• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    長期探尋的Au23(S-Adm)16 結(jié)構(gòu)及未曾預(yù)期的摻雜效應(yīng)

    2024-07-16 00:00:00馮磊朱澤敏楊穎何宗兵鄒家豐李漫波趙燕伍志鯤
    物理化學(xué)學(xué)報 2024年5期
    關(guān)鍵詞:合成性質(zhì)

    摘要:一鍋同時獲得單個金屬原子摻雜的納米團(tuán)簇與母體團(tuán)簇富有挑戰(zhàn)性。這樣的合成可排除微量雜質(zhì)的影響,使得摻雜和未摻雜納米團(tuán)簇的性質(zhì)對比更加合理可靠。在此,我們首次實(shí)現(xiàn)了這種合成,得到了長期追尋的納米團(tuán)簇Au23(SAdm)16和其單鎘摻雜的Au22Cd1(S-Adm)16納米團(tuán)簇,并通過單晶X射線晶體學(xué)解析了其結(jié)構(gòu)。令人驚訝的是,與以前的報道結(jié)果相反,Au23(S-Adm)16比Au22Cd1(S-Adm)16更穩(wěn)定。另一方面,由于摻入鎘原子后,內(nèi)核Au―Au鍵長度增加,光激發(fā)電子轉(zhuǎn)移阻力增加,導(dǎo)致Au22Cd1(S-Adm)16吸收和發(fā)射強(qiáng)度明顯下降。因而,不僅團(tuán)簇的穩(wěn)定性,而且團(tuán)簇的吸收和發(fā)射強(qiáng)度也與內(nèi)核Au―Au鍵的長度關(guān)聯(lián)。這項(xiàng)工作表明了兩種團(tuán)簇結(jié)構(gòu)上的微小差異就可導(dǎo)致光學(xué)、熱穩(wěn)定性等方面的顯著區(qū)別,也為研究金屬納米團(tuán)簇的構(gòu)效關(guān)系提供了良好的借鑒。

    關(guān)鍵詞:金屬納米團(tuán)簇;合成;Au―Au鍵長;性質(zhì);構(gòu)效關(guān)系

    中圖分類號:O641

    Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects

    Abstract: Metal nanoclusters are rising stars in material science, and one advantageis their atomically precise tunability. It is well known that metal doping can efficientlymodify the properties of metal nanoclusters. In particular, without altering the parentnanocluster framework, doping a single heterometal atom can tailor the properties ofmetal nanoclusters and aid investigations of the structure–property relationship of metalnanoclusters. To our knowledge, the simultaneous synthesis of a single heterometaldopednanocluster and its parent nanocluster is challenging and has not been previouslyreported; however, this is highly desirable because it can prevent the influence of traceimpurities and allow comparison between doped and undoped nanoclusters. The singleCd-doped gold nanocluster Au22Cd1(S-Adm)16 (S-Adm = 1-adamantanethiolate) hasbeen previously synthesized and structurally elucidated. However, the structure of theparent nanocluster, Au23(S-Adm)16, remains unknown, inspiring this investigation. In this study, we synthesized Au23(SAdm)16 and its single-doped Au22Cd1(S-Adm)16 nanocluster in one pot for the first time, and we resolved their structuresusing single-crystal X-ray crystallography. The structure of Au22Cd1(S-Adm)16 is similar to that of Au23(S-Adm)16 except thata kernel Au atom in Au23(S-Adm)16 is replaced with a Cd atom. This Cd replacement causes the kernel Au―Au bond lengthto increase owing to the loosening of the original closely packed structure. In contrast to prior reports, Au23(S-Adm)16 issurprisingly more stable than Au22Cd1(S-Adm)16, as determined via ultraviolet visible-near infrared (UV-Vis-NIR)spectroscopy at 80 °C. This stability was attributed to the decrease in the kernel Au―Au bond length. Although themaximum absorption of Au22Cd1(S-Adm)16 slightly red-shifted from 605 to 608 nm after Cd doping, the molar extinctioncoefficient of Au23(S-Adm)16 at 605 nm was approximately twice that of Au22Cd1(S-Adm)16 at 608 nm. Thus, the increasein kernel Au―Au bond length may decrease the photoexcitation electron transfer efficiency owing to lengthening of thephotoexcitation electron transfer pathway. As further support for this opinion, although the two nanoclusters showed similaremission profiles and maxima (750 nm for Au23(S-Adm)16 and 760 nm for Au22Cd1(S-Adm)16), they exhibited obviousemission intensity differences. Specifically, the quantum yield of Au23(S-Adm)16 (approximately 3.160 × 10?5) was found tobe 1.13 times that of Au22Cd1(S-Adm)16 (approximately 2.793 × 10?5). Thus, the stability and absorption and emissionintensities correlate with the kernel Au―Au bond length.

    This study shows that two metal nanoclusters with slight structural differences can exhibit different properties in terms of optical and thermal stability, providing a good reference for studying their structure–property relationships.

    Key Words: Metal nanoclusters; Synthesis; Au―Au bond length; Property; Property–structure correlation

