摘要:斑馬魚(Daniorerio)因其獨特的生物學特性,如基因組與人類的高度相似、胚胎透明等,逐漸成為研究功能性成分健康效應的理想模式生物。本文全面分析斑馬魚模型在農(nóng)產(chǎn)品健康效應研究中的應用優(yōu)勢及其在功能性成分開發(fā)中的潛力,探討其結(jié)合多組學技術(shù)、高效篩選平臺及標準化操作規(guī)范的未來發(fā)展方向;通過文獻綜述的方法,系統(tǒng)總結(jié)了斑馬魚模型在農(nóng)產(chǎn)品功能性成分研究中的應用場景,包括功能性成分的健康效應研究(如抗氧化和抗炎機制)、毒性評估(如食品添加劑及農(nóng)藥殘留)、代謝和疾病模型研究(如肥胖、糖尿病和心血管疾病的作用)以及行為學研究(如認知功能和神經(jīng)保護作用);探討了結(jié)合基因組學、蛋白質(zhì)組學和代謝組學的多組學技術(shù)對揭示功能性成分作用機制的重要意義,并分析了斑馬魚與其他模式生物(如小鼠和細胞模型)的多維驗證體系的互補性;討論了基于斑馬魚模型開發(fā)的高通量篩選平臺及其在功能性食品研發(fā)中的應用潛力,指出了推動斑馬魚模型標準化建設(shè)與操作規(guī)范的重要性。研究結(jié)果表明,斑馬魚模型在功能性成分研究中具有顯著的優(yōu)勢。其高通量篩選能力顯著提升了對農(nóng)產(chǎn)品活性成分的發(fā)現(xiàn)效率,而胚胎透明性為研究化合物的作用機制提供了直觀的可視化手段。結(jié)合多組學技術(shù),斑馬魚模型能夠從分子、細胞到系統(tǒng)層面解析功能性成分的作用機制,為全面理解其生物學效應提供了技術(shù)支持。此外,斑馬魚模型與其他模式生物結(jié)合的多維驗證體系進一步彌補了單一模型的局限性,提高了研究結(jié)果的外推性和可靠性。在高通量篩選平臺的開發(fā)中,斑馬魚因其成本低、周期短和操作簡便的特點,為功能性食品和健康產(chǎn)品的研發(fā)提供了高效、經(jīng)濟的評價體系。同時,斑馬魚模型在評估食品添加劑、農(nóng)藥殘留及環(huán)境污染物的毒性方面表現(xiàn)出極高的敏感性,為食品安全研究提供了重要工具。通過標準化實驗室建設(shè)及操作規(guī)范的制定,可顯著提升斑馬魚模型研究的可重復性。斑馬魚模型以其顯著的生物學特性和研究優(yōu)勢,彌補了傳統(tǒng)方法在農(nóng)產(chǎn)品功能性成分研究中的不足,為功能性食品的開發(fā)提供了一種科學依據(jù)。結(jié)合多組學技術(shù)與其他模式生物的互補研究及高效篩選平臺開發(fā),斑馬魚模型顯著加速了功能性成分的篩選和驗證過程,并通過標準化建設(shè)與規(guī)范化操作,進一步提升了其研究的可信度和可重復性。然而,由于斑馬魚與人類的生理系統(tǒng)及代謝過程等方面的差異,該模型仍存在一定局限性。未來,通過技術(shù)改進、多模型結(jié)合及應用標準化的進一步推進,斑馬魚將在農(nóng)產(chǎn)品健康效應研究和功能性食品開發(fā)中發(fā)揮更加重要的作用。
Application Status and Prospects of Zebrafish Model in the Health Effect Studies of Functional Components in Agricultural Products
DENG XiaoHong
(Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530001, China)
Abstract: Zebrafish (Danio rerio), with its unique biological characteristics such as high genome similarity to that of humans, transparent embryos, has gradually become an ideal model organism for studying the health effects of functional components.This article analyzed the application advantages of the zebrafish model in agricultural product health efect research and its potential in functional component development, exploring its future development directions through the integration of multi-omics technologies, efficient screening platforms, and standardized operational protocols.A literature review method was employed to systematically summarize the