• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學置換反應(yīng)制備石墨烯基納米無定型銻復合陽極用于高性能鈉離子電容器的構(gòu)筑

    2024-07-16 00:00:00米超林秦玉瑩黃欣莉羅伊杰張志薇王成祥石元昌尹龍衛(wèi)王儒濤
    物理化學學報 2024年5期
    關(guān)鍵詞:石墨烯

    摘要:銻(Sb),因其具有較高的理論比容量(660 mAh?g?1)、較低儲鈉電位(0.5–0.8 V vs. Na/Na+)和較高的密度(6.68g?cm?3)等特點,被認為是一種理想的鈉離子電容器的陽極材料。然而,在Na+脫嵌過程中,Sb電極會發(fā)生較大的體積變化,導致其容量快速衰減以及倍率性能變差,阻礙了Sb電極的實際應(yīng)用。因此,本文提出一種可用于制備錨定在具有碳涂層的二維石墨烯表面的無定型Sb納米顆粒的電化學置換方法。所制備Sb/石墨烯復合材料具有典型的二維復合結(jié)構(gòu),可大幅增加與電解液界面接觸面積,縮短離子擴散路徑,促進離子遷移與電子轉(zhuǎn)移。進一步利用該復合材料作為陽極,自制活性炭作為陰極,構(gòu)建出一種新型鈉離子電容器。研究證實,該鈉離子電容器工作電壓可達4.0 V,可輸出140.75Wh?kg?1的最大能量密度和12.43 kW?kg?1的最高功率密度。綜上,該研究結(jié)果可為鈉離子儲能器件用高容量銻基陽極材料的優(yōu)化設(shè)計提供可借鑒的思路。

    關(guān)鍵詞:石墨烯;銻基陽極;電化學置換反應(yīng);二維復合材料;鈉離子電容器

    中圖分類號:O646

    Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor

    Abstract: Sodium-ion energy storage devices are considered as an idealsubstitute for popular lithium-ion counterparts because of its resource richnessand environmental friendliness. Among the various sodium-ion energy storagedevices, sodium-ion capacitors (SICs) have the combined advantages in highenergy and power densities as well as long-term cycling stability in theory.Antimony (Sb) is considered as an attractive anode material for SICs due to itshigh theoretical capacity of 660 mAh?g?1, low operating potential (0.5–0.8 V vs.Na/Na+), and high density of 6.68 g?cm?3. However, the large volume changeof Sb during the Na+ insertion leads to fast decay in capacity and poor ratecapability, which becomes a fundamental issue greatly hindering the practicalapplication. Herein, a facile galvanic replacement approach is proposed for the synthesis of an ultrafine amorphous Sbnanoparticles anchoring on carbon coated two-dimensional (2D) reduced graphene oxides (RGO). Half-cell test (vs. metalNa) shows that as-prepared Sb-C@RGO anode delivers a high specific capacity of 521.5 mAh?g?1 at 0.1 A?g?1. As thecurrent density increases to 10 A?g?1, Sb-C@RGO anode still maintains a specific capacity of 83.5 mAh?g?1, suggesting itshigh-rate properties. The excellent Na+ charge storage property of Sb-C@RGO anode is primarily due to its unique 2Dhybrid architecture, which largely increases the atomic interface contact with Na+ and shortens ion diffusion path, thusfacilitating ion/electron transfer. To demonstrate the feasibility of Sb-C@RGO as the high-performance electrode foremerging energy-storage devices, a hybrid cell configuration (e.g., SIC) was fabricated by employing the Sb-C@RGO asthe negative electrode (battery type) and home-made activated carbon (PDPC) as the positive electrode (capacitive type)in a Na+ based organic electrolyte. This SIC is capable of operating at a high voltage of 4.0 V and exhibiting a high energydensity of 140.75 Wh?kg?1 at a power density of 250.84 W?kg?1. Even the power density is magnified ~50 times to 12.43kW?kg?1, this SIC still delivers a high energy density of 55 Wh?kg?1. Within a short charge/discharge of ~3.2 min, this SICcan store/release quite a high energy density of 108.5 Wh?kg?1, which represents the remarkable performance among thereported Sb-based capacitors. In addition, this SIC shows the good cycling stability with an acceptable capacity retentionvalue of 66.27% after 1000 cycles at a current density of 2 A?g?1. Our results may provide insight into the rational designand construction of high-capacity Sb-based anode materials for advanced sodium-ion based energy storage devices.

    Key Words: Graphene; Sb anode; Galvanic replacement reaction; 2D composite; Sodium-ion capacitor

    1 Introduction

    Sodium-ion energy storage devices, as the promisingalternatives for popular lithium-ion counterparts, have attractedwidely attention because of the nature abundance in earth’s crust(23600 mg?L?1), low cost, and environmental benignity ofsodium resources 1–3. Among the various sodium-ion energystorage devices, sodium-ion capacitors (SICs), consisting ofbattery-type negative electrode and capacitive positive carbonelectrode, in theory, have the combined advantages in highenergy and power densities as well as long-term cyclingstability 4–6. However, most of reported SICs performed belowexpectation on energy and/or power densities. That is mainlybecause of most of anode materials cannot fully accommodatethe large size of Na+, leading to the sluggish diffusion kinetics,then accelerating the kinetics mismatch between batter-typeanode and capacitive cathode 7–9. Therefore, exploring suitableelectrode materials with reversible, robust, and fast Na+ chargestorage properties remain a challenge.

    Currently, various anode nanomaterials includingintercalation-type, redox-type, and alloy-type materials havebeen explored to solve the above-state issue for SICs 10–17.Among them, antimony (Sb) with its high theoretical capacity of660 mAh?g?1, safe operating potential (0.5–0.8 V vs. Na/Na+),and high density of 6.68 g?cm?3 11,18,19, is considered to be one ofthe most promising anodes for high-performance SICs.However, the large volume change (over 300%) during sodiationleads to large capacity decay and poor rate capability 20, whichgreatly hinders the practical application. To circumvent thisissue, various strategies have been developed to improve theelectrochemical performance of Sb anodes, such as reducing thesize into nanoscale 21,22, creating nanoporous structure 23–26, andemploying carbonaceous materials as the buffer layer 27,28.Among these strategies, integrating nanosized Sb into carbonframeworks including one-dimensional (1D) nanofibers, twodimensional(2D) carbon sheets, and three-dimensional (3D)carbon microstructures through electrospinning technique,hydrothermal method, spray-drying processing, etc. 21,29–34, hasbeen demonstrated to be the most effective way to accommodatethe large volume expansion and improve the electronicconductivity. As expected, both the rate capability and thecycling capability of Sb-carbon anodes were largely improved.Therefore, it is highly desired to explore more feasible strategiesto fabricate Sb-carbon composite electrodes with reversible,robust, and fast Na+ charge storage properties to meet therequirement from the high-performance SICs.

