K2CO3/KOH synergistic alcoholysis of waste polyester textiles and their preparation ofrecycled DMT
摘要:
廢棄滌綸紡織品囤積量逐年上升,而對(duì)廢棄滌綸紡織品的綜合利用回收率卻較低?;瘜W(xué)法回收中乙二醇醇解甲醇酯交換法是一種回收廢棄滌綸紡織品的方法,然而乙二醇醇解甲醇酯交換工藝過程中存在對(duì)苯二甲酸雙羥基乙酯(BHET)單體產(chǎn)率低、低聚物含量高的問題。文章采用K2CO3/KOH協(xié)同醇解廢棄滌綸紡織品,并結(jié)合響應(yīng)面法優(yōu)化了醇解工藝參數(shù),通過甲醇酯交換法制得再生對(duì)苯二甲酸二甲酯(DMT),研究了K2CO3/KOH協(xié)同醇解對(duì)乙二醇醇解甲醇酯交換產(chǎn)物的影響。結(jié)果表明,隨著KOH添加量的增加,醇解產(chǎn)物中BHET含量呈現(xiàn)先增加后下降的趨勢(shì)。當(dāng)KOH的添加量達(dá)到2%時(shí),BHET含量達(dá)到最高70.2%。同時(shí),優(yōu)化后的醇解工藝參數(shù)為:反應(yīng)溫度210 ℃、反應(yīng)時(shí)間120 min、K2CO3質(zhì)量分?jǐn)?shù)2.0%、KOH質(zhì)量分?jǐn)?shù)2.4%。此時(shí)BHET的收率為73.1%;醇解產(chǎn)物與甲醇酯交換得到再生DMT產(chǎn)率為80.1%,通過減壓升華純化后得到再生DMT含量高于99%以上。
關(guān)鍵詞:
廢棄滌綸紡織品;K2CO3/KOH協(xié)同醇解;酯交換;減壓升華;再生DMT
中圖分類號(hào):
TS102.9; TQ342.21
文獻(xiàn)標(biāo)志碼:
A
文章編號(hào): 10017003(2024)05期數(shù)0048起始頁碼10篇頁數(shù)
DOI: 10.3969/j.issn.1001-7003.2024.05期數(shù).007(篇序)
收稿日期:
20230926;
修回日期:
20240221
基金項(xiàng)目:
浙江省“尖兵”“領(lǐng)雁”研發(fā)攻關(guān)計(jì)劃項(xiàng)目(2022C01197,2023C01203)
作者簡(jiǎn)介:
陳斌杰(1998),男,碩士研究生,研究方向?yàn)樵偕埘ゲ牧?。通信作者:姚玉元,教授,yyy0571@126.com。
聚對(duì)苯二甲酸乙二醇酯(PET)具有優(yōu)異的力學(xué)性能、高化學(xué)穩(wěn)定性及良好的可加工性,被廣泛應(yīng)用于纖維、塑料瓶、片材、薄膜等領(lǐng)域[1]。隨著滌綸紡織品產(chǎn)量的快速增加和應(yīng)用領(lǐng)域的拓展,廢棄紡織品的囤積量也在逐年增加。然而,源自石油資源的滌綸紡織品難以自然降解,對(duì)生態(tài)環(huán)境的污染問題日益突出,因此對(duì)廢棄滌綸紡織品的回收處理成為當(dāng)下研究熱點(diǎn)[2-4]。
化學(xué)法是利用解聚劑把聚酯大分子解聚到單體水平,然后以回收的解聚單體為原料,通過聚合獲得高品質(zhì)的再生聚酯,是制備高品質(zhì)再生聚酯的一種重要途徑?;瘜W(xué)法回收得到的再生單體具有制備與原生聚酯材料相媲美的巨大潛力,對(duì)于緩解環(huán)境污染問題、降低聚酯纖維行業(yè)石油依賴性具有重大意義,是實(shí)現(xiàn)廢棄滌綸紡織品閉環(huán)回收的必然選擇[5]?;瘜W(xué)法包括甲醇醇解法、乙二醇醇解法和水解法等[6]。甲醇醇解法一般在高壓條件下解聚,反應(yīng)條件較為嚴(yán)苛,不利于廢棄紡織品回收[7];水解法是一種較為環(huán)保的回收方式,然而水解法使用了大量的堿作為催化劑,且反應(yīng)時(shí)間過長(zhǎng),這不僅損壞反應(yīng)釜,還會(huì)造成大量能源消耗[8]。而值得注意的是,乙二醇醇解甲醇酯交換法是將廢棄聚酯紡織品先解聚成對(duì)苯二甲酸雙羥基乙酯(BHET)單體,再以BHET單體和甲醇進(jìn)行酯交換得到高純度的再生對(duì)苯二甲酸二甲酯(DMT)的過程,具有反應(yīng)過程溫和、產(chǎn)物易提純等優(yōu)點(diǎn)。