applications of the zebrafish model in agricultural product functional component research, including health effect studies (such as antioxidant and anti-inflammatory mechanisms),toxicity assessment (such as food additives and pesticide residues), metabolic and disease model studies (such as obesity, diabetes, and cardiovascular diseases),and behavioral studies (such as cognitive function and neuroprotection).Additionally, the significance of integrating multi-omics technologies, including genomics, proteomics, and metabolomics, in elucidating the mechanisms of functional components was discussed, along with the complementarity of zebrafish and other model organisms (such as mice and cellmodels) in multi-dimensional validation systems. Furthermore, the potential applications of high-throughput screening platforms based on the zebrafish model in functional food development were discussed, and the importance of advancing zebrafish model standardization and operational protocols was pointed out.The findings indicated that the zebrafish model ofers significant advantages in functional component research. Its high-throughput screening ability has significantly enhanced the discovery efficiency of active ingredients in agricultural products, while the transparency of embryos has provided an intuitive visual tool for studying the mechanisms of compound actions. By integrating multi-omics technologies,the zebrafish model enables the analysis of functional components' mechanisms on molecular, cellular, and systemic levels, providing technical support for understanding their biological effects.Moreover, the multi-dimensional validation system combining zebrafish with other model organisms further addresses the limitations of single models,thereby enhancing the extrapolation and reliability of research results.In the development of high-throughput screening platforms, zebrafish, with its low cost, short cycle,and simple operation, has offered an efficient and cost-effective evaluation system for functional food and health product development.Additionally, the zebrafish model shows high sensitivity in assessing the toxicity of food additives, pesticide residues, and environmental