    1 Introduction

    Metal nanoclusters have recently attracted extensive attention,partly due to their tunability with atomic precision 1–16. Metaldoping is well-realized for efficiently modulating theproperties 17–25, especially, single-heterometal atom doping 26–28without changing the framework of parent nanoclusters providesan excellent opportunity not only for subtly tailoring theproperties, but also for insightfully investigating the structure(composition)-property correlation. However, the classic mixedsalts reduction method leads to the doped nanoclusters, whoseparent nanoclusters are difficult to be obtained in some cases 29–31.For instance, single cadmium-doped gold nanoclusterAu22Cd1(S-Adm)16 (S-Adm = 1-adamantanethiolate) waspreviously synthesized and structurally resolved, while its parentnanocluster Au23(S-Adm)16 remains mysterious (ubi infra) 32. Onthe other hand, the various synthesis systems may bring aboutsome uncertainties for the property comparison due to thepotential enclosure of trace solvents or some other impurities,thus the co-current synthesis of the single-atom dopednanoclusters and their precursor (parent) nanoclusters is highlydesired, whilst challenging. To the best our knowledge, such asynthesis was not achieved until now, which inspires our studyenthusiasm. Especially, we are interested in the co-currentsynthesis of Au23(S-Adm)16 and Au22Cd1(S-Adm)16 mentionedabove, since the structure of Au23(S-Adm)16 is notexperimentally resolved. Early in 2014, Dass et al. 33 detectedthe species of Au23(S-Adm)16 by mass spectrometry, and theypredicted the instability of Au23(S-Adm)16 basing on localchemical bonding and surface coverage effects. In 2018, Huanget al. 34 claimed the successful synthesis of Au23(S-Adm)16mainly basing on the UV-Vis-NIR spectrometry (Au23(CHT)16as a reference, CHT = cyclohexanethiolate) over 7 day’sreaction, however, they didn’t provide single crystal X-raystructurefor the assignment. Subsequently, in 2020, Jin et al. 32facilely synthesized Au22Cd1(S-Adm)16 and resolved itsstructure, but they did not obtain Au23(S-Adm)16 in their work,which was attributed to the instability of Au23(S-Adm)16 on thebasis of ionization potential and electron affinity analysis. Thus,it is still a question whether the atomically mono-disperseAu23(S-Adm)16 can be obtained. The recently introduced antigalvanicreduction (AGR) 35–38 was validated to be a veryversatile method to tune the compositions and structures of metalnanoclusters, especially, this method can be utilized tosynthesize mono-metal nanoclusters 35 as well as doped metalnanoclusters 26, which provides the prerequisite for the cocurrentsynthesis of single-heterometal atom-doped nanoclustersand their parent nanoclusters. The known Au23(SR)16 39–42structure has some relation with the star nanocluster Au25(SR)18,and the transformation from Au25(SeR)18 to Au23(SeR)16 wasalso reported 43, thus the well-known Au25(SR)18 nanoclusterwas selected as the starting nanocluster. Fortunately, wesuccessfully co-synthesized Au23(S-Adm)16 and Au22Cd1(SAdm)16 by two-phase anti-galvanic reduction method 38 and thuscan compare them rationally.

    2 Experimental and computational section

    2.1 Chemicals

    Tetrachloroauric(III) acid (HAuCl4?4H2O, gt; 99.9% metalsbasis), tetrahydrofuran (THF, 99.0%), acetonitrile (CH3CN,99.0%), methanol (CH3OH, 99.5%), dichloromethane (CH2Cl2,99.0%), petroleum ether (99.0%) and toluene (Tol, 99.0%) werepurchased from Sinopharm chemical reagent Co. Ltd.Tetraoctylammonium bromide (TOAB, 98.0%) was purchasedfrom Aladdin Co. Ltd. Sodium borohydride (NaBH4) waspurchased from Shanghai Chemical Reagent Co. Ltd. 1-Adamantanethiol (1-AdmSH, 95%) and 2-phenylethanethiol(PET) were purchased from Sigma-Aldrich (USA).Cd(NO3)2?4H2O (99.5%) was purchased from Adamas(Switzerland).

    2.2 Synthesis of Au23(S-Adm)16 and Au22Cd1(S-Adm)16nanoclusters

    As mentioned above, the two-phase anti-galvanic reductionmethod 38 was adopted for the co-current synthesis (seesupporting information for the experimental details). Briefly, theorganic phase was prepared by dissolving Au25(SCH2CH2Ph)18?TOA+ (short for Au25(SCH2CH2Ph)18?) in toluene, in which 1-adamantanethiol was added. The water phase was prepared bydissolving Cd(NO3)2?4H2O in water. The organic phase wasadded to the water phase and floated on the surface of the waterphase. The reaction temperature was held at 70 °C, and thegrowth of the gold nanoclusters continued for 12 h. After thereaction was complete, the organic phase was washed bymethanol. The Au23(S-Adm)16 and Au22Cd1(S-Adm)16nanoclusters were isolated by preparative thin-layerchromatography 44 (PTLC, CH2Cl2 : petroleum = 1 : 4, ether wasused as the developing solvent). Single crystals of Au22Cd1(SAdm)16 nanoclusters were formed by slowly evaporating amethylbenzene/methanol solution for two days. Single crystalsof Au23(S-Adm)16 nanoclusters were formed by slowlyevaporating a methylbenzene/acetonitrile solution for one week.The yield of Au22Cd1(S-Adm)16 is a little higher than that ofAu23(S-Adm)16 (8% vs. 6%, on the basis ofAu25(SCH2CH2Ph)18?). Note that, the single-phase anti-galvanicreduction method under otherwise similar conditions can onlylead to a white emulsion, and the two-phase ligand exchangeunder otherwise similar conditions except for the absence ofCd(NO3)2?4H2O provides a dominant product with featurelessabsorption (see Fig. S1, Supporting Information), indicating thesuperiority of the two-phase AGR method in the cosynthesis ofAu23(S-Adm)16 and Au22Cd1(S-Adm)16 compared with the othertwo in this work.

    2.3 Characterization

    UV-Vis/NIR measurements were conducted on a AnalytikJena 210 plus spectrophotometer (Germany) (CH2Cl2 as solvent)in the range of 190–1100 nm at room temperature. Thephotoluminescence (PL) properties of the nanoclusters intoluene were recorded on confotec TMMR520 (Republic ofBelarus) with EX = 532 nm. The PL lifetime of Au23(S-Adm)16and Au22Cd1(S-Adm)16 in toluene were measured on Horibafluoromax plus (USA) at room temperature. Characterizations ofenergy dispersive spectrometer (EDS) were carried out onHitachi SU-8020 (Japan) under the accelerating voltage of 5 kV.The single crystal diffraction data of Au23(S-Adm)16 andAu22Cd1(S-Adm)16 were recorded on a Stoe Stadivari X-rayDiffractometer (Stoe, Germany). Au23(S-Adm)16 was measuredby graphite monochromatic Mo-Kα (λ = 0.71073 ?) radiation.Au22Cd1(S-Adm)16 was measured by graphite monochromaticCu-Kα (λ = 1.54178 ?) radiation.