廢棄聚酯紡織品的高效解聚是化學(xué)法回收過程中的關(guān)鍵步驟之一。近年來,國(guó)內(nèi)外研究者為此開展了一系列工作。Zhang等[9]以TPA為基體制備了1-乙基-3-甲基咪唑?qū)Ρ蕉姿狨ルx子液體催化劑,將廢舊PET置于196 ℃下反應(yīng)106 min,PET轉(zhuǎn)化率及BHET產(chǎn)率分別達(dá)到了100%和81.6%。Zahra等[10]采用2-乙基己酸鋅作為催化劑解聚廢舊PET,在180 ℃反應(yīng)下得到85.4% BHET單體產(chǎn)率。Kang[11]等以ZSM-5沸石為基體制備催化劑,采用微波輔助法在227 ℃下反應(yīng)40 min,得到TPA單體轉(zhuǎn)化率為97.6%。Sun[12]等通過共沉淀的途徑制備高度分散的Fe3O4納米粒子作為催化劑,廢舊PET在210 ℃下反應(yīng)30 min,BHET單體產(chǎn)率為93%。然而,這些催化劑制備過程復(fù)雜,成本較高,難以工業(yè)化應(yīng)用。因此,本文選用價(jià)格低廉、易于工業(yè)化的K2CO3作為催化劑,引入KOH協(xié)同醇解廢棄滌綸紡織品,研究KOH對(duì)乙二醇醇解甲醇酯交換過程的影響,結(jié)合響應(yīng)面優(yōu)化法改進(jìn)醇解工藝參數(shù),旨在為廢棄滌綸紡織品乙二醇醇解甲醇酯交換法工藝優(yōu)化提供有益參考。
1" 實(shí)" 驗(yàn)
1.1" 主要原料及設(shè)備
1.1.1" 主要原料
廢棄紡織品通過高溫摩擦制備廢棄滌綸泡料(浙江佳人新材料有限公司),乙二醇(EG)、甲醇(MeOH)、碳酸鉀(K2CO3)、氫氧化鉀(KOH)、氫氧化鈉(NaOH)、四甲基硅氧烷(TMS)、三氯甲烷、氘代二甲基亞砜、鄰苯二甲酸二甲酯均為分析純(阿拉丁試劑有限公司)。
1.1.2" 主要設(shè)備
DSC1型差式掃描量熱儀(瑞士梅特勒托利多公司),Nicolet iS50型傅里葉紅外光譜儀(美國(guó)Nicolet公司),1/1100 SF型熱失重分析儀(瑞士梅特勒托利多公司),GC-2014型氣相色譜儀(日本島津公司),ADVANCE-400MHz型核磁共振分析波譜儀(瑞士BRUKER公司),D232440G減壓玻璃升華器(synthware公司)。
1.2" 方" 法
1.2.1" 醇解實(shí)驗(yàn)
將EG、廢棄聚酯泡料、K2CO3、KOH,依次加入連接有冷凝器和氮?dú)獗Wo(hù)裝置的三頸燒瓶中,投料比為2︰1︰0.02︰0.01。待反應(yīng)環(huán)境升溫至195 ℃開始記時(shí),反應(yīng)時(shí)長(zhǎng)為90 min。反應(yīng)結(jié)束后趁熱快速過濾,分離得到的濾液,冷卻至室溫后再次抽濾,得到濾餅即為醇解產(chǎn)物。將醇解產(chǎn)物溶于沸水中,多次趁熱過濾,得到含有BHET的濾液;將濾液靜置于冰箱(4 ℃),24 h后待濾液中BHET充分析出結(jié)晶后,抽濾得到再生BHET。廢舊聚酯泡料的解聚率(R1)及BHET收率(R2)計(jì)算公式如下式所示:
R1/%=W1-W2W1×100(1)
式中:R1為廢舊聚酯泡料的解聚率,%;W1為廢棄聚酯泡料投料質(zhì)量,g;W2為未解泡料質(zhì)量,g。
R2/%=W3W4×100(2)
式中:R2為再生BHET收率,%;W3為再生BHET實(shí)際產(chǎn)量,g;W4為再生BHET理論產(chǎn)量,g。
1.2.2" BHET酯交換實(shí)驗(yàn)
將甲醇、醇解產(chǎn)物、NaOH加入帶有冷凝管的三頸燒瓶中,開啟冷凝水和攪拌,并將反應(yīng)溫度設(shè)定為65 ℃,反應(yīng)時(shí)間為120 min,反應(yīng)結(jié)束后迅速抽濾,得到的濾餅即為粗DMT。粗DMT收率計(jì)算公式如下所示:
R3/%=W5W6×1.01×100(3)
式中:R3為粗DMT收率,%;W5為粗DMT實(shí)際產(chǎn)量,g;W6為廢舊聚酯的投料量,g;廢舊聚酯投料量與DMT實(shí)際產(chǎn)量的質(zhì)量比為1.01︰1[12]。
1.2.3" 再生DMT提純實(shí)驗(yàn)
將粗DMT加入連接有冷凝管的減壓升華器中,打開冷凝水,并將減壓升華器升溫至240 ℃,待高純度再生DMT富集于冷凝接收器上,結(jié)束實(shí)驗(yàn),收集再生DMT。在提純過程中,加熱至再生DMT汽化溫度,能夠?qū)崿F(xiàn)再生DMT的高效提純。
