(仲愷農(nóng)業(yè)工程學院農(nóng)業(yè)與生物學院,廣東廣州510225;2廣東省農(nóng)業(yè)科學院植物保護研究所/農(nóng)業(yè)農(nóng)村部華南果蔬綠色防控重點實驗室/廣東省植物保護新技術重點實驗室,廣東廣州510640;廣東供銷綠色農(nóng)產(chǎn)品生產(chǎn)供應基地運營公司,廣東惠州516166;4廣州市益農(nóng)生化有限公司,廣東廣州510800)
Benefit and Impact on the Feeding of Adult Phyllotreta striolata from Sweet Corn-Flowering Chinese Cabbage Rotation
LI SiJiel2, LI Hao4,PU XiaoMing2, ZHANGQIAN MingZhu,HOU ShengEn,BAI YuBo,YANG QiYun2,LIN BiRun2, ZHENG YiXiong
('College of Agriculture and Biology,Zhongkai Universityof Agriculture and Engineering, Guangzhou, Guangdong 510225,China;2PlantProtection Research Institute of Guangdong ProvincialAcademy of Agricultural Sciences/ Key Laboratory of GreenPrevention and Controlof South China Fruits and Vegetables,MinistryofAgriculture and Rural Affairs/ Key Laboratory of New Technology for Plant Protection in Guangdong Province, Guangzhou, Guangdong 510640, China;3 Guangdong Supply and Marketing Cooperative Green Agricultural Products Production and Supply Base Operating Company,Huizhou,Guangdong 516166, China;4Guangzhou Yinong Biochemical Co.,Ltd., Guangzhou, Guangdong 510800, China)
Abstract: 【Objective】 To overcome the obstacles of continuous cropping of vegetables and actively promote the rotation cultivation model of sweet corn-flowering Chinese cabbage, the present study investigated the ecological and economic benefits and control effect on major pests from this rotation model, so to provide a reference to fully leverage the advantages of this rotation cultivation model. 【Method】 Investigations were conducted in 3 rotation and 3 continuous cropping vegetable fields in Boluo County, Huizhou City, Guangdong Province, regarding planting patterns, varieties,pesticide and fertilizer application,and yield benefits.Diferences in Phylltreta striolata infestation were also investigated between the first crop of flowering Chinese cabbage in rotation and nonrotation vegetable fields.Additionally, the effects of the extracts from sweet corn roots and rhizosphere soil with different polar solvents on the feeding of adult P. striolata were determined, and trap experiments were conducted to verify the repellent activity.【Result】 Comparing the planting benefits and efects of fertilizer and pesticide reduction in rotation vegetable fields with that in continuous cropping vegetable fields, it was found that the annual average profit in rotation cropping was ,which increased profits by
or 8.73% compared to continuous cropping. The application amounts of compound fertilizer and pesticide formulations were significantly lower in rotation fields than in continuous cropping fields, with average reduction rates of 61.15% and 41.29% , respectively. The daily number of damaged holes caused by P. striolata in the first crop of flowering Chinese cabbage in rotation fields was reduced by 80.37% compared to that in continuous cropping fields.The test results of the activity of extracts from sweet corn roots and rhizosphere soil showed that the petroleum ether extract of rhizosphere soil (
)and the absolute ethanol extract of roots (
) had strong antifeedant and repellent effects on adult P. striolata, the antifeeding rate were 54.5% and 56.6% ,respectively. Trap experiment results indicated that the repellent rate when using the
petroleum ether extract of rhizosphere soil was 78.33% ,exhibiting the best repellent effect. 【Conclusion】 The rotation cultivation model of \"sweet corn-flowering Chinese cabbage\" has achieved quality improvement, efficiency enhancement, and fertilizer and pesticide reduction, and had good repellent effect on adult P. striolata, which provides strong technical support for promotion and application of the \"sweet corn-flowering Chinese cabbage\" rotation cultivation model.