    3 Results and discussion

    Single crystal X-ray crystallography (SCXC) 45–49, assistedwith EDS (Fig. S2), reveals the total structures of Au23(SAdm)16 and Au22Cd1(S-Adm)16 (Fig. S3). Specifically, Au23(SAdm)16 nanoclusters crystallize in a centrosymmetric spacegroup P21/n with four nanoclusters in a cubic unit cell (Fig. S4).The atomic structure of Au23(S-Adm)16 is similar to that ofAu23(CHT)16 50, consisting of an Au13 kernel protected by fourAu(S-Adm)2 staples and two Au3(S-Adm)4 staples (Fig. 1a). The ligand has obvious influence on the optical properties. As shownin Fig. S5, the peak at 450 nm in the UV-Vis-NIR spectrum ofAu23(S-Adm)16 is enhanced and the peak at 605 nm is blueshiftedto 575 nm when all the S-Adm ligands on Au23(S-Adm)16are replaced with CHT ligands; the emission peak of Au23(SAdm)16 at ~751 nm is slightly red-shifted to ~762 nm, but theemission intensity of Au23(S-Adm)16 dramatically decreases by76.7% after the ligand replacement with CHT. Note that, thecuboctahedral Au13 kernel of Au23(S-Adm)16, which is closepackedand composed of two same Au8 unit shared with threeatoms (Fig. 1b,1c), is different from the icosahedron Au13 kernelin Au25(SR)18 nanoclusters 51,52 (Fig. 1d), and the Au8 unit lookslike an equilateral triangle viewed from the front, protected withone Au(S-Adm)2 and one Au3(S-Adm)4 staple motifs as well astwo shared Au(S-Adm)2 staple motifs (Fig. S6). Compared withAu23(S-Adm)16, Au22Cd1(S-Adm)16 has similar kernel andstaples with only one atom difference in the kernel (Cd vs Au)(Figs. 1e and S7). Careful inspection reveals that the averageAu―Au bond length in the Au13 kernel of Au23(S-Adm)16 (2.881?) is shorter than that in the Au12Cd1 kernel of Au22Cd1(SAdm)16 (2.890 ?), indicating that the doped Cd pries the closepackingof kernel atoms due to the mismatch between Au and Cd(Fig. S8). Such an influence might decrease the stability ofAu22Cd1(S-Adm)16, which was confirmed by the thermalstability tests.

    The UV-Vis-NIR spectrum of Au23(S-Adm)16 doesn’t show obvious change even after 8 h heating under 80 °C, whilst thatof Au22Cd1(S-Adm)16 displays notable alterations in 2 h undersimilar conditions, demonstrating that Au23(S-Adm)16 isobviously more stable than Au22Cd1(S-Adm)16 (Fig. 2). Theligand also influences the nanocluster stability. As shown in Fig.S5c), Au23(S-Adm)16 exhibits obviously higher thermostabilitythan Au23(CHT)16. This finding is surprising, since it is inverseto the previous reports 32. The two nanoclusters are obtained in apot, and their crystals are employed for comparison, thus thecomparison in this work should be reliable. The stabilitydeparture in various syntheses indicates that the nanoclusterstability is reaction conditions-sensitive, i.e., the nanoclusters arestable in some reaction conditions, while they are not in someothers.

    It is known that the rod-like metal nanoclusters exhibit kernelbasedmiddle-to-both ends sp ← sp photoexcitation electrontransfer 53, thus the kernel doping should influence thephotoexcitation electron transfer. Especially, the kernel Au―Aubond length increase might decrease the photoexcitation electrontransfer rate (efficiency) due to the pathway lengthening, whichas a result weakens the absorption or emission intensity. Totestify this, we measured the molar extinction coefficients of thetwo nanoclusters at the maximum absorption wavelengths in thenear-infrared region (605 nm for Au23(S-Adm)16, and 608 nm forAu22Cd1(S-Adm)16) (Figs. 3a and S9). Indeed, it is found that themolar extinction coefficient of Au23(S-Adm)16 at 605 nm is almost twice that of Au22Cd1(S-Adm)16 at 608 nm, preliminarilyconfirming our conjecture (ε(Au23(S-Adm)16) = 10526L?(mol·cm2)?1 vs. ε(Au22Cd1(S-Adm)16) = 5410 L?(mol·cm2)?1.Note that, the slight red-shift of the maximum absorption ofAu23(S-Adm)16 from 605 to 608 nm after Cd-doping is causedby the more electron delocalization from Cd 5s2 compared withAu 6s1, and it is expected that the molar extinction coefficientincreases with the maximum absorption redshift, for that morelow-energy photons can be absorbed after the photoexcitationenergy gap is decreased. However, the photoexcitation electrontransfer might be inhibited by the kernel Au―Au bond lengthincrease for Au22Cd1(S-Adm)16 compared with Au23(S-Adm)16,which interprets that Au23(S-Adm)16 exhibits larger molarextinction coefficient than Au22Cd1(S-Adm)16 regardless of theslight blueshift of the maximum absorption.

    Interestingly, although the two nanoclusters have similaremission profiles and maximums (750 nm for Au23(S-Adm)16,760 nm for Au22Cd1(S-Adm)16) (Fig. 3b), they have obviousemission intensity differences: the quantum yield of Au23(SAdm)16 (~3.160 × 10?5) is 1.13 times that of Au22Cd1(S-Adm)16(~2.793 × 10?5), further confirming that the kernel bond lengthincrease retards the photoexcitation electron transfer rate(efficiency) here. In addition, the photoluminescence lifetime 54of Au23(S-Adm)16 (799.586 ns (43.18%), 2351.55 ns (51.73%)and 146.863 ns (5.09%)) is longer than that of Au22Cd1(SAdm)16 (654.45 ns (54.84%), 106.192 ns (2.36%) and 2006.31ns (42.8%)) (see Fig. S10).