1.3" 測(cè)試與表征
1.3.1" 熱性能分析
DSC測(cè)試以空坩堝為參比,稱量樣品3~5 mg,設(shè)定氮?dú)饬魉贋?5 mL/min,第一次升溫速率為10 ℃/min,升溫范圍為25~280 ℃,第一次降溫速率為10 ℃/min(消除熱歷史),第二次升溫速率為10 ℃/min,第二次降溫速率為10 ℃/min。TGA測(cè)試設(shè)定氮?dú)饬魉贋?5 mL/min,升溫速率為10 ℃/min,升溫范圍為25~700 ℃。
1.3.2" 傅里葉紅外光譜(FTIR)分析
測(cè)試前烘干樣品,采用KBr壓片法測(cè)試。設(shè)定儀器分辨率4 cm-1,掃描次數(shù)為32次,掃描范圍從500~4 000 cm-1。
1.3.3" 高效氣相色譜分析
稱量1 g樣品溶于三氯甲烷,內(nèi)標(biāo)物選取鄰苯二甲酸二丙酯,以內(nèi)標(biāo)物標(biāo)準(zhǔn)曲線法測(cè)定樣品含量。設(shè)定柱溫為60 ℃、分流比為15︰1、總流量為3.3 mL/min、色譜柱流量為0.7 mL/min、色譜進(jìn)樣口溫度為280 ℃。
1.3.4" 核磁共振氫譜(1H NMR)分析
測(cè)試前干燥樣品,以氘代二甲基亞砜作為溶劑,四甲基硅烷(TMS)作為標(biāo)準(zhǔn)物質(zhì)。稱量3~5 mg醇解產(chǎn)物溶于氘代二甲基亞砜,待樣品完全溶解后進(jìn)行測(cè)試,頻率為600 Hz。
2" 結(jié)果與分析
2.1" 廢棄聚酯醇解
2.1.1" 不同解聚體系制備BHET過程
圖1為廢棄滌綸泡料解聚率及BHET收率隨時(shí)間的變化。由圖1(a)可知,隨著時(shí)間的增加,K2CO3/KOH、K2CO3、KOH三種解聚體系下,廢棄聚酯泡料的解聚率逐漸提高。其中,當(dāng)反應(yīng)時(shí)間達(dá)到90 min時(shí),PET解聚率分別為98.2%、91.3%和85.6%。此外,由圖1(b)可知,三種解聚體系BHET收率同PET的解聚率趨勢(shì)一致。當(dāng)達(dá)到廢舊聚酯最大解聚率
時(shí),三種解聚體系下BHET收率分別依次為70.1%、67.2%和60.5%。三種體系呈現(xiàn)不同的PET解聚率和BHET收率,這主要是由于在單一體系中,K2CO3解聚體系相較于KOH解聚體系能夠提供更多的K+催化解聚廢棄滌綸紡織品,金屬K+在解聚過程中起到了主要作用。在K2CO3/KOH協(xié)同體系中,一方面K2CO3/KOH都能提供K+,使體系中含有更多的K+,進(jìn)一步降低PET中羰基的電子云密度,使乙二醇更加容易進(jìn)行反應(yīng):另一方面KOH提供的-OH能夠促進(jìn)低聚物進(jìn)一步轉(zhuǎn)化為BHET[13-14]。因此,相較于單一的兩種體系,K2CO3/KOH體系有較高的廢棄聚酯泡料解聚率和BHET收率。
2.1.2" 醇解產(chǎn)物紅外光譜(FTIR)分析
三種體系K2CO3/KOH、K2CO3、KOH所得到的醇解產(chǎn)物被記為醇解產(chǎn)物-1、醇解產(chǎn)物-2、醇解產(chǎn)物-3,如圖2所示。由圖2可見,三種醇解產(chǎn)物具有相似的紅外吸收曲線,3 461 cm-1主要?dú)w因于—OH的伸縮振動(dòng),表明羥基結(jié)構(gòu)的存在;2 969、2 880、1 415 cm-1處的特征峰主要與C—H的伸縮振動(dòng)和彎曲振動(dòng)有關(guān),其表明醇解產(chǎn)物中有亞甲基的存在;1 722 cm-1處的吸收峰主要?dú)w因于CO的伸縮振動(dòng);1 508 cm-1處的
吸收峰主要是由于苯環(huán)骨架中上CC伸縮振動(dòng)造成的;1 132 cm-1處的特征峰與C—O的伸縮振動(dòng)有關(guān);730 cm-1處吸收峰是由于苯環(huán)的面內(nèi)彎曲振動(dòng)造成的[15]。綜上所述,三種醇解產(chǎn)物均與BHET具有相似的紅外特征峰[16],這表明三種解聚體系下均成功將廢棄聚酯解聚為BHET。
2.1.3" 醇解產(chǎn)物1H NMR分析