    Herein, we report a facile galvanic replacement approach toprepare amorphous Sb nanoparticles-reduced graphene oxides(Sb-C@RGO) composite. The Sb-C@RGO composite displaysthe attractive Na+ charge storage performance, which can be usedas an anode for high-performance SIC.

    2 Experimental section

    2.1 Chemicals

    All chemicals were of analytical grade and used directlywithout further purification. CoSO4?7H2O, NiSO4?6H2O,ammonium hydroxide, dopamine, tris(hydorxymethyl)aminomethane and SbCl3 were purchased from AladdinBiochemical Technology. All chemicals were used as receivedwithout further purification.

    2.2 Synthesis of NiCo hydroxide nanosheets ongraphene (NiCo-HNS@GO)

    Graphene oxide (GO) was synthesized by a modified Hummermethod. CoSO4?7H2O (1.124 g, 4 mmol) and NiSO4?6H2O(0.526 g, 2 mmol) were dissolved in 30 mL distilled water to form pink solution. Then the pink solution was added to thesuspension of GO solution (1 mg?mg?1, 80 mL) under stirring,and 5 mL of ammonium hydroxide was added dropwise using aseparatory funnel and stirred for 5 min. Then the mixture wassonicated in a beaker for 30 min to form a brown suspension.The products were collected by centrifugation at 8000 r?min?1for 10 min. The obtained NiCo-HNS@GO was washed threetimes with ethanol and distilled water. After that, NiCo-HNS@GO powder was dried in a freeze dryer for 24 h.

    2.3 Synthesis of polydopamine coated NiCo-HNS@GO (PDA@NiCo-HNS@GO)

    As-prepared NiCo-HNS@GO powder (100 mg) wasdispersed in the mixed solution of 80 mL ethanol and 30 mLdistilled water and stirred at 500 r?min?1 for 30 min. Then,tris(hydroxymethyl) aminomethane (0.484 g) dispersed in 40mL distilled water and dopamine (60 mg) dissolved into 30 mLwere added into the above solution in sequence. After that, themixture was stirred at room temperature of 100 r?min?1 for 24 h.The products were collected by centrifugation at 8000 r?min?1for 10 min and then washed three times with ethanol and distilledwater. The achieved products were dried in a freeze dryer for 24h to obtain the PDA@NiCo-HNS@GO powder.

    2.4 Synthesis of carbon coated Ni-Co nanoparticlesloading on reduced GO (Ni-Co-C@RGO)

    Ni-Co@RGO was synthesized by a pyrolysis process.PDA@NiCo-HNS@GO power (200 mg) was put into porcelainboat and then heated at 800 °C for 1 h under Ar atmosphere witha heating rate of 5 °C?min?1. Finally, black Ni-Co-C@RGOsample was collected after cooling to room temperature.

    2.5 Synthesis of carbon coated Sb nanoparticlesloading on RGO (Sb-C@RGO)

    Ni-Co-C@RGO (100 mg) and SbCl3 (0.26 g) were mixed in60 mL ethanol, and ultrasonically treated in a beaker for 30 minto form a blue suspension. Then, the above solution wastransferred to a 100 mL Teflon-lined stainless-steel autoclaveand heated at 100 °C for 24 h. After cooling to room temperature,the products were collected by centrifugation at 8000 r?min?1 for10 min. The obtained Sb-C@RGO was washed several timeswith ethanol and distilled water. After that, Sb-C@RGO weredried in a freeze dryer for 24 h. For comparison, Sb@RGO wasobtained under the same experimental procedures, except forPDA coating.

    2.6 Materials characterization

    The structure and composition of samples were studied byPower X-ray diffraction (XRD, DMAX-2500PC, Japan) usingCu-Kα radiation. Field-emission scanning electron microscopy(FESEM, JSM-7800F, JEOL, Japan) and transmission electronmicroscopy (TEM, JEM-F200, JEOL, Japan) were employed toprobe the morphology and structure of the samples. Ramanspectra of the samples were achieved by a Raman spectroscope(JY-HR800, excitation wavelength of 532 nm, France). X-rayphotoelectron spectroscopy (XPS, AXIS Supra, UK) was usedto obtain the surface chemical species of the samples. Thesurface area and pore-size distribution of the samples werestudied by an ASAP2020 volumetric adsorption analyzer(Micromeritics, USA) at 77 K. The mass loading of Sb incomposite was investigated by Thermogravimetry (TGA) onPerkinElmer (TGA8000, USA) with an elevated temperaturewith heating rate of 10 °C?min?1.

    2.7 Fabrication of half-cell and full-cell configurations

    The electrochemical properties of the Sb-C@RGO sampleswere evaluated through a half-cell configuration and a full-cellconfiguration. The working electrode was prepared by casting aslurry of active materials, carbon black, and polyvinylidenefluoride (PVDF) with a mass ratio of 7 : 2 : 1 on a copper foiland drying under vacuum at 80 °C for 10 h. The methyl-2-pyrrolidone (NMP) was added to assist to form a slurry. Thecopper foil coated with electrode materials was punched intoround electrode with a diameter of 12 mm. The mass loading ofthe active material on the electrode was 1 mg?cm?2. For thefabrication of half-cell, the metal Na foil (worked as the counterand reference electrodes), glass fiber separator and Sb-C@RGOelectrode were put into a coin type cell (2032 type) in sequence.Then, 80 μL of 1 mol?L?1 NaClO4 (ethylene carbonate/dimethylcarbonate/ethyl methyl carbonate (EC/DMC/EMC) volume ratiois 1 : 1 : 1, 5.0% fluoroethylene carbonate (FEC)) was added.After that, the half-cell was sealed by a sealing machine. Beforethe full-cell fabrication, the Sb-C@RGO negative electrodeneeded a presodiated process. Typically, the Sb-C@RGOelectrode was cycled in a half cell for 5 cycles under a chargedischargecurrent density of 0.05 A?g?1, ended at a sodiated state(at 0.01 V), and then detached in an Ar-filled glovebox. Duringthe full-cell fabrication, the home-made polyaniline-derivedporous carbon (PDPC) positive electrode replaced metal Naelectrode. More details about the PDPC electrode can be seen inthe previous works 35. Herein, the active mass ratio between theSb-C@RGO and PDPC is 1 : 1 during the cell assembly.

    2.8 Electrochemical measurements

    The electrochemical workstations (IVIUMnSTAT, IviumTechnologies BV, The Netherlands and CHI760e, ShanghaiChenhua, China) were used to record the cyclic voltammetry(CV) curves and galvanostatic intermittent titration technique(GITT) curves. A battery test instrument (Land CT2001A,Wuhan Land Electronics. Ltd.) was employed to record thecapacities and coulombic efficiencies during the differentcurrent densities and long-term cycling tests.