    It is also worth noting that the structural resolution of Au23(SAdm)16 means a unique series of single-same metal atomaugment for metal nanoclusters in size (Au22(S-Adm)16, Au23(SAdm)16, and Au24(S-Adm)16) is experimentally fulfilled 5,36 (seeScheme S1, Supporting Information) and an interesting findingis that merely one metal atom can stimulate the structuraltransformation from bioctahedral Au10-kernelled Au22(S-Adm)16to cuboctahedral Au13-kernelled Au23(S-Adm)16, demonstratingthe diversity and tunability of metal nanocluster structures.。

    4 Conclusions

    In conclusion, we developed a two-phase AGR method andfor the first time co-synthesized the doped metal nanocluster(Au22Cd1(S-Adm)16) and the parent nanocluster (Au23(SAdm)16) in a pot for rational comparisons. The long pursuednanocluster Au23(S-Adm)16 was structurally resolved by SCXC,which reveals that Au23(S-Adm)16 exhibits a similar structurewith the doped nanocluster Au22Cd1(S-Adm)16 except that a Cdatom in Au22Cd1(S-Adm)16 is replaced by a Au atom. The kernelAu―Au bond length increase in Au22Cd1(S-Adm)16 revealed bySCXC indicates that the Cd doping agitates the close-packing ofkernel atoms and decreases the nanocluster stability, which wasconfirmed by the thermal stability comparison betweenAu22Cd1(S-Adm)16 and Au23(S-Adm)16. Note that, our stabilitycomparison result is inverse to the previous results, whichindicates that the nanocluster stability is reaction conditionssensitive The kernel Au―Au bond length increase might alsoretard the photoexcitation electron transfer, which wasconfirmed by the intensity decreases of both absorption andemission. Thus, the kernel bond length change was successfullycorrelated to the alternations of nanocluster stability, andabsorption and emission intensity, which provides insightfulviews for understanding and predicting the stability, andabsorption (emission) intensity change of metal nanoclusters onthe basis of the structure. Overall, our work has importantimplications for the nanocluster synthesis, and structurepropertycorrelation, and is expected to trigger more work in therelated fields in the future.

    Author Contributions: Single crystal data analysis, ZeminZhu; Characterization, Lei Feng and Ying Yang; Synthesis, LeiFeng, Jiafeng Zou and Zongbin He; Writing – Original DraftPreparation, Yan Zhao and Man-Bo Li; Writing – Review amp;Editing, Zhikun Wu.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.;Kornberg, R. D. Science 2007, 318 (5849), 430.doi: 10.1126/science.1148624

    (2) Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41 (9), 3594.doi: 10.1039/C2CS15325D

    (3) Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu,Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 792. [祝敏, 李漫波, 姚傳好,夏楠, 趙燕, 閆楠, 廖玲文, 伍志鯤. 物理化學(xué)學(xué)報, 2018, 34 (7),792.] doi: 10.3866/PKU.WHXB201710091

    (4) Zeng, C.; Zhou, M.; Chen, Y. X.; Jin, R. Chem. Rev. 2016, 116 (18),10346. doi: 10.1021/acs.chemrev.5b00703

    (5) Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty. A.; Garg, N.; Jin, R.J. Phys. Chem. Lett. 2010, 1 (19), 2903. doi: 10.1021/jz100944k

    (6) Wu, Y.-G.; Huang, J.-H.; Zhang, C.; Guo, X.-K.; Wu, W.-N.; Dong,X.-Y.; Zang, S.-Q. Chem. Commun. 2022, 58 (52), 7321.doi: 10.1039/D2CC00794K

    (7) Li, J.-J.; Liu, Z.; Guan, Z.-J.; Han, X.-S.; Shi, W.-Q.; Wang, Q.-M.,J. Am. Chem. Soc. 2022, 144 (2), 690. doi: 10.1021/jacs.1c11643

    (8) Tian, S.; Cao, Y.; Chen, T.; Zang, S.; Xie, J. Chem. Commun. 2020,56 (8), 1163. doi: 10.1039/C9CC08215H

    (9) Yang, J.-S.; Zhang, M.-M.; Han, Z.; Li, H.-Y.; Li, L.-K.; Dong, X.-Y.; Zang, S.-Q.; Mak, T. C. W. Chem. Commun. 2020, 56 (16), 2451.doi: 10.1039/C9CC09439C

    (10) Salorinne, K.; Man, R. W. Y.; Lummis, P. A.; Hazer, M. S. A.;Malola, S. J.; Yim, C.-H.; Veinot, A. J.; Zhou, W.; H?kkinen, H.;Nambo, M.; et al. Chem. Commun. 2020, 56 (45), 6102.doi: 10.1039/D0CC01482F

    (11) Si, W.-D.; Li, Y.-Z.; Zhang, S.-S.; Wang, S.; Feng, L.; Gao, Z.-Y.;Tung, C.-H.; Sun, D. ACS Nano 2021, 15 (10), 16019.doi: 10.1021/acsnano.1c04421

    (12) Jin, R. Acta Phys. -Chim. Sin. 2019, 35 (3), 245. [金榮超. 物理化學(xué)學(xué)報, 2019, 35 (3), 245.] doi: 10.3866/PKU.WHXB201803213

    (13) Zhang, Q.-F.; Williard, P. G.; Wang, L.-S. Small 2016, 12 (18), 2518.doi: 10.1002/smll.201600407

    (14) Chakrahari, K. K.; Silalahi, R. P. B.; Chiu, T.-H.; Wang, X. P.;Azrou, N.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu,C. W. Angew. Chem. Int. Ed. 2019, 58 (15), 4943.doi: 10.1002/anie.201814264

    (15) Li, Y., Kim, H. K., McGillicuddy, R. D.; Zheng, S.-L.; Anderton, K.J.; Stec, G. J.; Lee, J.; Cui, D.; Mason, J. A. J. Am. Chem. Soc. 2023,145 (16), 9304. doi: 10.1021/jacs.3c02458

    (16) Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang,Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039.[于彥會, 饒鵬, 封蘇陽, 陳民, 鄧培林, 李靜, 苗政培, 康振燁,沈義俊, 田新龍. 物理化學(xué)學(xué)報, 2023, 39 (8), 2210039.]doi: 10.3866/PKU.WHXB202210039

    (17) Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Negishi, Y. Acc.Chem. Res. 2018, 51 (12), 3114. doi: 10.1021/acs.accounts.8b00453

    (18) Liu, Z.; Meng, X.; Gu, W.; Zha, J.; Yan, N.; You, Q.; Xia, N.; Wang,H.; Wu, Z. Acta Phys.-Chim.Sin. 2023, 39 (12), 2212064. [劉真, 孟祥福, 古萬苗, 查珺, 閆楠, 尤青, 夏楠 王輝, 伍志鯤. 物理化學(xué)學(xué)報, 2023, 39 (12), 2212064.] doi: 10.3866/PKU.WHXB202212064

    (19) Li, T.; Li, Q.; Yang, S.; Xu, L.; Chai, J.; Li, P.; Zhu, M. Chem.Commun. 2021, 57 (38), 4682. doi: 10.1039/D1CC00577D