圖3為三種醇解產(chǎn)物核磁氫譜圖。由圖3可見,三種醇解產(chǎn)物均在3.72、4.36、4.95和8.12出現(xiàn)了四組信號(hào)峰,其中δ=8.12對(duì)應(yīng)苯環(huán)上的氫質(zhì)子峰,δ=4.95對(duì)應(yīng)于羥基上的氫質(zhì)子峰,δ=4.36對(duì)應(yīng)于酯基連接的亞甲基上的氫質(zhì)子峰,δ=3.72對(duì)應(yīng)于羥基相連亞甲基上的氫質(zhì)子峰,與文獻(xiàn)[17]報(bào)道的BHET核磁譜分析一致。值得注意的是,相較于醇解產(chǎn)物-1在單一體系下,醇解產(chǎn)物-2和產(chǎn)物-3出現(xiàn)新的峰。分析認(rèn)為,這由于單一解聚體系解聚廢棄滌綸紡織品不完善,醇解產(chǎn)物-2和產(chǎn)物-3中存在BHET二聚體等多聚體導(dǎo)致氫的環(huán)境發(fā)生變化產(chǎn)生新的峰。由此可見,三種解聚體系解聚能力從強(qiáng)到弱依次為K2CO3/KOH、K2CO3、KOH。
2.1.4" 醇解產(chǎn)物熱分析
圖4為醇解產(chǎn)物DSC曲線及TGA曲線。由圖4(a)可以看出,三種醇解產(chǎn)物熔點(diǎn)依次為109、111、113 ℃,這與文獻(xiàn)[18]報(bào)道的BHET熔點(diǎn)(110 ℃)基本符合,說明醇解產(chǎn)物主要為BHET。值得注意的是,KOH體系下,醇解產(chǎn)物熔點(diǎn)相較于其他兩種醇解產(chǎn)物熔點(diǎn)往右偏移,這說明在KOH體系下,廢棄滌綸紡織品解聚不完全,醇解產(chǎn)物中BHET含量較少。進(jìn)一步地,由圖4(b)可知,三種醇解產(chǎn)物均有兩個(gè)失重平臺(tái)。第一熱失重平臺(tái)發(fā)生在230 ℃附近,第二熱失重平臺(tái)在390 ℃附近,其中K2CO3/KOH體系下所得到的醇解產(chǎn)物第一階段失重率約為38%。據(jù)文獻(xiàn)[19]報(bào)道,BHET第一熱失重平臺(tái)質(zhì)量保持率為65%,BHET二聚體第一熱失重平臺(tái)質(zhì)量保持率為80%。值得注意的是,相較于醇解產(chǎn)物-2和產(chǎn)物-3,醇解產(chǎn)物-1在200 ℃開始分解,這可能是由于BHET單體比BHET多聚體的熱穩(wěn)定差,分解活化能低引起的[20]。由此表明,相較于單一體系,K2CO3/KOH體系下醇解產(chǎn)物中BHET含量高,而單一體系下,醇解產(chǎn)物-2和產(chǎn)物-3主要為BHET的二聚體。這也進(jìn)一步說明,KOH的添加可以促進(jìn)BHET低聚物轉(zhuǎn)化為BHET。
2.1.5" 不同因素對(duì)醇解的影響
為了優(yōu)化乙二醇醇解甲醇酯交換工藝條件,本文做了單因素的實(shí)驗(yàn)(圖5)。由圖5可知,在控制反應(yīng)溫度為200 ℃時(shí),BHET的收率隨著KOH添加量的增加呈現(xiàn)先增加后下降的趨勢(shì),這是由于隨著KOH添加量的增加,BHET會(huì)與KOH進(jìn)一步反應(yīng)生成苯甲酸,從而降低了BHET的收率,因此控制KOH添加量尤為重要??刂品磻?yīng)時(shí)間為2 h、碳酸鉀催化劑添加量為2%、KOH添加量為2%時(shí),隨著反應(yīng)溫度的增加,BHET收率呈現(xiàn)先急劇增加后趨于平緩的趨勢(shì)??刂品磻?yīng)溫度為200 ℃、碳酸鉀催化劑添加量為2%、KOH添加量為2%時(shí),隨著反應(yīng)時(shí)間的增加,BHET收率增長(zhǎng)趨勢(shì)同反應(yīng)溫度影響趨勢(shì)類似。BHET收率隨時(shí)間的增加呈現(xiàn)先上升后平緩的趨勢(shì),這是由于隨著時(shí)間的增加,乙二醇與PET能充分反應(yīng),提高了BHET收率。BHET收率隨溫度的變化比較明顯,這是由于隨著反應(yīng)溫度的增加,增加了乙二醇與PET的分子間碰撞,加快反應(yīng)速率,從而提高BHET收率。
2.1.6" 響應(yīng)面法對(duì)廢棄滌綸紡織品醇解工藝參數(shù)優(yōu)化
在綜合分析解聚溫度、時(shí)間及KOH添加量對(duì)醇解工藝的影響基礎(chǔ)上,本文以BHET收率為響應(yīng)值、三個(gè)單因素為主要影響考察因素,運(yùn)用Box-Behnken方法設(shè)計(jì)交互實(shí)驗(yàn),得到15個(gè)實(shí)驗(yàn)方案。表1為三個(gè)單因素及其水平取值,表2為具體的實(shí)驗(yàn)方案。