    3 Results and discussion

    Fig. 1 schematically illustrates the whole fabrication processof two-dimensional (2D) Sb-C@RGO sheets. Typically, thehigh-density individual Ni-Co hydroxide nanosheets arehomogeneously grown on GO sheets (denoted as NiCoHNS@GO) by a coprecipitation method 36, as confirmed by theSEM and TEM images (Figs. S1 and S2, SupportingInformation). An ultrathin polydopamine (PDA) layer was thencoated on the NiCo-HNS@GO composites, as evidenced by thicker Ni-Co hydroxide nanosheets shown in SEM (Fig. S1)and TEM (Figs. S1 and S3) images. After pyrolysis at 800 °C,the Co-Ni hydroxide nanosheets are transformed into CoNi alloynanoparticles with an average size of 23.50 nm which arehomogenously dispersed on reduced graphene oxide (RGO)nanosheets (denoted as NiCo@RGO) (Figs. S1 and S4).Afterward, NiCo@RGO served as a structural template, and theNiCo nanoparticles were in situ substituted by Sb nanoparticlesthrough a galvanic replacement reaction to obtain Sb-C@RGOsample (Fig. 2a,b) 20,36,37. High-resolution TEM images (Fig. 2c),selected area electron diffraction (SAED) (Fig. 2d) and energydispersiveX-ray spectroscopy (EDX) elemental mappingimages (Fig. 2e–i) show that amorphous Sb nanoparticles werehomogenously dispersed on RGO sheets. During the synthesizedprocedure, the introduced PDA layer can be carbonized intocarbon network, which plays a role in anchoring Ni-Conanoparticles onto RGO sheets homogenously, which is consistentwith other observation 36,37. Well-dispersed Ni-Co nanoparticles ishelpful to obtain small-sized Sb nanoparticles. Without PDAcoating, large and irregular Sb nanoparticles were formed (denotedas Sb@RGO, Figs. S5 and S6).

    XRD pattern of Sb-C@RGO composite in Fig. 3a shows twobroad diffraction peaks around 28.2° and 54.7°, which suggeststhat Sb-C@RGO composite is mainly composed by amorphouscarbon (or graphene shown in Fig. S7) and amorphous Sb and/orultra-small Sb nanocrystals. The amorphous and/or ultrasmallproperty of Sb are consistent with HRTEM observation andelectron diffraction (ED) pattern (Fig. 2d). For comparison,Sb@RGO shows the strong diffraction peaks (36.5°, 42.5°,44.3°, 51.6°, 61.6°, and 76.0°) assigned to Ni (JCPDS No. 87-0712) and CoO (JCPDS No. 75-0533) and weak diffraction peak(28.4°) assigned to Sb (JCPDS No. 71-1173). The diffractionpeaks of Ni and CoO suggest that Ni-Co nanoparticles are notfully substituted by Sb. Fig. 3b shows the Raman spectra for Sb-C@RGO which has two broad disordered induced D-bands andin-plane vibration G-bands at round 1344 and 1578 cm?1,respectively, suggesting the lower degree of graphitic orderingof RGO substrate. For the Sb@RGO sample, the D- and Gbandsdisappear in the Raman spectra, primarily due to thedominated Ni and CoO particles which is consistent with TEMobservation in Fig. S6.

    The pore structure of as-prepared Sb-C@RGO is investigatedby Brunauer-Emmet-Teller (BET) characterization. Fig. 3cshows the N2 adsorption/desorption isotherms of Sb-C@RGOwith a type H4 hysteresis at the high-pressure region, indicatingadsorption-desorption in narrow slitlike pores formed bystacking Sb-C@RGO sheets. The pore-size distribution curve inFig. 3d shows the pores of Sb-C@RGO are primarily mesoporesto macropores. The BET surface area and the pore volume valuesof Sb-C@RGO sample are evaluated to 54.65 m2?g?1 and 0.086cm3?g?1, respectively, which are lower than that of RGOsubstrate (Fig. S8). On the contrary, Sb@RGO shows the lowBET surface area (18.30 m2?g?1) and the low adsorption volume(0.024 cm3?g?1).

    The XPS was further used to study the surfacecharacterization of as-prepared carbon. The full-scale XPSspectra reveal that both Sb-C@RGO and Sb@RGO samples aremainly composed by C, O, N, and Sb atoms. No Co and Nisignals were detected in Sb@RGO, which is probably due to thatformed Sb was coated on Ni and CoO particles after the galvanicreplacement reaction. The Sb 3d spectrum of Sb-C@RGOsample shows two peaks at 530.55 and 539.90 eV,corresponding to Sb 3d5/2 and Sb 3d3/2 of Sb2O3 20, indicating thepartial oxidation of Sb on the surface. The two Sb 3d XPS peaksfor Sb@RGO are negatively moved, which is mainly associatedto reduce oxidation degree of Sb in Sb@RGO. In view of that noSb2O3 signals are detected in the XRD and Raman spectra, it isspeculated that the oxidation is limited to the surface of the Sbparticles 20. TGA curve in Fig. S9 shows that the mass loadingof Sb in Sb-C@RGO sample is 77%.

    The Na+ charge storage behavior of as-prepared samples wasinitially studied in a half-cell configuration vs. Na metal. Fig.S10 shows the CV curves of Sb-C@RGO at a sweep rate of 0.2mV?s?1 within a potential range of 0.01–3.00 V (vs. Na/Na+).During the first discharging process, the large current response at the low potential around 0.89 V vs. Na/Na+, which is primallydue to the formation of solid electrolyte interface (SEI) 13,19. Inthe subsequent discharging process, two broad reduction peaks(around 0.90 and 0.32 V vs. Na/Na+) appear, stemming from themultistep alloying processes 19,20. These two broad reductionpeaks tend to be stable in the followed cycles. For the initialanodic scan, two peaks around 0.81 and 1.84 V vs. Na/Na+,corresponding to the multistep dealloying reactions from Na3Sbinto Sb 19,20, suggesting the good reversibility.