    (20) Hossain, S.; Suzuki, D.; Iwasa, T.; Kaneko, R.; Negishi, Y. J. Phys.Chem. C 2020, 124 (40), 22304. doi: 10.1021/acs.jpcc.0c06858

    (21) Ito, E.; Ito, S.; Takano, S.; Nakamura, T.; Tsukuda, T. J. Am. Chem.Soc. Au 2022, 2 (11), 2627. doi: 10.1021/jacsau.2c00519

    (22) Yao, C.; Chen, J.; Li, M.-B.; Liu, L.; Yang, J.; Wu, Z. Nano Lett.2015, 15 (2), 1281. doi: 10.1021/nl504477t

    (23) Kzan, R.; Müller, U.; Bürgi, T. Nanoscale 2019, 11 (6), 2938.doi: 10.1039/C8NR09214A

    (24) Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Acc. Chem. Res. 2018, 51(12), 3094. doi: 10.1021/acs.accounts.8b00412

    (25) Sun, Y.; Cheng, X.; Zhang, Y.; Tang, A.; Cai, X.; Liu, X.; Zhu, Y.Nanoscale 2020, 12 (35), 18004. doi: 10.1039/D0NR04871B

    (26) Yao, C.; Lin, Y. J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-H.; Wu, Z.J. Am. Chem. Soc. 2015, 137 (49), 15350. doi: 10.1021/jacs.5b09627

    (27) Zheng, Y.; Jiang, H.; Wang, X. Acta Phys. -Chim. Sin. 2018, 34 (7),740. [鄭有坤, 姜暉, 王雪梅. 物理化學(xué)學(xué)報, 2018, 34 (7), 740.]doi: 10.3866/PKU.WHXB201712111

    (28) Zou, J.; Fei, W.; Qiao, Y.; Yang, Y.; He, Z.; Feng, L.; Li, M.-B.; Wu,Z. Chin. Chem. Lett. 2023, 34 (4), 107660.doi: 10.1016/j.cclet.2022.07.003

    (29) Tang, L.; Ma, A.; Zhang, C.; Liu, X.; Wang, S.; Jin, R. Angew. Chem.Int. Ed. 2021, 133 (33), 18113. doi: 10.1002/ange.202106804

    (30) Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. Chem.Sci. 2021, 12 (38), 12819. doi: 10.1039/D1SC03679C

    (31) Du, Y.; Guan, Z.-J.; Wen, Z.-R.; Lin, Y.-M.; Wang, Q.-M. Chem.Eur. J. 2018, 24 (60), 16029. doi: 10.1002/chem.201886065

    (32) Li, Y.; Cowan, M. J.; Zhou, M.; Luo, T.; Jin, R. J. Am. Chem. Soc.2020, 142 (48), 20426. doi: 10.1021/jacs.0c09110

    (33) Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass,A. J. Am. Chem. Soc. 2014, 136 (42), 14933. doi: 10.1021/ja507738e

    (34) Ren, X.; Lin, X.; Fu, X.; Liu, C.; Yan, J.; Huang, J. Acta Phys. -Chim.Sin. 2018, 34 (7), 825. [任秀清, 林欣章, 付雪梅, 劉超, 閆景輝,黃家輝. 物理化學(xué)學(xué)報, 2018, 34 (7), 825.]doi: 10.3866/PKU.WHXB201712013

    (35) Wu, Z. Angew. Chem. Int. Ed. 2012, 51 (12), 2934.doi: 10.1002/anie.201107822

    (36) Wang, M.; Chu, Z.; Yang, J.; Yao, C.; Wu, Z. Chem. -Asian. J. 2014,9 (4), 1006. doi: 10.1002/asia.201301562

    (37) Gan, Z.; Xia, N.; Wu, Z. Acc. Chem. Res. 2018, 51 (11), 2774.doi: 10.1021/acs.accounts.8b00374

    (38) Zhuang, S.; Chen, D.; Liao, L.; Zhao, Y.; Xia, N.; Zhang, W.; Wang,C.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2019, 132 (8), 3097.doi: 10.1002/ange.201912845

    (39) Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.;Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. -Eur. J. 2009, 15 (39),doi: 10.1002/chem.200901425

    (40) Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M.Angew. Chem. Int. Ed. 2015, 54 (20), 5977.doi: 10.1002/anie.201500590

    (41) Kang, X.; Xiang, J.; Lv, Y.; Du, W.; Yu, H.; Wang, S.; Zhu, M.Chem. Mater. 2017, 29 (16), 6856.doi: 10.1021/acs.chemmater.7b02015

    (42) Liu, C.; Ren, X.; Lin, F.; Fu, X.; Lin, X.; Li, T.; Sun, K.; Huang, J.Angew. Chem. Int. Ed. 2019, 58 (33), 11335.doi: 10.1002/anie.201904612

    (43) Song, Y.; Chai, J.; Abroshan, H.; Kang, X.; Kim, H.; Zhu, M.; Jin, R.Chem. Mater. 2017, 29 (7), 3055.doi: 10.1021/acs.chemmater.7b00058

    (44) Zhao, Y.; Zhuang, S.; Liao, L.; Wang, C.; Xia, N.; Gan, Z.; Gu, W.;Li, J.; Deng, H.; Wu, Z. J. Am. Chem. Soc. 2020, 142 (2), 973.doi: 10.1021/jacs.9b11017

    (45) Wan, X.-K.; Yuan, S.-F.; Tang, Q.; Jiang, D.-E.; Wang, Q.-M.Angew. Chem. Int. Ed. 2015, 127 (20), 6075.doi: 10.1002/ange.201500590

    (46) Li, H.; Zhou, C.; Wang, E.; Kang, X.; Xu, W.; Zhu, M. Chem.Commun. 2022, 58 (33), 5092. doi: 10.1039/D2CC00987K

    (47) Yang, Y.; Chen, C.; X, G.-Y.; Yuan, J.; Ye, S.-F.; Chen, L.; Lv, Q.-L.; Luo, G.; Yang, J.; Li, M.-B.; et al. J. Catal. 2021, 401, 206.doi: 10.1016/j.jcat2021.07.023

    (48) Zhu, M.; Wang, P.; Yan, N.; Chai, X.; He, L.; Zhao, Y.; Xia, N.; Yao,C.; Li, J.; Deng, H.; et al. Angew. Chem. Int. Ed. 2018, 57 (17), 4500.doi: 10.1002/anie.201800877