對(duì)表2進(jìn)行二次擬合,結(jié)果如表3所示,得到回歸方程及其方差分析。其中,回歸方程為:R=65.44+9.7A+2.69B-3.34C+0.665 8AB-0.854 8AC+0.227 7BC-5.38A2-0.056 9B2-3.42C2。
由表3可知,模型Plt;0.000 1,說明該模型擬合非常顯著,且模型失擬項(xiàng)Pgt;0.5,說明響應(yīng)值的失擬項(xiàng)不顯著,表明該模型擬合成功[21]。此外,回歸方程系數(shù)R2為0.997,表明BHET收率與回歸方程理論計(jì)算值相接近,可以預(yù)測(cè)BHET收率。另外,從一次項(xiàng)和二次項(xiàng)的P判斷,A、B、C三個(gè)因素的影響程度為Agt;Cgt;B,其中因素A的一次項(xiàng)二次項(xiàng)P值均lt;0.000 1、因素C一次項(xiàng)和二次項(xiàng)P值均lt;0.01,這兩個(gè)因素影響都極為顯著。綜上所述,解聚溫度(A)與KOH添加量(C)是作為醇解工藝中的主要影響因素,擬合結(jié)果與單因素影響實(shí)驗(yàn)結(jié)果一致。
圖6為BHET收率得到的等高線圖與響應(yīng)面圖。由圖6的響應(yīng)面可以更加直觀地看出,三個(gè)因素對(duì)響應(yīng)值BHET收率的影響。響應(yīng)面走勢(shì)越陡峭,表明該因素對(duì)響應(yīng)值的影響越顯著,走勢(shì)越平緩,影響越?。?2]。由圖6可知,反應(yīng)溫度(A)與KOH添加量(C)走勢(shì)比較陡峭,隨著數(shù)值的變化,響應(yīng)面的變化較大,這與方差分析一致。
根據(jù)以上結(jié)果,運(yùn)用Design-Expert軟件進(jìn)行最優(yōu)化,取響應(yīng)值BHET收率最大時(shí),得到最佳工藝(反應(yīng)溫度210℃,反應(yīng)時(shí)間120 min,KOH添加量2.4%)。在此工藝條件下,得到的BHET收率為74.3%。對(duì)最優(yōu)工藝參數(shù)進(jìn)行實(shí)際驗(yàn)證,最終得到實(shí)際BHET收率為73.1%,該數(shù)值與模擬值較為接近,說明采用響應(yīng)面法優(yōu)化醇解工藝是可行的。
2.2" 再生DMT制備
2.2.1" 不同體系的醇解產(chǎn)物對(duì)再生DMT產(chǎn)率的影響
將三種解聚體系得到的醇解產(chǎn)物分別與甲醇按照1︰3的投料比加入三頸燒瓶中,攪拌升溫至65 ℃時(shí)開始計(jì)時(shí),得到DMT收率如圖7所示。由圖7可知,隨著反應(yīng)的進(jìn)行,三種解聚體系下DMT收率均呈現(xiàn)上升趨勢(shì)。其中,由KOH/K2CO3、K2CO3、KOH醇解體系醇解產(chǎn)物所制備的DMT,在150 min達(dá)到最大值,分別為80.1%、75.8%、66.9%。由此可見,醇解產(chǎn)物中BHET含量占比越高,低聚物(ngt;2)含量越少,與甲醇反應(yīng)越迅速,能在較短的時(shí)間內(nèi)實(shí)現(xiàn)再生DMT的最大產(chǎn)率。據(jù)文獻(xiàn)[23]報(bào)道,BHET能直接和甲醇反應(yīng),降低表觀反應(yīng)活化能,提高反應(yīng)速率。然而,醇解產(chǎn)物中的低聚物(ngt;2)要先與甲醇反應(yīng),解聚進(jìn)而生成再生DMT,延長(zhǎng)了反應(yīng)時(shí)間。由此表明,DMT產(chǎn)率隨醇解產(chǎn)物中BHET含量的提高而增加。
2.2.2" 紅外光譜分析
將醇解產(chǎn)物1~3制備的再生DMT分別命名為DMT-1、DMT-2、DMT-3,如圖8所示。由圖8可知,三種再生DMT具有相似的紅外吸收曲線,其中2 964 cm-1吸收峰主要?dú)w因于C—H的伸縮振動(dòng),1 727 cm-1對(duì)應(yīng)酯基CO伸縮振動(dòng),1 436 cm-1吸收峰主要是由于苯環(huán)骨架中的CC伸縮振動(dòng),1 108 cm-1對(duì)應(yīng)C—O的伸縮振動(dòng)[24]。值得注意的是,在3 424 cm-1附近的吸收峰依舊表現(xiàn)出一定的吸收強(qiáng)度,此處吸收峰主要與—OH的伸縮振動(dòng)有關(guān)。這是由于三種醇解產(chǎn)物酯交換反應(yīng)程度不同,導(dǎo)致粗產(chǎn)物DMT中可能含有部分沒反應(yīng)完全的BHET及其低聚物,因此需進(jìn)一步提純?cè)偕鶧MT。
