著漢黃芩素的濃度升高,綠色熒光信號增強(qiáng),說明細(xì)胞凋亡數(shù)量增加(圖9)。
2.8 漢黃芩素抑制核心靶點(diǎn)CDK1、SRC表達(dá)和減弱PI3K/AKT信號通路
Western-blotting(WB)實(shí)驗(yàn)結(jié)果表明,一定濃度范圍內(nèi),漢黃芩素能夠下調(diào)核心靶點(diǎn)CDK1和SRC的表達(dá)水平。PI3K、P-AKT蛋白表達(dá)下調(diào),總AKT蛋白表達(dá)無影響,表明漢黃芩素能夠減弱PI3K/AKT信號通路(圖10,表6)。
3 討論
漢黃芩素的AMDE特性經(jīng)過分析,符合小分子化合物類藥規(guī)則-利平斯基五規(guī)則[14]。并且毒性預(yù)測結(jié)果顯示無肝毒性、致癌性、致突變性、細(xì)胞毒性、免疫毒性,具有開發(fā)為藥物的潛力。通過對漢黃芩素干預(yù)HCC的前10位的核心靶點(diǎn)進(jìn)行分析后,既往研究表明,AKT1缺失能夠阻止小鼠腫瘤的形成[15]。CCND1沉默能夠抑制HCC干細(xì)胞的分化[16-17]。TP53突變導(dǎo)致免疫應(yīng)答下調(diào)與HCC預(yù)后相關(guān)[18-20]。通過沉默CDKN1A能夠促進(jìn)HCC的增殖和遷移[21-22]。CDK1在HCC中高表達(dá)并且與不良預(yù)后相關(guān),下調(diào)CDK1的表達(dá),能夠抑制HCC細(xì)胞的增殖、遷移和誘導(dǎo)凋亡[23-25]。SRC高表達(dá)促進(jìn)HCC的進(jìn)展,抑制SRC的表達(dá),HCC細(xì)胞的增殖受到明顯的抑制[26-28]。KEGG富集分析結(jié)果中,IL-17信號通路能促進(jìn)HCC的進(jìn)展,通過影響IL-17信號通路能抑制HCC細(xì)胞的增殖[29-30]。通過靶向p53信號通路能夠調(diào)控HCC的發(fā)生和進(jìn)展[31-32]。PI3K/AKT信號通路與細(xì)胞的增殖、遷移、凋亡等方面相關(guān),在癌癥中被異常激活,與腫瘤的發(fā)生和進(jìn)展有關(guān),靶向PI3K/AKT信號通路是癌癥治療的有效策略[33-34]。在網(wǎng)絡(luò)藥理學(xué)分析中發(fā)現(xiàn)CDK1、SRC兩個核心靶點(diǎn)的mRNA表達(dá)水平在HCC組織顯著高于正常肝組織,并且在HCC患者中,CDK1、SRC的高表達(dá)與不良生存預(yù)后相關(guān)。PI3K/AKT信號通路富集到的基因數(shù)量最多。
體外實(shí)驗(yàn)證明,一定濃度范圍內(nèi)的漢黃芩素能夠抑制人肝癌細(xì)胞株HepG2的增殖能力,并且在一定濃度范圍內(nèi)對人正常肝細(xì)胞株LO2的增殖抑制能力小于癌細(xì)胞,說明漢黃芩素對HCC細(xì)胞的抑制能力具有特異性。劃痕實(shí)驗(yàn)和凋亡實(shí)驗(yàn)表明,漢黃芩素能夠抑制HCC細(xì)胞的遷移和誘導(dǎo)HCC細(xì)胞凋亡。通過WB實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),漢黃芩素處理HepG2細(xì)胞后,核心靶點(diǎn)CDK1、SRC的表達(dá)量降低,PI3K/AKT信號通路信號減弱。
結(jié)合體外實(shí)驗(yàn)和既往文獻(xiàn)研究,漢黃芩素可能為通過抑制核心基因CDK1、SRC的表達(dá)和減弱PI3K/AKT通路信號,然后抑制HCC細(xì)胞增殖、遷移和誘導(dǎo)細(xì)胞凋亡,達(dá)到干預(yù)HCC發(fā)生和進(jìn)展的目的。結(jié)合網(wǎng)絡(luò)藥理學(xué)分析以及體外實(shí)驗(yàn)結(jié)果,證明漢黃芩素是一個具有潛力開發(fā)為HCC治療藥物的天然化合物,本研究對漢黃芩素治療HCC的作用機(jī)制進(jìn)行了初步探索,為漢黃芩素的后期開發(fā)利用提供了一定的參考。
局限性:本研究僅對在mRNA表達(dá)水平在HCC組織與正常肝組織有顯著差異并且與不良生存預(yù)后相關(guān)的核心基因進(jìn)行體外實(shí)驗(yàn)驗(yàn)證,未對其他核心基因進(jìn)行深入研究分析。由于實(shí)驗(yàn)條件的限制,未能進(jìn)行體外實(shí)驗(yàn)進(jìn)一步研究漢黃芩素對HCC發(fā)生和進(jìn)展的干預(yù)作用。
作者貢獻(xiàn):楊永峰提出研究思路,制定總體研究目標(biāo);楊安銀、劉紅麗進(jìn)行數(shù)據(jù)分析,實(shí)驗(yàn)操作以及文章撰寫;陳妙洋、鄭玉鳳、徐志遠(yuǎn)進(jìn)行相關(guān)文獻(xiàn)和資料收集。
本文無利益沖突。
參考文獻(xiàn)
YANG J D,HAINAUT P,GORES G J,et al. A global view of hepatocellular carcinoma:trends,risk,prevention and management[J]. Nat Rev Gastroenterol Hepatol,2019,16(10):589-604. DOI:10.1038/s41575-019-0186-y.