Keywords: Sweet corn-flowering Chinese cabbage rotation model; continuous cropping obstacles; fertilizer and pesticide reduction; economic benefits; Phyllotreta striolata
0 引言
【研究意義】每年的“中央一號文件”一直都把“三農(nóng)”工作作為重點任務來抓,持續(xù)全面推進鄉(xiāng)村振興,確保農(nóng)業(yè)增產(chǎn)穩(wěn)產(chǎn)、農(nóng)民穩(wěn)步增收、農(nóng)村穩(wěn)定安寧。廣東惠州市毗鄰香港,位于粵港澳大灣區(qū),是重要糧食和農(nóng)產(chǎn)品供應基地。
惠州市博羅縣蔬菜農(nóng)場是大灣區(qū)重要農(nóng)產(chǎn)品供應基地,農(nóng)場大部分常年耕作,農(nóng)場主基本上都具備了一套農(nóng)業(yè)輪作栽培技術,能有效克服連作障礙問題,保證農(nóng)場農(nóng)業(yè)生產(chǎn)可持續(xù)發(fā)展?!厩叭搜芯窟M展】輪作是最常用和最經(jīng)濟有效的解決作物連作障礙的增產(chǎn)技術之一,除此之外,輪作還能提高資源利用效率和生產(chǎn)力(TANetal.,2020;
PELECHetal.,202I),開顯者控制柄出吾的友生(呂晴晴等,2023)。黃玉林等(2021)研究發(fā)現(xiàn)烤煙一水稻輪作可減輕病蟲害的發(fā)生,連作可能會導致作物生長變?nèi)?、發(fā)育不良、病害加劇、品質降低、減產(chǎn)甚至絕收等現(xiàn)象(盧維宏等,2020)。姚虹和馬建軍(2011)對胡麻進行了連作和輪作的對比試驗,發(fā)現(xiàn)胡麻輪作比連作的產(chǎn)量提高 15.3% ,產(chǎn)量差異明顯。BULLOCK(1992)研究發(fā)現(xiàn)輪作和連作對玉米產(chǎn)量影響明顯,玉米一豌豆輪作比玉米連作增產(chǎn) 。此外,楊帆(2018)報道了輪作可以有效減少化肥使用量??梢?,輪作可以促進作物的生長發(fā)育,提高作物的質量和產(chǎn)量,實現(xiàn)作物的高效種植。近年來,我國蔬菜種植面積不斷增加,且大部分地區(qū)采用連作、套種等種植方式,形成了適于黃曲條跳甲生長繁殖的環(huán)境(邊強等,2024),使黃曲條跳甲在我國南方由次要害蟲上升為主要害蟲,并有超越小菜蛾成為蔬菜第一害蟲的趨勢(肖勇等,2021)。制定黃曲條跳甲合理有效的防治方法是蔬菜產(chǎn)業(yè)上亟須解決的難題,而目前生產(chǎn)上主要的防治方法為化學防治?;瘜W防治雖然具有見效快、效率高的優(yōu)點,但由于黃曲條跳甲的防治主要采用葉面噴藥防治成蟲,無法兼顧處理土壤中的卵、幼蟲和蛹,而黃曲條跳甲成蟲因后足發(fā)達善于跳躍易躲避化學藥劑的噴灑防治,農(nóng)戶只能不斷增加用藥次數(shù)和用藥量,這導致蔬菜上的農(nóng)藥殘留普遍偏高,也使黃曲條跳甲的抗藥性越來越強(劉維帥,2014)。目前已有相關研究證明殺蟲劑的過度使用會導致黃曲條跳甲出現(xiàn)高抗藥性(王海等,2008)。此外,農(nóng)藥的過度使用還會造成環(huán)境污染等一系列問題?!颈狙芯壳腥朦c】蔬菜產(chǎn)業(yè)現(xiàn)代化的發(fā)展迫切需要探索出能替代化學防治、對環(huán)境友好、無公害的防治方法?!緮M解決的關鍵問題】本研究以博羅縣代表性菜場為研究對象,對輪作和連作菜場種植效益、減肥減藥、蟲害控制開展調(diào)查研究,特別進行了甜玉米根系分泌物對黃曲條跳甲成蟲的驅避活性研究,目的是探討“甜玉米一菜心”輪作技術是否對防治黃曲條跳甲有效,并闡明其原因,從而為“甜玉米一菜心”輪作技術推廣應用提供技術支撐。