2.2.3" 再生DMT氣相色譜法
DMT為白色結(jié)晶固體,汽化溫度在230 ℃附近[25]。目
前,主要的提純方法為甲醇重結(jié)晶法。然而,此方法需多次重復(fù)洗滌重結(jié)晶,步驟較為繁瑣。相較于甲醇提純法,減壓升華法具有流程短、操作簡(jiǎn)單、不使用額外的化學(xué)試劑等優(yōu)點(diǎn),是一種提純?cè)偕鶧MT的簡(jiǎn)易方法。因此,本文采用減壓升華法提純粗再生DMT,實(shí)現(xiàn)再生DMT與其他雜質(zhì)的高效分離,制備高純度再生DMT。
高效氣相色譜法能夠定量分析待測(cè)樣品,以內(nèi)標(biāo)物的峰面積為標(biāo)準(zhǔn),計(jì)算待測(cè)樣品的含量[26]。本文采用高效氣相色譜儀對(duì)提純前后的再生DMT進(jìn)行含量分析,結(jié)果如圖9、圖10所示。分析對(duì)比提純前后可知(表4),減壓升華法提純后再生DMT純度有了明顯的提升,精制再生DMT純度對(duì)比粗再生DMT純度分別提高了18.1%、22.3%、22.8%,純度均到達(dá)了99%以上。由此可見,相比于傳統(tǒng)的甲醇法,減壓升華法不僅能成功提純粗再生DMT,而且提純方法更便捷、提純效率更高。
3" 結(jié)" 論
本文以K2CO3/KOH為解聚體系,在乙二醇溶劑中解聚廢棄滌綸紡織品,經(jīng)甲醇酯交換法制備高純度再生DMT,主要結(jié)論如下:
1) 在廢棄滌綸紡織品乙二醇醇解過程中,研究發(fā)現(xiàn)KOH/K2CO3、K2CO3、KOH三種解聚體系得到的醇解產(chǎn)物主要為BHET及其低聚物。
2) 在單因素實(shí)驗(yàn)中,BHET收率隨著溫度的升高呈現(xiàn)明顯上升趨勢(shì),當(dāng)反應(yīng)溫度達(dá)到210 ℃,BHET收率達(dá)到最高為71.2%;BHET收率隨時(shí)間的增加也呈現(xiàn)上升趨勢(shì),當(dāng)反應(yīng)時(shí)間達(dá)到120 min,BHET收率最高達(dá)到69.67%;BHET收率隨著KOH的添加量的增加呈現(xiàn)先上升后下降的趨勢(shì),當(dāng)KOH的添加量達(dá)到2%,BHET收率達(dá)到最高為70.2%。通過響應(yīng)面法優(yōu)化醇解工藝,最優(yōu)條件為反應(yīng)溫度210 ℃、反應(yīng)時(shí)間120 min、K2CO3質(zhì)量分?jǐn)?shù)2.0%、KOH質(zhì)量分?jǐn)?shù)2.4%。
3) 在甲醇酯交換過程中,再生DMT的產(chǎn)率隨著醇解產(chǎn)物中BHET質(zhì)量分?jǐn)?shù)的提高而增加,結(jié)合減壓升華法進(jìn)一步制得高純?cè)偕鶧MT,其純度高達(dá)99%以上,可以直接用于再生DMT的制備。
參考文獻(xiàn):
[1]SOONG Y H V, SOBKOWICZ M J, XIE D M. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes[J]. Bioengineering, 2022, 9(3): 98.
[2]ELAINE B, JONATHAN R A J, WIM T. Chemolytic depolymerisation of PET: A review[J]. Green Chemistry, 2021, 23(11): 3765-3789.
[3]王翠芳, 黎煥敏, 隨獻(xiàn)偉, 等. 廢棄塑料的回收及高值化再利用[J]. 高分子材料科學(xué)與工程, 2021, 37(1): 335-342.
WANG C F, LI H M, SUI X W, et al. Recycling and value-added utilization of waste plastics[J]. Polymer Materials Science amp; Engineering, 2021, 37(1): 335-342.
[4]韓非, 郎晨宏, 邱夷平. 廢舊紡織品資源化循環(huán)利用研究進(jìn)展[J]. 紡織學(xué)報(bào), 2022, 43(1): 96-105.