    (49) Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. L. Angew.Chem. Int. Ed. 2021, 60 (41), 22293. doi: 10.1002/anie.202106311

    (50) Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am.Chem. Soc. 2013, 135 (49), 18264. doi: 10.1021/ja409177s

    (51) Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc.2008, 130 (4), 1138. doi: 10.1021/ja0782448

    (52) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am.Chem. Soc. 2008, 130 (18), 5883. doi: 10.1021/ja801173r

    (53) Fan, W.; Yang, Y.; You, Q.; Li, J.; Deng, H.; Yan, N.; Wu, Z.J. Phys. Chem. C 2023, 127 (1), 816. doi: 10.1021/acs.jpcc.2c07678

    (54) Zhuang, B.; Jin, Z.; Tian, D.; Zhu, L.; Zeng, L.; Fan, J.; Lou, Z.; Li,W. Acta Phys. -Chim. Sin. 2023, 39 (1), 2209007. [莊必浩, 靳子驄,田德華, 朱遂意, 曾琳茜, 范建東, 婁在祝, 李聞?wù)? 物理化學(xué)學(xué)報, 2023, 39 (1), 2209007.] doi: 10.3866/PKU.WHXB202209007

    國家自然科學(xué)基金(21925303, 21771186, 21829501, 21222301, 21528303, 21171170, 92061110), 中國科學(xué)院合肥研究院院長基金(BJPY2019A02), 中國科學(xué)院合肥研究院十三五重點(diǎn)計(jì)劃(KP-2017-16), 中國科學(xué)院合肥科學(xué)中心協(xié)同創(chuàng)新項(xiàng)目(2020HSC-CIP005, 2022HSC-CIP018), 安徽省自然科學(xué)基金(2108085Y05), 合肥微尺度物理科學(xué)國家實(shí)驗(yàn)室(KF2020102)及安徽大學(xué)啟動經(jīng)費(fèi)(S020318006/037)資助