1 材料與方法
1.1 試驗材料
供試蟲源:黃曲條跳甲[Phyllotretastriolata(Fabricius)]來源于廣東省農(nóng)業(yè)科學院植物保護研究所試驗菜地。
1.2 試驗方法
1.2.1輪作和連作菜場調(diào)查
調(diào)查地點為廣東省惠州市博羅縣。2022年11月至2023年10月分別調(diào)查了具有代表性的3個輪作菜場和3個連作菜場。試驗詳細調(diào)查了菜場種植管理情況并記錄相關數(shù)據(jù),包括種植品種、種植時間、施肥種類、施肥量、病蟲害發(fā)生情況、農(nóng)藥使用情況、種植成本、產(chǎn)量及產(chǎn)值等;并統(tǒng)計不同菜場每年度的施肥總量和施藥總量,比較輪作菜場與連作菜場施肥施藥的差異;此外對輪作菜場和連作菜場的經(jīng)濟效益也進行了調(diào)查、統(tǒng)計和分析。
1.2.2輪作甜玉米對黃曲條跳甲為害的影響
在第二茬甜玉米種植結束后,輪作菜場開始種植首茬菜心,第一茬菜心種植期約為 ,每隔一天調(diào)查一次黃曲條跳甲的為害情況。同時對輪作菜場附近(
以外)連作菜場里黃曲條跳甲的為害情況進行調(diào)查。調(diào)查時分別找10個點位,每個點位調(diào)查10株,實時記錄黃曲條跳甲咬食的孔洞數(shù),并計算出平均值,然后按照數(shù)據(jù)分別繪制輪作菜場和連作菜場黃曲條跳甲為害孔洞數(shù)的曲線圖,比較輪作菜場和連作菜場上黃曲條跳甲的為害差異。
1.2.3輪作后甜玉米根及根際土提取物對黃曲條跳甲的驅避作用
1.2.3.1甜玉米根和根際土的粗提物提取
將采集的甜玉米根和土分離,取根際土,并將甜玉米根切下用攪拌機搗碎。稱取 搗碎的甜玉米根和
根際土各4份,共8份;然后用
石油醚、無水乙醇、乙酸乙酯及二氯甲烷4種不同有機溶劑分別浸提,之后將8份浸提液分別用旋轉蒸發(fā)儀濃縮至膏狀,得到8種提取物(A1為石油醚根提取物;A2為石油醚根際土提取物;B1為無水乙醇根提取物;B2為無水乙醇根際土提取物;C1為乙酸乙酯根提取物;C2為乙酸乙酯根際土提取物;D1為二氯甲烷根提取物;D2為二氯甲烷根際土提取物),置于4℃冰箱中密封保存?zhèn)溆谩?/p>
1.2.3.2 提取物對黃曲條跳甲驅避活性測定
稱取1.2.3.1所述步驟中提取的8種甜玉米根根際土提取物用水進行溶解,并加入少量吐溫-80乳化,必要時置于 的恒溫水浴鍋中振蕩助溶,配制成不同濃度梯度的甜玉米根系/根際土提取物溶液。對照溶液為相同劑量的吐溫-80溶液。具體濃度梯度為:石油醚甜玉米根提取物濃度系列為
1.12mg/L 、 、 $11.25\upmu\mathrm{g/L}$ ,石油醚甜玉米根際土提取物濃度系列為
、
、$16.30~\upmu\mathrm{g/L}$ ;無水乙醇甜玉米根提取物濃度系列為
、
, $21.00~\upmu\mathrm{g/L}$ ,無水乙醇甜玉米根際土提取物濃度系列為 0.27mg/L ,
、$2.75~\upmu\mathrm{g/L}$ ;乙酸乙酯甜玉米根提取物濃度系列為1.32mg/L 、
、 $13.20~\ensuremath{\upmu\mathrm{g/L}}$ ,乙酸乙酯甜玉米根際土提取物濃度系列為
,
、$12.65~\upmu\mathrm{g/L}$ ;二氯甲烷甜玉米根提取物濃度系列為
、
、 $8.50~\upmu\mathrm{g/L}$ ,二氯甲烷甜玉米根際土提取物濃度系列為 5.69mg/L 、 0.57mg/L 、$56.95~\upmu\mathrm{g/L}$ o