    Fig. 4a displays the discharge/charge curves of the Sb-C@RGO in the initial ten cycles at a current density of 0.1 A?g?1.The first discharge curve with several plateaus exhibits the largeirreversible capacity, which is mainly due to the irreversiblereactions for SEI formation 19,20. In the followed chargingprocess, two plateaus around 0.75 and 1.75 V vs. Na/Na+ arefound and can regarded as the multistep dealloying reactionsfrom Na3Sb into Sb, which is consistent with CV observation.Only one prominent plateau around 1.0 V vs. Na/Na+ in thesecond discharging curve, corresponding to cathodic CV peak inFig. S10. In the subsequent charge/discharge processes, thecharge/discharge curves tend to overlap, suggesting the goodreversibility Sb-Na alloying/dealloying reactions on Sb-C@RGO. Fig. 4b displays the typical charge/discharge curvesranging from 0.1 to 10.0 A?g?1. These slope charge/dischargecurves under the high rates show the similar profile with thecharge/discharge curve at low rate of 0.1 A?g?1, indicating thehigh-rate capability. According to the charge/discharge curves atthe different rates, the specific capacities of Sb-C@RGO can beevaluated to 521.5, 433.5, 372.7, 332.6, 306.9, 263.5, 186.2,124.4 and 83.5 mAh?g?1, corresponding to the current densitiesof 0.1, 0.2, 0.5, 0.8, 1, 2, 5, 8 and 10 A?g?1, respectively. The values of specific capacity for Sb-C@RGO electrode are muchhigher than that of Sb@RGO electrode and are highlycomparable with other reported Sb anodes (Table S1, SupportingInformation), which is primarily due to unique 2D nanostructurecomposed by ultra-small Sb nanoparticles and highly conductiveRGO, thus providing shorten Na+ diffusion path and large activesites for Na+ charge storage. To further unveil the fast kineticsof Na+ charge storage on Sb-C@RGO electrode, galvanostaticintermittent titration technique (GITT) was further carried out(Fig. S11). The achieved GITT curves can be used to qualify theNa+ diffusion coefficient (Dk) through the Fick’s second law(Fig. 4d). The Dk values for Sb-C@RGO fall in between 5.69 ×10?12 and 6.06 × 10?10 cm2?s?1, which is higher than that ofSb@RGO, suggesting the fast Na+ diffusion kinetics of Sb-C@RGO. Furthermore, Sb-C@RGO displays better cyclingstability than Sb@RGO (Figs. S12 and S13).

    To demonstrate the feasibility of Sb-C@RGO as the highperformanceelectrode for emerging energy-storage devices, ahybrid cell configuration (e.g., SIC) was fabricated byemploying the Sb-C@RGO as the negative electrode (batterytype) and home-made activated carbon (PDPC) as the positiveelectrode (capacitive type) in a Na+ based organic electrolyte, asschematically illustrated in Fig. 5a. The lower potential andupper potential of SIC were set to 1.0 and 4.0 V, respectively,which is mainly because of avoiding the Na plating andoxidative decomposition of electrolytes. Fig. 5b displays theCVs of Sb-C@RGO//PDPC SIC under the different scan ratesfrom 5 to 80 mV?s?1. All these curves display the quasirectangularprofiles, which is mainly associated to thesynergistic effect of battery-type Sb-C@RGO electrode andcapacitive PDPC electrode. Even the scan rate is up to 80mV?s?1, the quasi-rectangular profile of CV curves is stillpreserved, suggesting the high-rate performance of as-fabricatedSIC. Fig. 5c displays the typical charge/discharge curves of Sb-C@RGO//PDPC SIC under the rates from 0.1 and 5 A?g?1. Allthese curves display the symmetric linear profile, furtherconfirming the excellent capacitive properties of Sb-C@RGO//PDPC SIC. From the discharge/charge curves (Fig.5d), the specific capacities of Sb-C@RGO//PDPC SIC can bequalified to 56.5, 52.4, 47.0, 43.0, 40.7 and 33.9 mAh?g?1,corresponding to 0.1, 0.2, 0.5, 0.8, 1 and 2 A?g?1. Even thecurrent density increases to 5 A?g?1, further demonstrating thegood rate capability. Nyquist plot (achieved at 2.5 V with thefrequency range from 0.01 to 105 Hz) shown in Fig. 5e displaysa semicircle in the high frequency area and an approximatelyvertical curve in the low frequency area, suggesting a nearlycapacitive behavior of as-fabricated Sb-C@RGO//PDPC SIC.

    Fig. 5f displays the Ragone plot (energy density vs. powerdensity) of as-prepared SIC. Our Sb-C@RGO//PDPC SICexhibits a high energy density of 140.75 Wh?kg?1 at a powerdensity of 250.84 W?kg?1. Even the power density is magnified~50 times to 12.43 kW?kg?1, this SIC still delivers a high energydensity of 55 Wh?kg?1. Therefore, within a shortcharge/discharge of ~3.2 min, Sb-C@RGO//PDPC SIC canstore/release quite a high energy density of 108.5 Wh?kg?1. Fig.5f further shows that the energy and power densities of Sb-C @RGO//PDPC SIC are highly comparable to many state-of-artreported SICs, including V2O5-CNTs//activated carbon (AC) 38,MoSe2/G//AC 39, TiO2-C//AC 40, N-Ti3C2Tx//AC 41, Hardcarbon//Graphene 42, Na2Ti3O7//AC 43, MoS2-C//C-HNT 44,(POM)@Mxene//AC 45, MWTOG//AC 46, AC//VS4-CNT 47,HC//AC 48, In6S7//AC 8, and other Sb anodes based SICs (TableS2). In addition, Sb-C@ RGO//PDPC SIC shows the goodcycling stability with an acceptable capacity retention value of66.27% after 1000 cycles at a current density of 2 A?g?1. TheCoulombic efficiency is approximate 100% during the wholecycling process.

    4 Conclusions

    In summary, we have demonstrated that graphene could beused an ideal substrate to anchoring Sb nanoparticles by a facilepyrolysis process and galvanic replacement reaction with theassistance of PDA coating. The 2D layered structure of Sb-C@RGO composite increases the atomic interface contact withNa+ and provides shortened ion diffusion path, thus facilitatingcharge transfer. Half-cell test shows that Sb-C@RGO delivers ahigh reversible specific capacity of 521.5 mAh?g?1 at a currentdensity of 0.1 A?g?1 and a high rate capability of 83.5 mAh?g?1at 10 A?g?1. SICs were fabricated by employing Sb-C@RGOcomposite as the negative electrode and home-made PDPC asthe positive electrode, which delivers an energy density of140.75 Wh?kg?1 at 250.84 W?kg?1 and remains 55 Wh?kg?1 evenat a high power density of 12.43 kW?kg?1. These findings mayprovide a way for designing 2D layered composite with largeactive sites and shorten ion diffusion path toward highperformancesodium-ion based energy storage devices includingcapacitors and batteries.

    Author Contributions: Conceptualization, Mi, C. L., Qin,Y. Y., Shi, Y. C. and Wang, R. T.; Methodology, Huang, X. L.;Software, Mi, C. L.; Validation, Mi, C. L., Qin, Y. Y. and Huang,X. L.; Formal Analysis, Qin, Y. Y.; Investigation, Luo, Y. J.;Resources, Huang, X. L.; Data Curation, Mi, C. L.; Writing –Original Draft Preparation, Mi, C. L. and Wang, R. T.; Writing –Review amp; Editing, Wang, R. T. and Shi, Y. C.; Visualization,Zhang, Z. W.; Supervision, Wang, C. X.; Project Administration, Yin, L. W and Wang. R. T.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. Nat. Rev. Mater.2018, 3, 18013. doi: 10.1038/natrevmats.2018.13

    (2) Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Adv.Energy Mater. 2020, 10, 2001310. doi: 10.1002/aenm.202001310

    (3) Zhang, Z. H.; Gu, Z. H.; Zhang, C. G.; Li, J. B.; Wang, C. Y.Batteries Supercaps 2021, 4, 1680. doi: 10.1002/batt.202100042