TORIMURA T,IWAMOTO H. Treatment and the prognosis of hepatocellular carcinoma in Asia[J]. Liver Int,2022,42(9):2042-2054. DOI:10.1111/liv.15130.
WEN N Y,CAI Y L,LI F Y,et al. The clinical management of hepatocellular carcinoma worldwide:a concise review and comparison of current guidelines:2022 update[J]. Biosci Trends,2022,
16(1):20-30. DOI:10.5582/bst.2022.01061.
SULLIVAN L B,GUI D Y,VANDER HEIDEN M G. Altered metabolite levels in cancer:implications for tumour biology and cancer therapy[J]. Nat Rev Cancer,2016,16(11):680-693. DOI:10.1038/nrc.2016.85.
VALKENBURG K C,DE GROOT A E,PIENTA K J. Targeting the tumour stroma to improve cancer therapy[J]. Nat Rev Clin Oncol,2018,15(6):366-381. DOI:10.1038/s41571-018-0007-1.
ROSENBLUM D,JOSHI N,TAO W,et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nat Commun,2018,9(1):1410. DOI:10.1038/s41467-018-03705-y.
WAITKUS M S,DIPLAS B H,YAN H. Biological role and therapeutic potential of IDH mutations in cancer[J]. Cancer Cell,2018,34(2):186-195. DOI:10.1016/j.ccell.2018.04.011.
BUYEL J F. Plants as sources of natural and recombinant anti-cancer agents[J]. Biotechnol Adv,2018,36(2):506-520. DOI:10.1016/j.biotechadv.2018.02.002.
CHENG F X,LIANG H,BUTTE A J,et al. Personal mutanomes meet modern oncology drug discovery and precision health[J]. Pharmacol Rev,2019,71(1):1-19. DOI:10.1124/pr.118.016253.
SLIWOSKI G,KOTHIWALE S,MEILER J,et al. Computational methods in drug discovery[J]. Pharmacol Rev,2013,
66(1):334-395. DOI:10.1124/pr.112.007336.
NOOR F,TAHIR UL QAMAR M,ASHFAQ U A,et al. Network pharmacology approach for medicinal plants:review and assessment[J]. Pharmaceuticals,2022,15(5):572. DOI:10.3390/ph15050572.
BANIK K,KHATOON E,HARSHA C,et al. Wogonin and its analogs for the prevention and treatment of cancer:a systematic review[J]. Phytother Res,2022,36(5):1854-1883. DOI:10.1002/ptr.7386.
GU Y Q,ZHENG Q,F(xiàn)AN G F,et al. Advances in anti-cancer activities of flavonoids in Scutellariae radix:perspectives on mechanism[J]. Int J Mol Sci,2022,23(19):11042. DOI:10.3390/ijms231911042.
LIPINSKI C A,LOMBARDO F,DOMINY B W,et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev,2001,46(1/2/3):3-26. DOI:10.1016/s0169-409x(00)00129-0.
XU Z,XU M,LIU P,et al. The mTORC2-Akt1 cascade is crucial for c-Myc to promote hepatocarcinogenesis in mice and humans[J]. Hepatology,2019,70(5):1600-1613. DOI:10.1002/hep.30697.
ZHANG H Y. CCND1 silencing suppresses liver cancer stem cell differentiation through inhibiting autophagy[J]. Hum Cell,2020,33(1):140-147. DOI:10.1007/s13577-019-00295-9.
DING H,WANG Y J,ZHANG H Y. CCND1 silencing suppresses liver cancer stem cell differentiation and overcomes 5-Fluorouracil resistance in hepatocellular carcinoma[J]. J Pharmacol Sci,2020,143(3):219-225. DOI:10.1016/j.jphs.2020.04.006.