驅避活性試驗方法主要參照賢振華等(2009)方法,具體如下。
(1)浸漬圓葉碟法:將新鮮平整且沒有蟲孔的菜心葉片用圓形打孔器( )打成葉碟,并放入對照有機溶劑溶液和不同處理的甜玉米根系/根際土提取物溶液中浸漬5\~8s后取出,用干凈濾紙吸取多余藥液,晾干作為對應處理葉碟。
(2)選擇性取食活性實驗:在墊有保濕濾紙的培養(yǎng)皿( )中放入處理和對照葉碟各15張,葉背向上均勻列為圓形擺放;每個皿接入3頭饑餓
以上的黃曲條跳甲成蟲,用保鮮膜封口,并用針刺孔以透氣;每個處理15皿,并隨機均分為3組,作為3次重復;接入蟲后的
和 24h 用透明坐標方格紙測量葉碟被取食面積(試驗中應根據(jù)具體取食情況及時添加經(jīng)過相同處理的葉碟),觀察黃曲條跳甲成蟲死亡情況,記錄死亡數(shù)量。按照下列公式計算死亡率和校正死亡率:
① 死亡率(%) σ=σ 處理死亡蟲數(shù)/處理總蟲數(shù) ×100 ② 校正死亡率 (%)= (處理死亡率-對照死亡率)/(1-對照死亡率) ×100
③ 拒食率 (對照取食面積-處理取食面積)/對照取食面積 ×100
(3)非選擇性取食活性實驗:在墊有保濕濾紙的培養(yǎng)皿( )中放入處理葉碟15張,對照葉碟15張放入另一培養(yǎng)皿中,葉背向上均勻列為圓形擺放,其他操作同選擇性取食活性測定。
(4)陷阱實驗:在選擇性和非選擇性取食活性實驗結果的基礎上開展陷阱實驗。在120目定制蟲網(wǎng)籠(長 ,寬
,高 30cm )中,左右各放兩盆菜心,左側為對照組,右側為處理組,同時每個蟲網(wǎng)籠接入150頭饑餓
以上的黃曲條跳甲成蟲,觀察
、
、 18h 、 24h 后黃曲條跳甲取食的情況,并實時記錄數(shù)據(jù)。
1.3 數(shù)據(jù)處理
本文主要采用Excel2017、SPSS19.0、Graph-pad Prism 5.0和AdobeillustrateCS6V.16.00軟件進行數(shù)據(jù)統(tǒng)計分析。
2 結果與分析
2.1輪作菜場與連作菜場施肥、施藥及經(jīng)濟效益對比
從表1可知,輪作菜場的復合肥施肥次數(shù)和復合肥施肥量均大大少于連作菜場,復合肥施肥量減少 61.15% ;輪作菜場的有機肥施肥次數(shù)和施肥量也明顯少于連作菜場,有機肥施肥量減少 22.79% 0
從表2可知,輪作菜場的施藥次數(shù)和施藥劑量均小于連作菜場,施藥量減少 41.29% 0
輪作菜場平均總利潤31700元 ,比連作菜場利潤增加2545元
,增幅為 8.73% (見表3)。
綜上所述,輪作菜場的施肥次數(shù)和施藥次數(shù)比連作菜場少,施肥量和農(nóng)藥使用量也顯著降低,成本更低,利潤更高。
2.2輪作對黃曲條跳甲的防控作用
2.2.1甜玉米輪作后第一茬菜心黃曲條跳甲的為害情況
在甜玉米采收后,于11月開始輪作種植第一茬菜心,對首茬菜心的整個生長周期進行黃曲條跳甲為害監(jiān)測,同時也對相鄰連作菜場同周期的菜心進行黃曲條跳甲為害監(jiān)測,并將二者進行對比。如圖1和圖2所示,連作菜場的為害孔洞數(shù)遠高于輪作菜場,輪作菜場的平均日為害孔洞數(shù)比連作菜場減少 80.37% ,說明輪作甜玉米后,第一茬菜心黃曲條跳甲為害率顯著降低。
2.2.2選擇性取食活性實驗
由表4至表7可知,甜玉米根的 1.12mg/L 石油醚提取物、 和
無水乙醇提取物、 1.32mg/L 乙酸乙酯提取物處理對黃曲條跳甲的拒食率高于 50% ;根際土的
和
石油醚提取物、
乙酸乙酯提取物處理對黃曲條跳甲成蟲的拒食率也均高于 50% ,說明這些提取物均有較好的拒食驅避活性。