    (4) Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.;Hou, H. S.; Zou, G. Q.; Ji, X. B. Adv. Energy Mater. 2021, 11,2003804. doi: 10.1002/aenm.202003804

    (5) Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Adv.Mater. 2017, 29, 1702093. doi: 10.1002/adma.201702093

    (6) Chang, X. Q.; Huang, T. Y.; Yu, J. Y.; Li, J. B.; Wang, J.; Wei, Q. L.Batteries Supercaps 2021, 4, 1567. doi: 10.1002/batt.202100043

    (7) Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (8) Zhu, C. Y.; Yu, W. Q.; Zhang, S. X.; Chen, J. C.; Liu, Q. Y.; Li, Q. Y.;Wang, S. J.; Hua, M. H.; Lin, X. H.; Yin, L. W.; et al. Adv. Mater.2023, 35, 2211611. doi: 10.1002/adma.202211611

    (9) Yu, W. Q.; Zhu, C. Y.; Wang, R. T.; Chen, J. C.; Liu, Q. Y.; Zhang, S.X.; Zhang, S. B.; Sun, J. F.; Yin, L. W. Energy Environ. Mater. 2023,6, 12337. doi: 10.1002/eem2.12337

    (10) Zhang, H.; Hasa, I.; Passerini, S. Adv. Energy Mater. 2018, 8,1702582. doi: 10.1002/aenm.201702582

    (11) Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X.Adv. Mater. 2017, 29, 1700622. doi: 10.1002/adma.201700622

    (12) Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Adv. EnergyMater. 2017, 7, 1602898. doi: 10.1002/aenm.201602898

    (13) Yu, W. Q.; Zhu, C. Y.; Wang, R. T.; Chen, J. C.; Liu, Q. Y.; Zhang, S.X.; Gao, Z. J.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. Rare Metals2022, 41, 3360. doi: 10.1007/s12598-022-02015-z

    (14) Yin, J.; Qi, L.; Wang, H. Y. ACS Appl. Mater. Interfaces 2012, 4,2762. doi: 10.1021/am300385r

    (15) Yuan, J.; Qiu, M.; Hu, X.; Liu, Y. J.; Zhong, G. B.; Zhan, H. B.; Wen,Z. H. ACS Nano 2022, 16, 14807. doi: 10.1021/ acsnano.2c05662

    (16) Ma, Y.; Zhang, L. Y.; Yan, Z. X.; Cheng, B.; Yu, J. G.; Liu, T. Adv.Energy Mater. 2022, 12, 2103820. doi: 10.1002/aenm. 202103820

    (17) Liu, C.; Zhang, M. X.; Zhang, X.; Wan, B.; Li, X. N.; Gou, H. Y.;Wang, Y. X. Yin, F. X.; Wang, G. K. Small 2020, 16, 2004457.doi: 10.1002/smll.202004457

    (18) Zhao, R. Z.; Di, H. X.; Wang, C. X.; Hui, X. B.; Zhao, D. Y.; Wang,R. T.; Zhang, L. Y.; Yin, L. W. ACS Nano 2020, 14, 13938.doi: 10.1021/acsnano.0c06360.

    (19) Li, Q. H.; Zhang, W.; Peng, J.; Zhang, W.; Liang, Z. X.; Wu, J. W.;Feng, J. J.; Li, H. X.; Huang, S. M. ACS Nano 2021, 15, 15104.doi: 10.1021/acsnano.1c05458

    (20) Yang, K. X.; Tang, J. F.; Liu, Y.; Kong, M.; Zhou, B.; Shang, Y. C.;Zhang, W. H. ACS Nano 2020, 14, 5728.doi: 10.1021/acsnano.0c00366

    (21) Liu, Z. M.; Yu, X. Y.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016,9, 2314. doi:10.1039/c6EE01501H

    (22) He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Nano Lett.2014, 14, 1255. doi: 10.1021/nl404165c

    (23) Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu,R. Z.; Liu, J. W.; Sun, L. T.; Gu, L.; et al. Nano Lett. 2017, 17, 2034.doi: 10.1021/acs. nanolett.7b00083

    (24) Liu, Y.; Zhou, B.; Liu, S.; Ma, Q. S.; Zhang, W. H. ACS Nano 2019,13, 5885. doi: 10.1021/acsnano. 9b01660

    (25) Hou, Z. G.; Zhang, X. Q.; Chen, J. W.; Qian, Y. T.; Chen, L. F.; Lee,P. S. Adv. Energy Mater. 2022, 12, 210453.doi: 10.1002/aenm.202104053

    (26) Bi, X. Y.; Li, M. C.; Zhou, G. Q.; Liu, C. Z.; Huang, R. Z.; Shi, Y.;Xu, B. B.; Guo, Z. H.; Fan, W.; Algadi, H.; et al. Nano Res. 2023, 16,7696. doi: 10.1007/s12274-023-5586-1

    (27) Duan, J.; Zhang, W.; Wu, C.; Fan, Q. J.; Zhang, W. X.; Hu, X. L.;Huang, Y. H. Nano Energy 2015, 16, 479.doi: 10.1016/j.nanoen.2015.07.021

    (28) Xiao, B.; Sun, Z.; Zhang, H.; Wu, Y.; Li, J.; Cui, J.; Han, J.; Li, M.;Zheng, H.; Chen, J.; et al. Energy Environ. Sci. 2023, 16, 2153.doi: 10.1039/D2EE03970B

    (29) Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.;Cheng, S. J.; Jiang, K. ACS Nano 2019, 13, 9533.doi: 10.1021/acsnano.9b04520

    (30) Chen, B. C.; Qin, H. Y.; Li, K.; Zhang, B.; Liu, E. Z.; Zhao, N. Q.;Shi, C. S.; He, C. N. Nano Energy 2019, 66, 104133.doi: 10.1016/j.nanoen.2019.104133

    (31) Guo, X.; Gao, H.; Wang, S. J.; Yang, G.; Zhang, X. Y.; Zhang, J. Q.;Liu, H.; Wang, G. X. Nano Lett. 2022, 22, 1225.doi: 10.1021/acs.nanolett.1c04389

    (32) Dong, W. X.; Qu, Y. F.; Liu, X.; Chen, L. F. Flatchem 2023, 37,100467. doi: 10.1016/j.flatc.2022.100467

    (33) Yao, J. J.; Li, F. Z.; Zhou, R. Y.; Guo, C. C.; Liu, X. R.; Zhu, Y. R.;Chin. Chem. Lett. 2023, 108354. doi: 10.1016/j.cclet.2023.108354

    (34) Bo, Z.; Kong, J.; Yang, H. C.; Zheng, Z. W.; Chen, P. P.; Yan, J. H.;Cen, K. F. Acta Phys. -Chim Sin. 2022, 38, 2005054. [薄拯, 孔競,楊化超, 鄭周威, 陳鵬鵬, 嚴建華, 岑可法. 物理化學學報, 2022,38, 2005054.] doi: 10.3866/PKU.WHXB202005054