HAN F, LANG C H, QIU Y P. Research progress on resourceful recycling of waste textiles[J]. Journal of Textile Research, 2022, 43(1): 96-105.
[5]張?zhí)m, 孟家光, 支超, 等. 廢舊聚酯化學(xué)回收法及其再生產(chǎn)物的應(yīng)用研究進(jìn)展[J]. 合成纖維, 2023, 52(5): 42-48.
ZHANG L, MENG J G, ZHI C, et al. Research progress on chemical recycling method of waste polyester and its application of recycled products[J]. Synthetic Fiber in China, 2023, 52(5): 42-48.
[6]CAO F, WANG L Y, ZHENG R R, et al. Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products[J]. RSC advances, 2022, 12(49): 31564-31576.
[7]DU Z X, TANG Z, WANG H J, et al. Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats[J]. Chinese Journal of Catalysis, 2013, 34(1): 101-115.
[8]ZHANG S B, XUE Y Y, WU Y F, et al. PET recycling under mild conditions via substituent-modulated intramolecular hydrolysis[J]. Chemical Science, 2023, 14(24): 6558-6563.
[9]ZHANG R Q, ZHENG X, YAO X Q, et al. Light-colored rPET obtained by nonmetallic TPA-based ionic liquids efficiently recycle waste PET[J]. Industrial amp; Engineering Chemistry Research, 2023, 62(30): 11851-11861.
[10]ZAHRA A, AJMIR K, MUHAMMAD N, et al. Rapid depolymerization of PET by employing an integrated melt-treatment and diols[J]. Polymer, 2023(265): 125585.
[11]KANG M J, YU H J, JEGAL J, et al. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst[J]. Chemical Engineering Journal, 2020(398): 125655.
[12]SUN Q, ZHENG Y Y, YUN L X, et al. Fe3O4 nanodispersions as efficient and recoverable magnetic nanocatalysts for sustainable PET glycolysis[J]. ACS Sustainable Chemistry amp; Engineering, 2023, 11(19): 7586-7595.
[13]PHAM D D, HOUNGMO C. Low-energy catalytic methanolysis of poly (ethyleneterephthalate)[J]. Green Chemistry, 2021, 23(1): 511-525.
[14]劉洋. 利用廢舊燙金聚酯薄膜制備對(duì)苯二甲酸的研究[D]. 合肥: 合肥工業(yè)大學(xué), 2015.
LIU Y. Study on the Preparation of Terephthalic Acid from Waste Hot Stamped Polyester Film[D]. Heifei: Hefei University of Technology, 2015.
[15]ZANGANA K H, FERNANDEZ A, HOLMES J D. Simplified, fast, and efficient microwave assisted chemical recycling of poly (ethylene terephthalate) waste[J]. Materials Today Communications, 2022(33): 104588.
[16]劉志陽, 官軍, 顧日強(qiáng), 等. 密實(shí)化方式對(duì)廢棄聚酯紡織品的醇解及酯交換產(chǎn)物的影響[J]. 現(xiàn)代紡織技術(shù), 2023, 31(1): 123-129.
LIU Z Y, GUAN J, GU R Q, et al. Effects of densification methods on glycolysis and transesterification products of waste polyester textiles[J]. Advanced Textile Technology, 2023, 31(1): 123-129.
[17]YUNITA I, PUTISOMPON S, CHUMKAEO P, et al. Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles[J]. Chemical Papers, 2019, 73(6): 1547-1560.
[18]ALOK C, SUMI S. Sustainable utilization of chemically depolymerized polyethylene terephthalate (PET) waste to enhance sand-bentonite clay liners[J]. Waste Management, 2023(166): 346-359.
[19]IMRAN M, KIM D H, AL-MASRY W A, et al. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis[J]. Polymer Degradation and Stability, 2013, 98(4): 904-915.
[20]王勇, 王杰, 張須臻, 等. 乙二醇/二甘醇聯(lián)合醇解廢聚酯及其產(chǎn)物分析[J]. 合成纖維, 2021, 50(5): 1-5.
WANG Y, WANG J, ZHANG X Z, et al. Ethylene glycol/diethylene glycol combined alcoholysis waste polyester and its product analysis[J]. Synthetic Fiber in China, 2021, 50(5): 1-5.
[21]NABID M R, BIDE Y, JAFARI M. Boron nitride nanosheets decorated with Fe3O4 nanoparticles as a magnetic bifunctional catalyst for post-consumer PET wastes recycling[J]. Polymer Degradation and Stability, 2019(169): 108962.
[22]康菡子, 袁璐璇, 王彥博, 等. 響應(yīng)面法優(yōu)化廢舊PET一鍋法解聚工藝的研究[J]. 現(xiàn)代化工, 2021, 41(8): 177-181.
KANG H Z, YUAN L X, WANG Y B, et al. Optimization on one-pot depolymerization process for waste PET by using response surface methodology[J]. Modern Chemical Industry, 2021, 41(8): 177-181.