注:同列數(shù)據(jù)后不同小寫字母表示差異顯著 (Plt;0.05) 。Note:Different lowercase letters behinddata inthe same colum indicated significantdifferences (Plt;0.05)
注:同列數(shù)據(jù)后不同小寫字母表示差異顯著 (Plt;0.05) 。Note:Different lowercase letters behind data in the same colum indicated significant differences( Plt;0.05)
2.2.3非選擇性取食活性實驗
由表8非選擇性試驗黃曲條跳甲的死亡率可知,根際土石油醚提取物處理組的死亡率以及根無水乙醇根處理組的死亡率較低,再結合選擇性
試驗的驅避效果,確定了具有拒食驅避活性的處理組分別為 甜玉米根際土石油醚提取物的處理和 2.10mg/L 甜玉米根無水乙醇提取物處理。
2.2.4陷阱實驗曲線下面積不同提取物處理的黃曲條跳甲成蟲驅避率
本研究根據(jù)選擇性和非選擇性取食活性實驗的結果,選擇 和 0.16mg/L 的根際土石油醚提取物、
和
的根無水乙醇提取物開展陷阱實驗。由圖3至圖6計算出各處理對黃曲條跳甲成蟲的驅避率(表9)。由表9可知,
根際土石油醚提取物處理后的驅避率為78.3% ,驅避效果最優(yōu); 2.10mg/L 根無水乙醇提取物處理后的驅避效果次之,說明根際土石油醚提取物中具有較高的驅避活性。
Fig.5 Selective preference effect of 2.10mg/L sweet corn rhizosphere soil extract with ethanol on adult of P. striolata
3 討論
3.1輪作可解決連作障礙問題,提高經(jīng)濟效益
連作常導致作物產(chǎn)量與品質下降,給作物生產(chǎn)帶來嚴重威脅,而通過合理輪作可有效解決這些威脅。于松漢等(2020)報道花生一糯玉米一連州菜心周年輪作栽培技術可極大地提高土地產(chǎn)出效益。楊柳青等(2008)提出的“菜心一超甜玉米一優(yōu)質稻”無公害生產(chǎn)輪作模式,充分利用了土地、光能等自然資源,提高了土地利用率、復種指數(shù)和作物產(chǎn)量,取得顯著的經(jīng)濟、生態(tài)和社會效益。沈建龍(2023)報道,河西鎮(zhèn)采用“玉米 + 蔬菜”輪作模式,減少了農(nóng)藥、肥料以及水的使用,實現(xiàn)了經(jīng)濟社會發(fā)展和生態(tài)保護治理的“雙贏”。韋飛燕(2022)報道,柳州市的生姜一菜心一香蔥一年三熟種植模式,提高了蔬菜種植產(chǎn)量和品質。PETERSON等(1991)試驗對比了兩年輪作制和兩年連作制的玉米產(chǎn)量,發(fā)現(xiàn)輪作可增產(chǎn) 。本文通過輪作和連作菜場比較,發(fā)現(xiàn)“甜玉米一菜心”輪作可顯著減少農(nóng)藥化肥使用量,輪作菜場比連作菜場復合肥施肥量和農(nóng)藥使用量分別減少率為 61.15% 和 41.29% ,這與前人的相關報道是一致的。同時,“甜玉米一菜心輪作”還可解決廣東省露地蔬菜連作障礙問題,使夏季高溫土地不用閑置,并提高甜玉米等糧食作物的種植面積。
3.2輪作甜玉米的根系分泌物對病蟲害控制效果