    (35) Shao, M. J.; Li, C. X.; Li, T.; Yu, W. Q.; Wang, R. T.; Zhang, J.; Yin,L. W. Adv. Funct. Mater. 2020, 30, 2006561.doi: 10.1002/adfm.202006561

    (36) Tang, T.; Jiang, W. J.; Liu, X. Z.; Deng, J.; Niu, S.; Wang, B.; Jin, S.F.; Zhang, Q.; Gu, L.; Hu, J. S.; et al. J. Am. Chem. Soc. 2020, 142,7116. doi: 10.1021/jacs.0c01349

    (37) Pu, B.; Liu, Y.; Bai, J.; Chu, X.; Zhou, X. F.; Qing, Y.; Wang, Y. B.;Zhang, M. Z.; Ma, Q. S.; Xu, Z.; et al. ACS Nano 2022, 16, 18746.doi: 10.1021/acsnano.2c07472

    (38) Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F.ACS Nano 2012, 6, 4319. doi: 10.1021/nn300920e

    (39) Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sustain. Energy Fuels2019, 3, 467. doi: 10.1039/C8SE00446C

    (40) Li, H, X.; Lang, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T.Y.; Liu, W. S.; Yan, X. B. Adv. Funct. Mater. 2018, 28, 1800757.doi: 10.1002/adfm.201800757

    (41) Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou,G. F.; Dou, S. X.; Sun, J. Y. ACS Nano 2020, 14, 867.doi: 10.1021/acsnano.9b08030

    (42) Wang, S. J.; Wang, R. T.; Zhang, Y. B.; Jin, D. D.; Zhang, L. J. PowerSources 2018, 379, 33. doi: 10.1016/j.jpowsour.2018.01.019

    (43) Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H.; Zhang, X.G.Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264

    (44) Gao, J. Y.; Li, Y. P.; Liu, Y.; Jiao, S. H.; Li, J.; Wang, G. R.; Zeng, S.Y.; Zhang, G. Q. J. Mater. Chem. A 2019, 7, 10028.doi: 10.1039/C9TA05666A

    (45) Chao, H. X.; Qin, H. Q.; Zhang, M. D.; Huang, Y. C.; Gao, L. F.; Gu,H. L.; Wang, K.; Teng, X. L.; Cheng, J. K.; Lu, Y. K.; et al. Adv.Funct. Mater. 2021, 31, 2007636. doi: 10.1002/adfm.20200636

    (46) Le, Z. Y.; Liu, F.; Nie, P.; Li, X. R.; Liu, X. Y.; Bian, Z. F.; Chen, G.;Wu, H. B.; Lu, Y. F. ACS Nano 2017, 11, 2952.doi: 10.1021/acsnano.6b08332

    (47) Song, Z. R.; Zhang, G. Y.; Deng, X. L.; Tian, Y.; Xiao, X. H.; Deng,W. T.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Adv. Funct. Mater. 2022, 32,2205453. doi: 10.1002/ adfm.202205453

    (48) Liu, Q. Y.; Chen, J. C.; Du, D. N.; Zhang, S. X.; Zhu, C. Y.; Zhang, Z.W.; Wang, C. X.; Yin, L. W.; Wang, R. T. J. Mater. Chem. A 2023,doi: 10.1039/D3TA01098H

    國家自然科學基金(52272224, 5190218), 山東省科技型中小企業(yè)創(chuàng)新能力提升工程(2021TSGC1149)和山東省高等學校青年創(chuàng)新團隊發(fā)展計劃(10000082295015)資助項目