    猜你喜歡
    合成性質(zhì)
    一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    一類多重循環(huán)群的剩余有限性質(zhì)
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    厲害了,我的性質(zhì)
    三乙烯四胺接枝型絮凝劑制備及其對模擬焦化廢水處理
    丙酮—甲醇混合物萃取精餾分離過程合成與模擬
    綜合化學(xué)實(shí)驗(yàn)設(shè)計(jì):RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    八種氟喹諾酮類藥物人工抗原的合成及鑒定
    啦啦啦在线免费观看视频4| 最近2019中文字幕mv第一页| 欧美精品av麻豆av| 一区在线观看完整版| 精品酒店卫生间| 亚洲图色成人| 2021少妇久久久久久久久久久| 欧美精品国产亚洲| 99热国产这里只有精品6| 黑丝袜美女国产一区| 国产成人午夜福利电影在线观看| 国产在线一区二区三区精| 国产黄色视频一区二区在线观看| 在线观看美女被高潮喷水网站| 中文乱码字字幕精品一区二区三区| 色视频在线一区二区三区| av网站在线播放免费| 成人手机av| 男女免费视频国产| 99国产精品免费福利视频| 欧美成人午夜免费资源| 婷婷成人精品国产| 欧美人与性动交α欧美软件| www.熟女人妻精品国产| 久久久久视频综合| 人人妻人人澡人人看| 亚洲美女黄色视频免费看| 国产福利在线免费观看视频| 叶爱在线成人免费视频播放| 亚洲国产精品999| 亚洲精华国产精华液的使用体验| 欧美日韩亚洲高清精品| 一级黄片播放器| 久久久久国产精品人妻一区二区| 精品卡一卡二卡四卡免费| 人人澡人人妻人| 亚洲 欧美一区二区三区| 国产亚洲欧美精品永久| 欧美日韩一级在线毛片| 免费观看a级毛片全部| 1024视频免费在线观看| 久久久久久久久久久免费av| 精品少妇黑人巨大在线播放| 亚洲久久久国产精品| 在线观看免费视频网站a站| 热99久久久久精品小说推荐| 少妇被粗大的猛进出69影院| 午夜福利一区二区在线看| 一级爰片在线观看| 精品亚洲成a人片在线观看| 国产日韩欧美亚洲二区| 精品亚洲成a人片在线观看| 波多野结衣av一区二区av| 超碰97精品在线观看| 精品99又大又爽又粗少妇毛片| 女人高潮潮喷娇喘18禁视频| 久久久国产欧美日韩av| 免费黄频网站在线观看国产| 久久久久久久亚洲中文字幕| www.自偷自拍.com| 久久久a久久爽久久v久久| 免费黄频网站在线观看国产| 国产成人精品一,二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人精品欧美一级黄| 亚洲成人一二三区av| 三级国产精品片| 国产精品久久久久久久久免| 国产乱来视频区| 老司机影院成人| 黄色视频在线播放观看不卡| 国产 精品1| 一级a爱视频在线免费观看| 欧美精品亚洲一区二区| 欧美日韩av久久| 麻豆乱淫一区二区| 精品国产超薄肉色丝袜足j| 如何舔出高潮| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 日韩制服丝袜自拍偷拍| 精品人妻一区二区三区麻豆| 久久婷婷青草| 欧美老熟妇乱子伦牲交| 亚洲,欧美精品.| a级片在线免费高清观看视频| 少妇的逼水好多| 久久久欧美国产精品| 不卡视频在线观看欧美| 亚洲人成77777在线视频| 国产有黄有色有爽视频| 亚洲欧美一区二区三区黑人 | 亚洲精品日韩在线中文字幕| 午夜av观看不卡| 国产极品粉嫩免费观看在线| 久久精品久久久久久噜噜老黄| 精品国产一区二区久久| 中国三级夫妇交换| 可以免费在线观看a视频的电影网站 | 夜夜骑夜夜射夜夜干| 99久久综合免费| 婷婷色综合www| 在线 av 中文字幕| 一二三四在线观看免费中文在| 日本欧美国产在线视频| 欧美精品亚洲一区二区| 美国免费a级毛片| 最近的中文字幕免费完整| 欧美国产精品va在线观看不卡| 97人妻天天添夜夜摸| 99久久综合免费| 欧美 亚洲 国产 日韩一| 婷婷色综合www| 欧美成人午夜精品| 国产成人欧美| 国产日韩欧美在线精品| 亚洲,欧美精品.| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区黑人 | www日本在线高清视频| 男人爽女人下面视频在线观看| 亚洲综合色惰| 国产精品熟女久久久久浪| 久久久久视频综合| 中国国产av一级| 久久久亚洲精品成人影院| 最近中文字幕2019免费版| 国产男女超爽视频在线观看| 香蕉丝袜av| 视频在线观看一区二区三区| 久久精品国产自在天天线| 18禁裸乳无遮挡动漫免费视频| 成人影院久久| 国产成人a∨麻豆精品| av女优亚洲男人天堂| 一边摸一边做爽爽视频免费| 国产一级毛片在线| 中文字幕制服av| av线在线观看网站| 国产av一区二区精品久久| 亚洲精品美女久久av网站| 欧美日韩综合久久久久久| 免费观看av网站的网址| 亚洲精品视频女| 五月伊人婷婷丁香| 国产亚洲欧美精品永久| 美女xxoo啪啪120秒动态图| 国产免费视频播放在线视频| 国产精品熟女久久久久浪| 久久久久国产精品人妻一区二区| 狠狠精品人妻久久久久久综合| 国产日韩欧美在线精品| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜一区二区 | 深夜精品福利| 岛国毛片在线播放| 老司机影院毛片| 伊人亚洲综合成人网| 欧美日韩视频精品一区| 大码成人一级视频| 久久影院123| 我的亚洲天堂| 又黄又粗又硬又大视频| 韩国精品一区二区三区| 午夜影院在线不卡| 在线观看人妻少妇| 中文字幕人妻丝袜一区二区 | 一个人免费看片子| 1024香蕉在线观看| 国产在线视频一区二区| 国产av精品麻豆| 亚洲精品美女久久av网站| 亚洲人成77777在线视频| av视频免费观看在线观看| av有码第一页| 国产免费福利视频在线观看| 欧美人与性动交α欧美精品济南到 | 国产成人精品在线电影| 1024视频免费在线观看| 日日撸夜夜添| 亚洲国产精品一区三区| 午夜91福利影院| 麻豆乱淫一区二区| 亚洲国产毛片av蜜桃av| 熟女av电影| 成人亚洲欧美一区二区av| 母亲3免费完整高清在线观看 | av在线播放精品| 老司机亚洲免费影院| 激情视频va一区二区三区| 极品少妇高潮喷水抽搐| 国产成人一区二区在线| 成年美女黄网站色视频大全免费| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频| videossex国产| 婷婷成人精品国产| 精品一区二区三卡| 捣出白浆h1v1| 欧美亚洲 丝袜 人妻 在线| 久久久久精品久久久久真实原创| 男女高潮啪啪啪动态图| 中文字幕精品免费在线观看视频| 黄色 视频免费看| 亚洲第一青青草原| 欧美xxⅹ黑人| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 国产精品蜜桃在线观看| 日本欧美视频一区| 黑丝袜美女国产一区| 汤姆久久久久久久影院中文字幕| 七月丁香在线播放| 亚洲精品av麻豆狂野| 亚洲精品第二区| 欧美在线黄色| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 亚洲情色 制服丝袜| 亚洲一区中文字幕在线| a级毛片黄视频| 亚洲国产精品国产精品| 欧美日本中文国产一区发布| 91午夜精品亚洲一区二区三区| 爱豆传媒免费全集在线观看| 午夜日韩欧美国产| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 亚洲一码二码三码区别大吗| 久久精品久久久久久噜噜老黄| 久久午夜综合久久蜜桃| 黄色视频在线播放观看不卡| 国产亚洲av片在线观看秒播厂| 欧美最新免费一区二区三区| 欧美日韩一级在线毛片| 色视频在线一区二区三区| 黄色视频在线播放观看不卡| 欧美97在线视频| 夫妻性生交免费视频一级片| 国产精品成人在线| 午夜激情久久久久久久| 一本久久精品| 亚洲少妇的诱惑av| 看十八女毛片水多多多| 黄片无遮挡物在线观看| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 无遮挡黄片免费观看| 嫩草影院精品99| 成人手机av| 久久热在线av| 亚洲人成网站在线播放欧美日韩| 精品国产美女av久久久久小说| 色精品久久人妻99蜜桃| 成人亚洲精品av一区二区 | 国产亚洲欧美在线一区二区| 成人手机av| 成人18禁在线播放| 欧美精品亚洲一区二区| 欧美黑人精品巨大| 99国产精品一区二区蜜桃av| 老司机福利观看| 亚洲自偷自拍图片 自拍| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 一区在线观看完整版| av国产精品久久久久影院| ponron亚洲| 久久久久久大精品| 精品熟女少妇八av免费久了| 午夜免费鲁丝| 老汉色∧v一级毛片| 日本黄色日本黄色录像| 欧美色视频一区免费| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 欧美激情 高清一区二区三区| www.www免费av| 国产片内射在线| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 黄色视频不卡| 在线观看午夜福利视频| 精品久久久久久久久久免费视频 | 一a级毛片在线观看| 久久中文字幕一级| 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 欧美日本中文国产一区发布| 超色免费av| 91大片在线观看| 女同久久另类99精品国产91| 免费av毛片视频| 两性夫妻黄色片| 欧美大码av| 超碰97精品在线观看| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 免费在线观看日本一区| 每晚都被弄得嗷嗷叫到高潮| 久久精品影院6| 中文字幕人妻熟女乱码| 