根系分泌物是植物在生長過程中分泌到根際生態(tài)環(huán)境中的有機物質(史剛榮,2004),這些物質可以影響植物生長,也可以影響下茬農(nóng)作物生長及環(huán)境生態(tài)。在有效的輪作模式下,不同作物之間的根系分泌物可以相互協(xié)同,以抵抗生長中的不利因素。同時,玉米根系分泌物能有效抑制王傳病害病原菌生長,如煙草黑脛病菌(張立猛等,2015)、大豆疫霉(ZHANGetal.,2020),且能緩解連作作物產(chǎn)生的酚酸類物質的化感作用(李慶凱等,2019),可在一定程度上克服連作障礙。本研究在“甜玉米一菜心”輪作過程中,發(fā)現(xiàn)輪作甜玉米后,種植第一茬菜心上的黃曲條跳甲的為害率顯著降低,相對于連作菜心地黃曲條跳甲的平均日為害孔洞數(shù)減少 80.37% ,具有非常顯著的防控效果。為探明機制,通過進一步采用不同極性的有機溶劑提取甜玉米根及根際土中的分泌物,使用粗提物進行生物活性測定,發(fā)現(xiàn)石油醚提取根際土和無水乙醇提取玉米根的提取物具有良好的拒食驅避活性,并通過陷阱實驗驗證了這2種提取物的生物活性。
4結論
本研究的結果表明,“甜玉米一菜心”輪作模式可有效減少菜場復合肥施肥量和農(nóng)藥使用量,減少率分別為 61.15% 和 41.29% 。同時,該輪作模式還可有效提高菜場的年平均利潤,增加利潤為2545元 ,增幅 8.73% 。此外,該模式還有效減少了黃曲條跳甲成蟲為害,第一茬菜心的黃曲條跳甲平均日為害孔洞數(shù)相對于連作蔬菜地減少了80.37% 。用石油醚提取的甜玉米根際土提取物
和無水乙醇提取的根提取物
對黃曲條跳甲具有較強的驅避活性。
參考文獻 References
邊強,于淑晶,孫曉東.2024.對黃曲條跳甲高毒力Bt菌株 的鑒定及田間藥效評價[J].中國生物防治學報,40(2): 484-490. BIAN Q, YU S J, SUN X D.2024. Identification and field control efficiency of high virulence bt strain against Phyllotreta striolata[J]. Chinese Journal of Biological Control, 40(2):484- 490.doi: 10.16409 / j.cnki.2095 - 039x.2023. 01.025.
黃玉林,勞曦.2021.烤煙一水稻輪作模式的優(yōu)勢及高產(chǎn)栽 培技術[J].現(xiàn)代農(nóng)業(yè)科技,(3):37-38,41. HUANG Y L, LAO X.2021. Advantages of flue-cured tobacco- rice rotation mode and its high-yield cultivation techniques[J]. Modern Agricultural Science and Technology, (3):37-38,41.doi:10.3969/j.issn.1007-5739.2021.03. 017.
李慶凱,劉蘋,趙海軍,宋效宗,林海濤,沈玉文,李林,萬書 波.2019.玉米根系分泌物緩解連作花生土壤酚酸類物 質的化感抑制作用[J].中國油料作物學報,41(6): 921-931. LI QK,LIUP,ZHAOHJ,SONGXZ,LIN HT, SHEN Y W, LI L, WAN S B. 2019.Maize root exudates alleviated allelopathic inhibttion of phenolic acids in soil of continuous cropping peanut[J]. Chinese Journal of Oil Crop Sciences, 41(6): 921-931.doi: 10.19802/j.issn.1007-9084. 2019114.