    猜你喜歡
    石墨烯
    周期性結(jié)構(gòu)的石墨烯對太赫茲波的吸收特性研究
    光學儀器(2016年5期)2017-01-12 18:17:53
    氧化石墨烯在純棉織物上的抗菌應(yīng)用
    紡織導報(2016年12期)2017-01-06 12:11:11
    石墨烯負載納米銀復合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對石墨烯散熱效果的影響
    海爾在石墨烯領(lǐng)域發(fā)展前景展望
    綜合化學實驗設(shè)計:RGO/MnO復合材料的合成及其電化學性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    鋰離子電池石墨烯復合電極材料專利分析
    二維材料石墨烯的性質(zhì)與應(yīng)用
    石墨烯納米結(jié)構(gòu)中負微分電阻效應(yīng)研究
    光學儀器(2015年4期)2015-09-24 04:01:22
    石墨烯量子電容的理論研究
    科技視界(2015年25期)2015-09-01 17:59:32
    99热这里只有精品一区| 国产一区二区三区av在线 | 国产综合懂色| 在线观看免费视频日本深夜| 色吧在线观看| 99riav亚洲国产免费| 国产69精品久久久久777片| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 日本一二三区视频观看| 亚洲人成网站高清观看| 国产极品精品免费视频能看的| 欧美日韩在线观看h| 免费电影在线观看免费观看| 少妇的逼好多水| av免费在线看不卡| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 性插视频无遮挡在线免费观看| 成人av在线播放网站| 一级av片app| 日本三级黄在线观看| 国产精品麻豆人妻色哟哟久久 | 春色校园在线视频观看| 亚洲欧美日韩高清专用| 美女 人体艺术 gogo| 国产一级毛片在线| 国产精品永久免费网站| 亚洲在线自拍视频| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 亚洲国产高清在线一区二区三| 欧美一区二区精品小视频在线| 成人三级黄色视频| 久久久久久国产a免费观看| 狂野欧美激情性xxxx在线观看| 色视频www国产| 在现免费观看毛片| 亚洲一区高清亚洲精品| 高清在线视频一区二区三区 | 国产亚洲av嫩草精品影院| 男人和女人高潮做爰伦理| 国产日本99.免费观看| 直男gayav资源| 国产综合懂色| 亚洲成av人片在线播放无| 亚洲欧美日韩东京热| 黄色日韩在线| 久久热精品热| 18禁黄网站禁片免费观看直播| 色噜噜av男人的天堂激情| 99久久中文字幕三级久久日本| 一级毛片电影观看 | 久久久成人免费电影| av在线天堂中文字幕| 99热全是精品| www.av在线官网国产| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| 六月丁香七月| 日韩大尺度精品在线看网址| av天堂在线播放| 久久精品综合一区二区三区| 禁无遮挡网站| 一进一出抽搐动态| 少妇被粗大猛烈的视频| 国产精品av视频在线免费观看| 日韩欧美一区二区三区在线观看| www日本黄色视频网| 91麻豆精品激情在线观看国产| 男女边吃奶边做爰视频| 一个人免费在线观看电影| 国产视频首页在线观看| 性插视频无遮挡在线免费观看| 欧美精品国产亚洲| 国产精品日韩av在线免费观看| 69av精品久久久久久| 国产淫片久久久久久久久| 麻豆精品久久久久久蜜桃| 内地一区二区视频在线| 亚洲在线观看片| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 成人三级黄色视频| 一级毛片我不卡| 国产大屁股一区二区在线视频| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 51国产日韩欧美| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 日韩av在线大香蕉| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 亚洲中文字幕日韩| 亚洲av成人av| 成年免费大片在线观看| 久久精品国产亚洲av涩爱 | 亚洲精品456在线播放app| 亚洲欧美日韩东京热| 久久这里只有精品中国| 国产精品一区www在线观看| 美女被艹到高潮喷水动态| 亚洲激情五月婷婷啪啪| 国产黄片视频在线免费观看| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| 床上黄色一级片| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 亚洲欧美清纯卡通| 一级毛片aaaaaa免费看小| 日韩精品青青久久久久久| 成人漫画全彩无遮挡| 韩国av在线不卡| 国产免费男女视频| 日韩三级伦理在线观看| 午夜激情福利司机影院| 国产精品1区2区在线观看.| 国产一区亚洲一区在线观看| a级毛色黄片| 少妇熟女aⅴ在线视频| 美女国产视频在线观看| 中文字幕精品亚洲无线码一区| 国产免费男女视频| 国产成年人精品一区二区| 国产精品一区www在线观看| 91狼人影院| 国产不卡一卡二| 99riav亚洲国产免费| 国产欧美日韩精品一区二区| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线| 亚洲在久久综合| 免费av毛片视频| 老司机影院成人| 精品久久久噜噜| 在线a可以看的网站| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 丰满人妻一区二区三区视频av| 偷拍熟女少妇极品色| 狠狠狠狠99中文字幕| 日韩av在线大香蕉| 丝袜美腿在线中文| 中国美女看黄片| 狂野欧美白嫩少妇大欣赏| 丝袜喷水一区| 看十八女毛片水多多多| 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 亚洲av熟女| 99热这里只有是精品在线观看| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看 | 国产人妻一区二区三区在| 成人永久免费在线观看视频| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 久久精品人妻少妇| 国模一区二区三区四区视频| 亚洲av中文字字幕乱码综合| 色综合亚洲欧美另类图片| 成人性生交大片免费视频hd| 国产精品国产高清国产av| 亚洲18禁久久av| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看| 国产黄a三级三级三级人| 国产精品伦人一区二区| 亚洲成人久久性| 18禁在线播放成人免费| 联通29元200g的流量卡| avwww免费| 一本一本综合久久| 三级经典国产精品| 噜噜噜噜噜久久久久久91| 国产91av在线免费观看| 国产极品天堂在线| 精品欧美国产一区二区三| 国产免费男女视频| 久久精品综合一区二区三区| 国产综合懂色| 国产不卡一卡二| 国产淫片久久久久久久久| 内射极品少妇av片p| 97超视频在线观看视频| 免费看日本二区| 国产极品精品免费视频能看的| 免费看美女性在线毛片视频| av专区在线播放| 国产不卡一卡二| 国产真实乱freesex| 亚洲最大成人中文| 91久久精品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 三级国产精品欧美在线观看| videossex国产| 欧美高清成人免费视频www| 精品国产三级普通话版| 干丝袜人妻中文字幕| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 久久这里有精品视频免费| 黄片wwwwww| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 天堂√8在线中文| 特大巨黑吊av在线直播| 午夜福利在线在线| 在线免费十八禁| 亚洲无线观看免费| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 午夜免费激情av| 久久精品国产亚洲av涩爱 | 国产免费男女视频| 91久久精品国产一区二区三区| 亚洲第一电影网av| 亚洲av中文av极速乱| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 国产国拍精品亚洲av在线观看| 午夜精品国产一区二区电影 | 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 久久久a久久爽久久v久久| 精品人妻视频免费看| 在现免费观看毛片| av天堂中文字幕网| 狠狠狠狠99中文字幕| 99久久精品一区二区三区| 一区福利在线观看| 欧美丝袜亚洲另类| 三级国产精品欧美在线观看| 99riav亚洲国产免费| 伦精品一区二区三区| 亚洲av成人av| 国产精品永久免费网站| 26uuu在线亚洲综合色| 午夜爱爱视频在线播放| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 看黄色毛片网站| 久久中文看片网| 国产精品伦人一区二区| 男的添女的下面高潮视频| 六月丁香七月| 大香蕉久久网| 色哟哟·www| 国内久久婷婷六月综合欲色啪| 欧美又色又爽又黄视频| 毛片女人毛片| 高清午夜精品一区二区三区 | 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 日韩欧美在线乱码| 波多野结衣高清作品| 久久精品国产亚洲av天美| av天堂在线播放| 精品一区二区三区视频在线| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 高清在线视频一区二区三区 | 黑人高潮一二区| 内地一区二区视频在线| 少妇丰满av| 韩国av在线不卡| 1000部很黄的大片| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 亚洲精品国产成人久久av| 真实男女啪啪啪动态图| 美女国产视频在线观看| 别揉我奶头 嗯啊视频| 久久人人精品亚洲av| 久99久视频精品免费| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 中国国产av一级| 99热精品在线国产| 免费电影在线观看免费观看| 国产91av在线免费观看| 亚洲自拍偷在线| 人妻少妇偷人精品九色| av.