pollutants, making it a valuable tool for food safety research. The standardization for laboratory construction and operational protocols can significantly improve the reproducibility and compaability of zebrafish model research acrosslaboratories.The zebrafish model, with its remarkable biological characteristics and research advantages, compensates for the limitations of traditional methods in agricultural product functional component research, providing scientific evidence for functional food development. The integration of multi-omics technologies, complementary studies with other model organisms, and development of efficient screening platforms has significantly accelerated the screening and validation processes of functional components. Additionally, through standardization and protocol standardization, the credibility and reproducibility of the research have been further enhanced.However,there are stillcertain limitations of this model due to the differences in physiological systems and metabolic processes between human and zebrafish. In the future, through technological improvements, multi-model integration, and further application standardization, the zebrafish model willplay an increasingly important role in agricultural product health efect research and functional food development.
Keywords: Zebrafish model; functional ingredients; health efects; high-throughput screening; multi-omics technology
0 引言
農(nóng)產(chǎn)品中的功能性成分(如多酚、膳食纖維和維生素)在促進人類健康、預防慢性疾病方面具有重要作用。這些成分不僅能夠提供基本營養(yǎng),還表現(xiàn)出抗氧化、抗炎和免疫調(diào)節(jié)等多種生物活性(ZHENGet al.,2020;ZHAO et al.,2020;DONG et al.,2021;LIetal.,2024;),對心血管疾病、代謝紊亂等慢性病的預防具有顯著作用(YAMAGATAetal.,2015;JEAN-MARIEet al.,2021;HUANGet al.,2022)。然而,揭示這些功能性成分的作用機制以及開發(fā)相關(guān)功能性食品仍然面臨諸多挑戰(zhàn)。現(xiàn)有的研究方法,如細胞實驗和小鼠模型,雖在農(nóng)產(chǎn)品功能性成分的生物活性研究中發(fā)揮了重要作用,但在全面模擬體內(nèi)生物過程、代謝轉(zhuǎn)化及多器官協(xié)同作用等方面存在局限性。因此,開發(fā)一種兼具高效、經(jīng)濟、低倫理限制的新型研究工具,對推動功能性食品的開發(fā)及保障食品安全具有重要意義。近年來,斑馬魚(Danio rerio)因其獨特的生物學特性和研究優(yōu)勢,逐漸成為研究農(nóng)產(chǎn)品功能性成分健康效應的理想模式生物(LIetal.,2022;LIUet al.,2023a;TANetal.,2023)。斑馬魚作為模式生物最初廣泛應用于發(fā)育生物學和毒理學領(lǐng)域,其透明的胚胎、快速的發(fā)育周期以及基因組與人類的高度相似性使其成為研究基因功能和藥物篩選的優(yōu)選模型(FISHMNANetal.,1997;HOWE etal.,2013;SUN et al.,2020;ZHU et al.,2020;STURTZELet al.,2023;KIMet al.,2024)。在農(nóng)產(chǎn)品研究方面,斑馬魚已被用于評估天然產(chǎn)物的抗氧化活性、抗炎作用及其在代謝疾病和心血管疾病中的潛在健康效應(AHMADIFARetal.,2019;BENCHOULA et al.,2019;CHEN et al.,2022b;HOSEINIFARetal.,2023;ZHANGetal.,2023;