劉維帥.2014.黃曲條跳甲抗性監(jiān)測及對有機磷農(nóng)藥抗性機 理初步研究[D].長沙:湖南農(nóng)業(yè)大學. LIU W S. 2014. Monitoring of resistance to Huangqu Tiaojia and preliminary study on the mechanism of resistance to organophosphorus pesticides[D]. Changsha: Hunan agricultural university, 2014.
盧維宏,張乃明,包立,張麗,秦太峰.2020.我國設施栽培連 作障礙特征與成因及防治措施的研究進展[J].土壤,52 (4): 651-658. LU W H, ZHANG N M, BAO L,ZHANG L,QIN T F. 2020. Study advances on characteristics, causes and control measures of continuous cropping obstacles of facility cultivation in China[J]. Soils, 52(4): 651-658.doi: 10.137 58/j.cnki.tr.2020.04.001.
呂晴晴,何寧,張永江,遲寶杰,張艷軍,張冬梅,董合忠. 2023.間作和輪作通過根冠互作調(diào)控作物產(chǎn)量形成的生 理生態(tài)機制[J].植物生理學報,59(7):1277-1290. LYU Q Q, HE N, ZHANG Y J, CHI B J, ZHANG Y J, ZHANG D M, DONG H Z. 2023.Eco - physiological mechanism of crop yield formation regulated by intercropping and rotation through root-shoot interaction[J]. Plant Physiology Journal, 59(7): 1277-1290. doi: 10.13592/j. cnki.ppj.300101.
沈建龍.2023.河西鎮(zhèn)走出“玉米 + 蔬菜”輪作綠色發(fā)展新路 子[N].玉溪日報,2023-08-23. SHEN J L.2023.Hexi Town has taken a new path of green development through the rotation of corn and vegetables [N]. Yuxi Daily, 2023-08-23. doi: 10.38270/n.cnki.nyxbr.2023.001562
史剛榮.2004.植物根系分泌物的生態(tài)效應[J].生態(tài)學雜志, 23(1):97-101. SHI G R. 2004. Ecological effects of plant root exudates [J].Chinese Journal of Ecology, 23(1): 97-101.
王海,傅建煒,李建宇,趙士熙.2008.黃曲條跳甲室內(nèi)飼養(yǎng) 方法的改進[J].昆蟲知識,45(4):673-676. WANG H, FU J W, LI JY, ZHAO S X. 2008.A modified method for rearing striped flea beetle (SFB), Phyllotreta striolata[J]. Chinese Bulletin of Entomology, 45(4): 673- 676. doi: 10.3969/j.issn.0452-8255.2008.04.039.
韋飛燕.2022.柳州生姜-菜心-香蔥一年三熟種植模式初探 [J].特種經(jīng)濟動植物,25(6):109-111. WEI F Y. 2022. Preliminary study on the planting model of ginger-cabbage-chives in Liuzhou[J]. Special Economic Animals and Plants, 25(6): 109-111.doi: 10.3969/j issn.1001-4713.2022.06.034.
賢振華,孫晉,鄒嘯文.2009.紫蘇提取物對黃曲條跳甲成蟲 的拒食活性研究[J].廣東農(nóng)業(yè)科學,36(8):126-128. XIAN ZH, SUN J, ZOU X W.2009.Antifeeding acticity of the crude extracts from Perilla frutescens to adults of Phyllotreta strioltat[J]. Guangdong Agricultural Sciences, 36(8):126-128.doi:10.3969/j.issn.1004-874X.2009. 08. 041.