在线天堂| 亚洲精品影视一区二区三区av| 亚洲在久久综合| 综合色av麻豆| 欧美高清成人免费视频www| 亚洲av成人av| 大又大粗又爽又黄少妇毛片口| 久久久久久伊人网av| 中文字幕免费在线视频6| 人人妻人人澡欧美一区二区| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 午夜老司机福利剧场| 亚洲人成网站在线观看播放| 日韩欧美精品v在线| 国产成人a∨麻豆精品| 校园春色视频在线观看| 亚洲成av人片在线播放无| 国产一区二区三区av在线 | 不卡视频在线观看欧美| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 国产伦在线观看视频一区| 亚洲av.av天堂| 久久久国产成人免费| 搞女人的毛片| 国产一区亚洲一区在线观看| 亚洲一区高清亚洲精品| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 国产白丝娇喘喷水9色精品| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 日本-黄色视频高清免费观看| 亚洲七黄色美女视频| 一本精品99久久精品77| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 热99在线观看视频| 亚洲国产精品久久男人天堂| 国产成人91sexporn| 蜜桃久久精品国产亚洲av| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 日韩欧美三级三区| 国产色婷婷99| 亚洲av成人av| 成人午夜精彩视频在线观看| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 有码 亚洲区| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 免费观看精品视频网站| 一级毛片电影观看 | 99久久九九国产精品国产免费| 嫩草影院新地址| 麻豆成人av视频| 免费看美女性在线毛片视频| 天天一区二区日本电影三级| 两个人视频免费观看高清| 国产精品99久久久久久久久| 亚洲av熟女| 国产精品一区二区三区四区免费观看| 亚洲五月天丁香| 亚洲经典国产精华液单| 欧美成人一区二区免费高清观看| 在线观看免费视频日本深夜| 99久国产av精品国产电影| 免费观看在线日韩| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 国产中年淑女户外野战色| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 久久99精品国语久久久| 国产精品久久久久久久久免| 国产高清激情床上av| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 国内精品久久久久精免费| 亚州av有码| 国产精品麻豆人妻色哟哟久久 | 久久久成人免费电影| 直男gayav资源| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 日产精品乱码卡一卡2卡三| 色综合亚洲欧美另类图片| 日本爱情动作片www.在线观看| 欧洲精品卡2卡3卡4卡5卡区| 91久久精品电影网| 我要搜黄色片| 啦啦啦观看免费观看视频高清| 看非洲黑人一级黄片| 午夜激情欧美在线| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| a级一级毛片免费在线观看| 久久精品国产清高在天天线| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 亚洲精品影视一区二区三区av| 91狼人影院| 亚洲内射少妇av| 精品久久久久久久久久久久久| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 变态另类成人亚洲欧美熟女| 日本免费a在线| 美女被艹到高潮喷水动态| 亚洲国产欧美人成| 免费av观看视频| 99九九线精品视频在线观看视频| 亚洲国产精品合色在线| 亚洲精品久久国产高清桃花| 1000部很黄的大片| 午夜激情福利司机影院| av国产免费在线观看| 亚洲国产精品久久男人天堂| 国产高清视频在线观看网站| 麻豆一二三区av精品| 乱人视频在线观看| 成年版毛片免费区| 日本欧美国产在线视频| 国产乱人视频| 国产精品久久久久久久久免| 日日撸夜夜添| 国产激情偷乱视频一区二区| 一夜夜www| 亚洲av二区三区四区| 亚洲精品久久国产高清桃花| 国产精品综合久久久久久久免费| 色视频www国产| 男人舔女人下体高潮全视频| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 我的女老师完整版在线观看| 国产黄色小视频在线观看| 在线观看午夜福利视频| 欧美激情国产日韩精品一区| 久久久久久大精品| 中文字幕人妻熟人妻熟丝袜美| 热99在线观看视频| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 激情 狠狠 欧美| 精品久久久久久久久久久久久| 村上凉子中文字幕在线| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 午夜福利在线观看吧| 国产毛片a区久久久久| 在线观看美女被高潮喷水网站| 免费一级毛片在线播放高清视频| 99久久中文字幕三级久久日本| 亚洲图色成人| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 国产精品女同一区二区软件| 亚洲欧美精品综合久久99| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 久久久久九九精品影院| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 亚洲av男天堂| 99久久精品一区二区三区| 午夜亚洲福利在线播放| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| 美女大奶头视频| 久久久久久久久久久丰满| 哪里可以看免费的av片| 日韩国内少妇激情av| 亚洲精品久久国产高清桃花| 91午夜精品亚洲一区二区三区| 91精品国产九色| 国产蜜桃级精品一区二区三区| 99热精品在线国产| 狠狠狠狠99中文字幕| av.在线天堂| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 欧美日韩一区二区视频在线观看视频在线 | 老司机影院成人| 国产熟女欧美一区二区| 国模一区二区三区四区视频| 大香蕉久久网| 一区二区三区四区激情视频 | 在线观看美女被高潮喷水网站| 赤兔流量卡办理| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 国产高清视频在线观看网站| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 高清在线视频一区二区三区 | 日日啪夜夜撸| 久久精品国产亚洲网站| 亚洲精品久久久久久婷婷小说 | 国产精品久久视频播放| av福利片在线观看| 免费人成视频x8x8入口观看| 国产免费一级a男人的天堂| 女人被狂操c到高潮| 国产精品,欧美在线| 国产午夜精品一二区理论片| 99久久无色码亚洲精品果冻| 国内少妇人妻偷人精品xxx网站| 精品日产1卡2卡| 欧美精品国产亚洲| 成人高潮视频无遮挡免费网站| 午夜精品在线福利| 97人妻精品一区二区三区麻豆| 亚洲天堂国产精品一区在线| 国产精品爽爽va在线观看网站| 国产精品1区2区在线观看.| 能在线免费观看的黄片| 看非洲黑人一级黄片| 国产探花在线观看一区二区| 亚洲欧美日韩卡通动漫| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 日韩高清综合在线| 日本与韩国留学比较| 老女人水多毛片| 听说在线观看完整版免费高清| 亚洲经典国产精华液单| 中文字幕精品亚洲无线码一区| 日韩制服骚丝袜av| 国产成人午夜福利电影在线观看| 精品久久久久久久末码| 2022亚洲国产成人精品| 乱码一卡2卡4卡精品| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 性欧美人与动物交配| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久伊人网av| 日韩在线高清观看一区二区三区| 美女内射精品一级片tv| 日产精品乱码卡一卡2卡三| 一本精品99久久精品77| 亚洲av一区综合| 寂寞人妻少妇视频99o| 如何舔出高潮| 成年女人永久免费观看视频| 看十八女毛片水多多多| 99热6这里只有精品| 亚洲av.av天堂| 国产伦在线观看视频一区| 久久九九热精品免费| 午夜福利在线在线| 久久草成人影院| 国产三级在线视频| 97超视频在线观看视频| 老女人水多毛片| 国产精品一区二区三区四区久久| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 少妇丰满av| 丝袜喷水一区| 亚洲国产欧美人成| 色5月婷婷丁香| 99国产精品一区二区蜜桃av| 亚洲成人av在线免费| 国产老妇伦熟女老妇高清| 亚洲av中文av极速乱| 婷婷色av中文字幕| 男女下面进入的视频免费午夜| 99久久成人亚洲精品观看| av又黄又爽大尺度在线免费看 | 国产麻豆成人av免费视频| 只有这里有精品99| 欧美成人免费av一区二区三区| 我的女老师完整版在线观看| av专区在线播放| 国产黄色小视频在线观看| .国产精品久久| 给我免费播放毛片高清在线观看| 亚洲真实伦在线观看| 黄色欧美视频在线观看| 日日摸夜夜添夜夜爱| 2022亚洲国产成人精品| 午夜精品一区二区三区免费看| 国产成人a∨麻豆精品| 人人妻人人澡欧美一区二区| 啦啦啦观看免费观看视频高清| 六月丁香七月| 日韩欧美精品v在线| 99久久精品一区二区三区| 99riav亚洲国产免费| 五月伊人婷婷丁香| 18+在线观看网站| 一本一本综合久久| 婷婷六月久久综合丁香| 欧美+日韩+精品| 国产成人aa在线观看| 国产精品国产三级国产av玫瑰| 九草在线视频观看| 少妇熟女欧美另类| 国产高清视频在线观看网站| 人人妻人人澡人人爽人人夜夜 | 搡老妇女老女人老熟妇| 大型黄色视频在线免费观看| 国产色爽女视频免费观看|