欧美最黄视频在线播放免费 | 99热只有精品国产| 欧美日韩视频精品一区| 免费观看精品视频网站| 精品电影一区二区在线| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 亚洲第一av免费看| 国产成人精品无人区| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区av网在线观看| 久久久久久免费高清国产稀缺| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 一级毛片女人18水好多| 亚洲国产欧美日韩在线播放| av有码第一页| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 亚洲人成伊人成综合网2020| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 18美女黄网站色大片免费观看| 啦啦啦 在线观看视频| 亚洲色图 男人天堂 中文字幕| 真人做人爱边吃奶动态| 亚洲精品一区av在线观看| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 伊人久久大香线蕉亚洲五| 久久中文字幕人妻熟女| 国产精品久久电影中文字幕| 日韩中文字幕欧美一区二区| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 午夜激情av网站| 国产91精品成人一区二区三区| 久9热在线精品视频| 丝袜美足系列| 天天影视国产精品| a在线观看视频网站| 一区二区三区国产精品乱码| www.自偷自拍.com| 成人亚洲精品一区在线观看| 中出人妻视频一区二区| 国产亚洲精品久久久久久毛片| 国产一区二区在线av高清观看| 在线av久久热| 国产亚洲av高清不卡| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 高清欧美精品videossex| 1024香蕉在线观看| 欧美日韩一级在线毛片| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 国产色视频综合| 不卡av一区二区三区| 欧美黄色片欧美黄色片| x7x7x7水蜜桃| 又紧又爽又黄一区二区| 日韩三级视频一区二区三区| 欧美一级毛片孕妇| 妹子高潮喷水视频| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 在线观看www视频免费| 视频区欧美日本亚洲| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 一级片'在线观看视频| 丝袜在线中文字幕| 亚洲精品中文字幕一二三四区| 最新美女视频免费是黄的| 乱人伦中国视频| 一边摸一边抽搐一进一小说| 在线观看免费高清a一片| avwww免费| bbb黄色大片| 手机成人av网站| 亚洲精品美女久久av网站| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 久久 成人 亚洲| 亚洲国产精品999在线| 国产成人影院久久av| 成人精品一区二区免费| 精品人妻在线不人妻| 女警被强在线播放| 亚洲 欧美 日韩 在线 免费| 中文字幕人妻丝袜制服| 精品第一国产精品| 免费看a级黄色片| 国产成人影院久久av| 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| aaaaa片日本免费| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 久久久久精品国产欧美久久久| 国产av在哪里看| 如日韩欧美国产精品一区二区三区| 又黄又爽又免费观看的视频| 黄色视频不卡| 日本一区二区免费在线视频| 国产日韩一区二区三区精品不卡| 国产一区在线观看成人免费| 日本免费a在线| 中文字幕色久视频| 欧美日韩亚洲高清精品| 亚洲av熟女| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 妹子高潮喷水视频| 亚洲黑人精品在线| 亚洲国产欧美网| 亚洲男人天堂网一区| 色综合欧美亚洲国产小说| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 日韩欧美三级三区| av网站在线播放免费| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 看黄色毛片网站| 在线观看一区二区三区| 亚洲欧美激情综合另类| 身体一侧抽搐| 夜夜爽天天搞| 搡老熟女国产l中国老女人| 岛国视频午夜一区免费看| 校园春色视频在线观看| 日本五十路高清| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| 一二三四在线观看免费中文在| 国产三级在线视频| 国产精华一区二区三区| 国产精品国产高清国产av| 免费高清在线观看日韩| 91老司机精品| 精品人妻在线不人妻| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜 | 18禁裸乳无遮挡免费网站照片 | 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 黄网站色视频无遮挡免费观看| 久久久久久久精品吃奶| 在线国产一区二区在线| 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 男人舔女人的私密视频| 91国产中文字幕| 激情在线观看视频在线高清| 亚洲九九香蕉| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| 窝窝影院91人妻| 999久久久国产精品视频| 日韩大码丰满熟妇| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 欧美中文综合在线视频| 亚洲自拍偷在线| 国产成人一区二区三区免费视频网站| 超碰97精品在线观看| 超色免费av| 精品福利观看| 欧美成人性av电影在线观看| 好看av亚洲va欧美ⅴa在| 国产一区二区激情短视频| 国产激情久久老熟女| 欧美在线黄色| 两人在一起打扑克的视频| 成人av一区二区三区在线看| 国产精品久久视频播放| 美女国产高潮福利片在线看| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 日本精品一区二区三区蜜桃| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 精品一区二区三区视频在线观看免费 | 美女高潮到喷水免费观看| 精品久久久久久久久久免费视频 | 久久久久久久精品吃奶| 亚洲国产欧美网| 女生性感内裤真人,穿戴方法视频| 制服人妻中文乱码| 国产高清激情床上av| 午夜久久久在线观看| 在线观看一区二区三区| 91麻豆av在线| 啦啦啦免费观看视频1| 国产单亲对白刺激| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 久久人人97超碰香蕉20202| 久久香蕉激情| 久久婷婷成人综合色麻豆| 男人操女人黄网站| 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 亚洲av五月六月丁香网| 久久久久久久久久久久大奶| 在线十欧美十亚洲十日本专区| 黄频高清免费视频| 日韩精品中文字幕看吧| 交换朋友夫妻互换小说| 国产精品国产高清国产av| 99国产精品一区二区蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 午夜福利在线免费观看网站| 一级毛片精品| 日韩三级视频一区二区三区| 亚洲精品av麻豆狂野| 久久香蕉国产精品| 看免费av毛片| 国产一区二区激情短视频| 中文字幕高清在线视频| 色综合站精品国产| 午夜日韩欧美国产| 国产有黄有色有爽视频| 免费在线观看视频国产中文字幕亚洲| 91av网站免费观看| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 国产亚洲精品久久久久5区| 超碰成人久久| а√天堂www在线а√下载| 老司机亚洲免费影院| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 欧美精品亚洲一区二区| 日韩高清综合在线| 国产成人欧美| 国产熟女午夜一区二区三区| 精品国产亚洲在线| 青草久久国产| 悠悠久久av| 国产成人av教育| 亚洲国产精品sss在线观看 | 欧美性长视频在线观看| 天堂中文最新版在线下载| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 在线观看66精品国产| 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| bbb黄色大片| 午夜影院日韩av| 成人三级做爰电影| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 一进一出抽搐gif免费好疼 | 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 国产精品久久久久成人av| 日日干狠狠操夜夜爽| av免费在线观看网站| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 国产精品影院久久| 99久久综合精品五月天人人| 久久精品aⅴ一区二区三区四区| 正在播放国产对白刺激| 国产精品二区激情视频| 久久国产亚洲av麻豆专区| 日本免费a在线| av免费在线观看网站| 中文欧美无线码| 久久久久亚洲av毛片大全| 91麻豆av在线| 免费av毛片视频| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 日韩精品青青久久久久久| 可以免费在线观看a视频的电影网站| 一区二区日韩欧美中文字幕|