肖勇,時蘇,包華理,束長龍,黃來健,張杰,李振宇.2021.兩 種生物農(nóng)藥防治菜心黃曲條跳甲的研究[J].植物保護, 47(4): 288-292, 304. XIAO Y, SHI S,BAO H L, SHU C L,HUANG L J, ZHANG J, LI Z Y. 2021. Control effect of two biopesticides against Phyllotreta striolata on Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) [J].PlantProtection, 47(4): 288-292, 304. doi: 10.16688/j. zwbh.2020513.
楊帆.2018.輪作結合施肥對土壤有機碳組分及相關性狀的 影響[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學. YANG F. The effect of crop rotation combined with fertilization on soil organic carbon components and related traits [D]. Hohhot: Inner Mongolia Agricultural University.
楊柳青,賴仕彬,劉利華.2008.水田“菜心—超甜玉米一優(yōu) 質稻\"輪作無公害生產(chǎn)模式[].安徽農(nóng)學通報,14(23): 132,161. YANG L Q, LAI S B, LIU L H.2008. Pollution-free production mode of \"Chinese flowering cabbage-super sweet ddu fialdr Anhui Agricultural Science Bulletin,14(23): 132,161.doi: 10.16377/j.cnki.issn1007-7731.2008.23.066.
姚虹,馬建軍,2011.不同種植方式對胡麻產(chǎn)量構成因素的 影響[J].安徽農(nóng)業(yè)科學,39(30):18460-18462. YAO H,MA J J.2011.Effect of different planting patterns on plantproduction factors of Linum usitatissimum L [J]. Journal of Anhui Agricultural Sciences, 39(30): 18460-18462.doi: 10.3969/j.issn.0517-6611.2011.30.029.
于松漢,陳勤平,黃春萍,葉萬典,廖佳鈺,2020.花生一糯玉 米一連州菜心周年輪作栽培技術[J].現(xiàn)代農(nóng)業(yè)科技 (23):14-16. YU SH, CHEN QP,HUANG C P,YE WD,LIAO JY. 2020. Annual rotation cultivation techniques of peanut - waxy corn-Lianzhou cabbage[J].Modern Agricultural Science and Technology,(23): 14-16.
張立猛,方玉婷,計思貴,焦永鴿,廖靜靜,李江舟,鄧維萍,朱 書生,尹加文,楊敏.2015.玉米根系分泌物對煙草黑脛 病菌的抑制活性及其抑菌物質分析[J].中國生物防治學 報,31(1):115-122. ZHANGLM,F(xiàn)ANGYT, JI SG,JIAOYG,LIAOJJ, LIJZ,DENGWP,ZHUSS,YINJW,YANGM.2015. Inhibitory activity of maize root exudates against Phytophthora nicotianae and antifungal compounds analysis[J] Chinese Journal of Biological Control, 31(1): 115-122.
BULLOCK D G.1992. Crop rotation[J].Critical Reviews in Plant Sciences,11(4):309-326.doi:10.1080/07352689209 382349.
PELECHEA,ALEXANDERBCS,BERNACCHICJ.2021. Photosynthesis,yield, energy balance, and water-use of intercropped maize and soybean[J]. Plant Direct, 5(12): e365.doi:10.1002/pld3.365.
PETERSONTA,RUSSELLEMP.1991.Alfalfa andthe nitrogen cycle in the corn belt[J]. Journal of Soil and Water Conservation,46(3):229-235.
TANMX,GOUF,STOMPHTJ,WANGJ,YINW,ZHANG L Z,CHAI Q,VAN DER WERF W.2020.Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: Model development and application to wheat-maize intercropping[J]. Field Crops Research,246: 107613.doi: 10.1016/j. fcr.2019.107613.
ZHANGH,YANGYX,MEIXYLIY,WUJQ,LIYW, WANGHL,HUANGHC,YANGM,HEXH,ZHUS S,LIU Y X.2020.Phenolic acids released in maize rhizosphere during maize-soybean intercropping inhibit Phytophthora blight of soybean[J].Frontiers in Plant Science, 11:886.doi:10.3389/fpls.2020.00886.
(責任編輯 李菊馨)