SHI L,CAO J,LEI X,et al. Multi-omics data identified TP53 and LRP1B as key regulatory gene related to immune phenotypes via EPCAM in HCC[J]. Cancer Med,2022,11(10):2145-2158. DOI:10.1002/cam4.4594.
LONG J Y,WANG A Q,BAI Y,et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma[J]. EBioMedicine,2019,42:363-374. DOI:10.1016/j.ebiom.2019.03.022.
YANG H Y,SUN L J,GUAN A,et al. Unique TP53 neoantigen and the immune microenvironment in long-term survivors of hepatocellular carcinoma[J]. Cancer Immunol Immunother,2021,70(3):667-677. DOI:10.1007/s00262-020-02711-8.
LUO X E,ZHOU N,WANG L,et al. Long noncoding RNA GATA3-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by suppression of PTEN,CDKN1A,and TP53[J]. Can J Gastroenterol Hepatol,2019,2019:1389653. DOI:10.1155/2019/1389653.
LI B,LI A,YOU Z,et al. Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle,migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma[J]. Cell Death Dis,2020,11(10):823. DOI:10.1038/s41419-020-03031-6.
ZHOU J,HAN S,QIAN W C,et al. Metformin induces miR-378 to downregulate the CDK1,leading to suppression of cell proliferation in hepatocellular carcinoma[J]. Onco Targets Ther,2018,11:4451-4459. DOI:10.2147/OTT.S167614.
LIU H M,TAN H Y,LIN Y,et al. microRNA-1271-5p inhibits cell proliferation and enhances radiosensitivity by targeting CDK1 in hepatocellular carcinoma[J]. J Biochem,2020,167(5):513-524. DOI:10.1093/jb/mvz114.
YIN S S,YANG S S,LUO Y M,et al. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma[J]. Biochem Pharmacol,2021,193:114806. DOI:10.1016/j.bcp.2021.114806.
LIU Z,WANG Y,YAO Y T,et al. Quantitative proteomic and phosphoproteomic studies reveal novel 5-fluorouracil resistant targets in hepatocellular carcinoma[J]. J Proteomics,2019,208:103501. DOI:10.1016/j.jprot.2019.103501.
JIN A L,ZHANG C Y,ZHENG W J,et al. CD155/SRC complex promotes hepatocellular carcinoma progression via inhibiting the p38 MAPK signalling pathway and correlates with poor prognosis[J]. Clin Transl Med,2022,12(4):e794. DOI:10.1002/ctm2.794.
ZHANG X,XU H,BI X Y,et al. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways[J]. Cell Death Dis,2021,12(10):931. DOI:10.1038/s41419-021-04221-6.
MA H Y,YAMAMOTO G,XU J,et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease[J]. J Hepatol,2020,72(5):946-959. DOI:10.1016/j.jhep.2019.12.016.
TANG B F,ZHU J Y,LI J,et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis,prognosis and immune microenvironment for hepatocellular carcinoma[J]. Cell Commun Signal,2020,18(1):174. DOI:10.1186/s12964-020-00663-1.
WANG G G,LI J H,YAO Y,et al. Small nucleolar RNA 42 promotes the growth of hepatocellular carcinoma through the p53 signaling pathway[J]. Cell Death Discov,2021,7(1):347. DOI:10.1038/s41420-021-00740-5.
XU B,WEI Y G,LIU F,et al. Long noncoding RNA CERS6-AS1 modulates glucose metabolism and tumor progression in hepatocellular carcinoma by promoting the MDM2/p53 signaling pathway[J]. Cell Death Discov,2022,8(1):348. DOI:10.1038/s41420-022-01150-x.
TEWARI D,PATNI P,BISHAYEE A,et al. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer:a novel therapeutic strategy[J]. Semin Cancer Biol,2022,80:1-17. DOI:10.1016/j.semcancer.2019.12.008.
HE Y,SUN M M,ZHANG G G,et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther,2021,6(1):425. DOI:10.1038/s41392-021-00828-5.
(收稿日期:2023-04-04;修回日期:2023-08-19)
(本文編輯:賈萌萌)
基金項(xiàng)目:國家自然科學(xué)基金面上項(xiàng)目(81970454)
引用本文:楊安銀,劉紅麗,陳妙洋,等. 基于網(wǎng)絡(luò)藥理學(xué)方法探析漢黃芩素治療肝細(xì)胞癌作用機(jī)制和體外實(shí)驗(yàn)研究[J]. 中國全科醫(yī)學(xué),2024,27(32):4040-4049. DOI:10.12114/j.issn.1007-9572.2023.0238. [www.chinagp.net]
YANG A Y,LIU H L,CHEN M Y,et al. Mechanism and in vitro experiment of wogonin in treatment of hepatocellular carcinoma based on network pharmacology[J]. Chinese General Practice,2024,27(32):4040-4049.
? Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.