LIUetal.,2024a)。例如,斑馬魚模型能夠高效評估山胡椒提取物對氧化應激的保護作用(KIMetal.,2019);利用斑馬魚模型,可以驗證五層龍?zhí)崛∥镌谡{(diào)節(jié)脂質(zhì)代謝方面的潛在功效(JUNGetal.,2023)。此外,斑馬魚在食品安全研究中表現(xiàn)出高度敏感性,可快速篩查食品中的農(nóng)藥殘留及化學污染物的毒性(MENGetal.,2020;PARK etal.,2020;ZHONG et al.,2021;LIU et al.,2023)。這些研究充分展現(xiàn)了斑馬魚模型的潛力,尤其是其生物學特性,如透明胚胎及與人類基因組的高度相似性,為后續(xù)研究提供了更多機會。盡管如此,目前的研究仍以功能驗證為主,缺乏對功能性成分作用機制的全面解析,以及基于斑馬魚模型的大規(guī)模篩選體系的規(guī)范化。本研究聚焦斑馬魚模型在農(nóng)產(chǎn)品功能性成分健康效應研究中的應用潛力,通過總結(jié)其獨特的生物學特性及技術(shù)優(yōu)勢,系統(tǒng)梳理現(xiàn)有研究在功能性成分健康效應、毒性評估、代謝與疾病模型以及行為學研究中的應用情況。此外,針對當前研究的不足,本研究提出結(jié)合多組學技術(shù)(基因組學、蛋白質(zhì)組學和代謝組學)解析功能性成分的作用機制,與其他模式生物(小鼠、細胞模型)構(gòu)建多維驗證體系,以及開發(fā)高效篩選平臺的解決方案。同時,本研究還重點討論推動斑馬魚模型標準化和規(guī)范化的重要性,旨在為未來功能性食品研發(fā)和食品安全保障提供科學支持。通過結(jié)合多組學技術(shù),從基因表達、蛋白質(zhì)功能到代謝通路,全面解析農(nóng)產(chǎn)品功能性成分的健康效應機制;探索斑馬魚與其他模式生物(小鼠和細胞模型)的互補性,構(gòu)建跨物種的多維驗證體系,以提升研究結(jié)果的可靠性和外推性;基于斑馬魚模型的高通量篩選能力,開發(fā)快速評價農(nóng)產(chǎn)品功能性成分及毒性的高效篩選平臺,為功能性食品研發(fā)提供技術(shù)支持;同時,推進斑馬魚模型實驗室建設(shè)的標準化與操作規(guī)范化,確保研究結(jié)果的可重復性和跨實驗室可比性,推動其在農(nóng)產(chǎn)品功能性成分健康效應研究中的深度應用,為功能性食品開發(fā)和食品安全保障提供科學依據(jù)和技術(shù)平臺。
1斑馬魚的獨特優(yōu)勢
斑馬魚作為一種重要的模式生物,由于其獨特的生物學特性以及在生物醫(yī)學研究領(lǐng)域的廣泛應用,近年來備受關(guān)注。其小型化、繁殖快速、胚胎透明以及與人類高度相似的基因組的特性,使其在藥物篩選、毒性評估等領(lǐng)域展現(xiàn)出巨大的潛力。
1.1斑馬魚的生物學特性
1.1.1小型化、繁殖快速、胚胎透明等特性
斑馬魚體型小巧,成年個體長度約為 ,適合在實驗室中大規(guī)模飼養(yǎng)和管理。其繁殖能力強,雌魚每次可產(chǎn)卵數(shù)百枚,且受精后胚胎發(fā)育迅速,
內(nèi)主要器官便可形成。更為重要的是,斑馬魚胚胎在早期發(fā)育階段呈透明狀態(tài),研究者可以直接觀察胚胎發(fā)育過程中的細胞分裂、器官形成等動態(tài)變化,這為發(fā)育生物學研究提供了便利(BERCIER et al.,2019)。
1.1.2與人類有高達 70% 的基因相似性
斑馬魚與人類共享約 70% 的基因,其基因組中許多基因與人類疾病相關(guān)基因具有高度同源性(HOWEetal.,2013)。這種基因相似性使斑馬魚成為研究人類疾病機制的理想模型,有助于揭示疾病的遺傳基礎(chǔ),并為新藥開發(fā)提供參考(GUTetal.,2017;CHIAetal.,2022;OMARet al.,2023;SHIMIZUetal.,2023)。
1.2在生物醫(yī)學和毒理學研究中的應用
1.2.1 藥物篩選
斑馬魚作為一種研究模型,因其繁殖力強,常被用于藥物篩選,尤其是在高通量篩選領(lǐng)域。其胚胎和幼魚對化合物的吸收能力較強,研究人員可以直接將候選藥物加入水中,觀察其對斑馬魚生理和行為的影響(BOWMANandZON,2O1O;MACRAE,2010;DELVECCHIOetal.,2011;TATetal.,2013;STEWARTetal.,2015)。這種方式不僅能夠提高篩選效率,還能節(jié)省成本。因此,斑馬魚已成為藥物研發(fā)初期階段篩選潛力化合物的重要工具。
1.2.2 毒性評估