[23]徐惠, 熊峰, 彭振軍, 等. 響應(yīng)面法優(yōu)化廢舊PET催化醇解工藝[J]. 精細(xì)化工, 2018, 35(12): 1999-2005.
XU H, XIONG F, PENG Z J, et al. Optimization of catalytic alcoholysis process for waste PET (polyethlene terephthalate) by response surface methodology[J]. Fine Chemicals, 2018, 35(12): 1999-2005.
[24]YE B Y, ZHOU R R, ZHONG Z X, et al. Upcycling of waste polyethylene terephthalate to dimethyl terephthalate over solid acids under mild conditions[J]. Green Chemistry, 2023, 25(18): 7243-7252.
[25]呂媛媛, 胡紅梅, 段思雨, 等. 低比例乙二醇用量下廢舊PET織物的醇解及聚合再生研究[J]. 北京服裝學(xué)院學(xué)報(bào)(自然科學(xué)版), 2020, 40(1): 21-27.
L Y Y, HU H M, DUAN S Y, et al. Study on glycolysis and polymerization regeneration of waste PET fabrics with low proportion of ethylene glycol[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2020, 40(1): 21-27.
[26]SUN M S, WANG F M, LIU W, et al. Novel application of gas chromatography in measurement of gas flow rate[J]. Flow Measurement and Instrumentation, 2016(50): 245-251.
K2CO3/KOH synergistic alcoholysis of waste polyester textiles and their preparation ofrecycled DMT
ZHANG Chi, WANG Xiangrong
CHEN Binjie1, ZHU Zixu1, GUAN Jun3, L Weiyang1, WANG Xiuhua1, YAO Yuyuan1,2
(1.National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;2.Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China;3.Zhejiang Jiaren New Materials Co., Ltd., Shaoxing 312000, China)
Abstract:
Polyethylene terephthalate (PET) is commonly used in textiles and apparel, automotive interior and other fields due to its excellent properties such as high strength and chemical stability. With the rapid development and expansion of polyester textiles, the accumulation of waste polyester textiles is also increasing year by year. However, the waste polyester textiles are difficult to be degraded naturally, posing a significant environmental threat. Recycling waste PET textiles is therefore crucial. Previous studies have identified two main methods for recycling waste polyester textiles: the physical method and the chemical method. The physical method involves regenerating the textiles through simple melting and granulation, but this method does not produce recycled products with good quality and stable performance. The chemical method involves using a depolymerising agent to break down waste polyester textiles into small molecules. These molecules are then polymerized to create a recycled polyester product. This process is a crucial method for producing high-quality recycled polyester products. Currently, chemical methods primarily consist of hydrolysis, alcoholysis, and enzymatic hydrolysis. Among them, the glycol alcoholysis-methanol ester exchange method has gained popularity due to its mild reaction conditions. However, it suffers from low product yield and the formation of oligomers during the alcoholysis stage. Additionally, the ester exchange stage requires a complex product purification process. Current research is focused on addressing these issues.
To address the issues of low product yields and increased oligomers in the glycolysis-methanol ester exchange process, this study suggested the use of K2CO3/KOH synergistic alcoholysis on discarded polyester textiles. Firstly, the inexpensive potassium carbonate was used as the primary catalyst in the alcoholysis stage. KOH was also introduced to co-polymerize the waste polyester textiles. Secondly, the response surface method was employed to optimize the process parameters in the alcoholysis stage, resulting in the identification of the optimal process parameters. Finally, the purification method was optimized in the ester-exchange stage based on the phase transition property of DMT, leading to the preparation of high-purity regenerated DMT. This paper introduced the use of KOH in the alcoholysis stage to co-polymerize waste polyester textiles. This reduced the oligomer content in the alcoholysis products and increased the BHET yield. In the ester exchange stage, a simple decompression sublimation method was used to purify the regenerated DMT. The purification process was also optimized. The experimental results indicate that the K2CO3/KOH synergistic alcoholysis of waste polyester textiles primarily produced BHET. The regenerated BHET yield demonstrated an increasing trend with the addition of KOH, peaking at 70.2% when the KOH addition reached 2%. The process parameters of the alcoholysis stage were optimized by using response surface methodology. The optimal conditions were determined to be a reaction temperature of 210 ℃, a reaction time of 120 minutes, K2CO3 content of 2.0%, and KOH content of 2.4%. These conditions resulted in a regenerated BHET yield of 73.1%. The regenerated DMT achieved a purity of over 99% after undergoing purification through decompression sublimation during the ester exchange stage. Efficient purification of the regenerated DMT was achieved.
To enhance the reaction efficiency and product yield of waste polyester textiles, a cost-effective and viable method is the synergistic depolymerization of waste polyester textiles with K2CO3/KOH to prepare regenerated DMT. The research provides valuable reference for the environmentally friendly recycling of waste polyester textiles and lays a foundation for producing high-quality regenerated polyester downstream.
Key words:
waste polyester textiles; K2CO3/KOH synergistic alcoholysis; ester exchange; decompression sublimation; regenerated DMT