在毒理學研究中,斑馬魚被廣泛用于評估藥物和化學物質(zhì)的毒性,特別是對心臟、肝臟、腎臟和神經(jīng)系統(tǒng)等的潛在風險(WANGetal.,2019;JIAet al.,2020;ZHANGetal.,2020;LUOet al.,2022;CHENetal.,2024)。斑馬魚胚胎和幼魚在遭遇毒性物質(zhì)時,其反應與哺乳動物表現(xiàn)出一定的相似性(MAKHIJAandJAGTAP,2O14;DRIESSENet al.,2015;BOYDetal.,2016),且其實驗周期較短,能夠在較短時間內(nèi)獲得研究結(jié)果。這使得它成為評估毒性物質(zhì)的一種高效模型。值得一提的是,斑馬魚透明的胚胎可以讓研究者通過顯微鏡觀察到毒性物質(zhì)對器官發(fā)育的直接影響,從而實現(xiàn)更加精準的毒性評估。
1.3研究農(nóng)產(chǎn)品生物活性和健康效應的優(yōu)勢潛力
1.3.1 高通量篩選能力
斑馬魚具有較強的繁殖能力和較小的體型,這使得它在高通量篩選實驗中非常有優(yōu)勢。研究人員能夠在微孔板中一次性處理大量的斑馬魚胚胎或幼魚(LOVE et al.,2OO4;CHAKRAVARTHYet al.,2014),進行多種農(nóng)產(chǎn)品提取物或化合物的生物活性測試。這種高通量篩選技術(shù)不僅提高了篩查效率,還能快速篩選出對健康有益的農(nóng)產(chǎn)品成分,為功能性食品的研發(fā)提供更可靠的科學依據(jù)。
1.3.2 可視化和實時監(jiān)測
斑馬魚胚胎的透明性可讓研究者實時觀察化合物對其生理和發(fā)育的影響。通過熒光標記等技術(shù),研究者可以監(jiān)測特定基因的表達、細胞的遷移以及器官的發(fā)育情況(MCGRATHandLI,2008;RALDUAandPINA,2014)。這種可視化能力使得斑馬魚成為研究農(nóng)產(chǎn)品生物活性和健康效應的有力工具,能夠直觀揭示功能性成份的作用機制。
2斑馬魚在農(nóng)產(chǎn)品潛在健康效應研究中的應用
除了對毒性的評估,斑馬魚模型還在研究功能性成分的健康效應中展現(xiàn)了其獨特的優(yōu)勢。在抗氧化、抗炎等領(lǐng)域,斑馬魚已成為一個高效的模型,為我們揭示農(nóng)產(chǎn)品成分對健康的潛在作用提供了有力證據(jù)。
2.1功能性成分的健康效應研究
2.1.1 抗氧化效果評估
抗氧化劑在防治慢性病及延緩衰老方面扮演著關(guān)鍵角色。斑馬魚模型因其小巧的體型、便于操作以及與人類類似的氧化應激反應,成為評估農(nóng)產(chǎn)品抗氧化效果的重要工具。例如,研究者曾通過斑馬魚模型探討了葡萄葉、海藻、芒果皮和金豆提取物的抗氧化活性,結(jié)果顯示,這些提取物顯著減少了斑馬魚體內(nèi)活性氧(ROS)的生成,證明了它們具有良好的抗氧化潛力(LIZARRAGA-VELAZQ-UEZet al.,2019;CHEN et al.,2022a;HOSEINI-FARet al.,2023;LIUet al.,2024b)。
2.1.2抗炎作用的驗證
炎癥是多種疾病的共同病理過程,許多農(nóng)產(chǎn)品中的活性成分具有抗炎特性。斑馬魚模型被用于研究這些活性成分的抗炎機制。例如,橄欖魚頭副產(chǎn)品水解物能顯著降低脂多糖(LPS)誘導斑馬魚炎癥和氧化應激反應(JAYAWARDHANAetal.,2023);米糠油提取物能顯著減少硫酸銅處理后中性粒細胞向炎癥部位的遷移,從而表現(xiàn)出良好的抗炎效果(LIUetal.,2023)。
2.2農(nóng)產(chǎn)品毒性與安全性評價
2.2.1食品添加劑、農(nóng)藥殘留等的毒性分析
食品安全是公眾健康的重要保障。斑馬魚因其對化學物質(zhì)的高敏感性,被用于評估食品添加劑和農(nóng)藥殘留的毒性(BAILONEetal.,2019)。10mmol/L食品添加劑檸檬黃對斑馬魚胚胎具有顯著的毒性和致畸性(JOSHIandKATTI,2018)。草甘麟和二嗪農(nóng)可顯著降低斑馬魚的生存幾率并抑制斑馬魚的發(fā)育(ZALUSKIetal.,2022)。
2.2.2 斑馬魚胚胎毒性實驗的應用
斑馬魚胚胎毒性實驗是一種高效的毒性評估方法。馬尾藻屬乙醇提取物和石花菜甲醇提取物可引起斑馬魚胚胎的毒性反應和造成畸形(GONZALEZ-PENAGOSetal.,2024;WARSIetal.,2024)。
2.3代謝和疾病模型研究
代謝性疾病,如肥胖和糖尿病,已經(jīng)成為全球性的健康問題。近年來,斑馬魚作為研究工具,越來越多地被應用于探索不同農(nóng)產(chǎn)品成分對這些疾病的作用。例如,有研究通過斑馬魚模型分析了苦瓜葉提取物對脂質(zhì)代謝的影響,發(fā)現(xiàn)苦瓜葉能夠通過減少脂肪生成和增強氧化,從而有效減少斑馬魚肝臟中的脂質(zhì)積累(WUetal.,2021)。此外,山楂、肉桂和牛至等植物提取物在糖尿病斑馬魚模型中展現(xiàn)出了顯著的抗糖尿病潛力(MU-JAMAMMI et al.,2022;PEREZ GUTIEREEZ etal.,2022)。這些發(fā)現(xiàn)為深入研究植物成分在代謝性疾病防治中的潛在作用提供了重要線索。
3斑馬魚模型在農(nóng)產(chǎn)品健康效應研究中的局限性
斑馬魚作為模式生物,因其基因與人類的相似性、發(fā)育過程的透明性以及易于飼養(yǎng)等特點,被廣泛應用于生物醫(yī)學和毒理學研究。然而,在評估農(nóng)產(chǎn)品的潛在健康效應時,斑馬魚模型也存在一定的局限性,盡管斑馬魚與人類約 70% 的基因同源,與人類疾病相關(guān)的基因有 87% 在斑馬魚中存在對應基因,但兩者在生理結(jié)構(gòu)和功能上仍存在明顯差異。例如,斑馬魚的心臟僅有兩腔(一個心房和一個心室),而人類心臟有四腔(兩個心房和兩個心室)(BOWLEYetal.,2022)。這種結(jié)構(gòu)差異可能影響心血管功能研究結(jié)果的外推性。另一方面,斑馬魚作為水生動物,實驗藥品需要通過水中溶液進行投喂,這種給藥方式可能對實驗結(jié)果產(chǎn)生影響。例如,水中給藥方式可能導致藥物在斑馬魚體內(nèi)的吸收和分布與口服或其他給藥方式存在差異,斑馬魚通過皮膚和鰓吸收藥物,因此藥物的溶解度、分子大小和親水性等因素都會影響其吸收效率,從而影響實驗的重復性和結(jié)果的準確性。
4展望
斑馬魚作為一種重要的模式生物,因其基因組與人類高度相似、繁殖周期短、胚胎透明等特點,被廣泛應用于生物醫(yī)學、毒理學和藥物篩選等領(lǐng)域。在農(nóng)產(chǎn)品潛在健康效應的研究中,斑馬魚模型同樣展現(xiàn)出巨大的應用潛力。在未來,結(jié)合基因編輯技術(shù)、體內(nèi)成像技術(shù)等高新技術(shù),斑馬魚模型的精確度將得到顯著提升。預計跨物種的驗證體系將成為功能性成分研究的主流,推動功能性食品的研發(fā)邁向新高度。
4.1結(jié)合多組學技術(shù)的綜合研究
多組學技術(shù),包括基因組學、轉(zhuǎn)錄組學、蛋白質(zhì)組學和代謝組學,能夠從不同層面揭示生物體的生理和病理狀態(tài)。將這些技術(shù)與斑馬魚模型相結(jié)合,可以全面解析農(nóng)產(chǎn)品功能性成分的作用機制。
4.2與其他模式生物結(jié)合的多維驗證體系
盡管斑馬魚模型在許多方面具有優(yōu)勢,但單一模型可能存在一定的局限性。因此,可將斑馬魚與其他模式生物(如小鼠、細胞模型)相結(jié)合,構(gòu)建多維驗證體系,以提高研究結(jié)果的可靠性和外推性。例如,在毒理學評價中,利用斑馬魚建立多維度毒性評價機制,包括表型觀察、生物標志物檢測、代謝途徑分析等,可以對食品中存在的化學危害進行全面評估。同時,將斑馬魚的研究結(jié)果與小鼠或細胞模型的數(shù)據(jù)進行比較,可以驗證發(fā)現(xiàn)的生物學效應是否具有跨物種的一致性,從而提高研究結(jié)果的可信度。未來,建立斑馬魚與其他模式生物的多維驗證體系,將有助于全面評估農(nóng)產(chǎn)品功能性成分的生物學效應,推動功能性食品的開發(fā)和安全性評價。
4.3高效篩選農(nóng)產(chǎn)品活性成分的新型技術(shù)平臺開發(fā)
斑馬魚模型因其高通量篩選能力,被認為是開發(fā)新型技術(shù)平臺以高效篩選農(nóng)產(chǎn)品活性成分的理想選擇。通過建立斑馬魚功效與安全性快速評價系統(tǒng),可以快速評估農(nóng)產(chǎn)品及其提取物的生物活性和安全性。未來,開發(fā)基于斑馬魚模型的高效篩選平臺,可以加速農(nóng)產(chǎn)品活性成分的發(fā)現(xiàn)和功能驗證,推動功能性食品的研發(fā)和產(chǎn)業(yè)化應用。
5結(jié)論
斑馬魚作為一種重要的模式生物,憑借其與人類基因組的高度相似性、胚胎透明、繁殖周期短、高通量篩選能力等優(yōu)勢,在農(nóng)產(chǎn)品潛在健康效應研究中展現(xiàn)出巨大的應用潛力。與傳統(tǒng)的細胞實驗和小鼠模型相比,斑馬魚能夠更全面地反映功能性成分在完整生物體中的代謝、吸收和多器官協(xié)同作用,為功能性食品的開發(fā)提供了更加高效和經(jīng)濟的研究平臺。
通過結(jié)合多組學技術(shù),如基因組學、蛋白質(zhì)組學和代謝組學,斑馬魚模型可以從分子、細胞和系統(tǒng)多個層面揭示農(nóng)產(chǎn)品功能性成分的作用機制。這些技術(shù)的綜合應用為全面理解功能性成分的生物學效應以及復雜疾病的發(fā)生和發(fā)展提供了全新視角。此外,將斑馬魚模型與其他模式生物(如小鼠和細胞模型)相結(jié)合,可以通過多維驗證體系克服單一模型的局限性,提高研究結(jié)果的可靠性和外推性。
基于斑馬魚模型的高效篩選技術(shù)平臺的開發(fā),大大加速了農(nóng)產(chǎn)品活性成分的篩選和驗證過程。特別是在功能性食品和藥物開發(fā)中,斑馬魚模型已成為評估生物活性和安全性的有力工具。同時,斑馬魚模型實驗室的標準化與操作規(guī)范化,為研究結(jié)果的可重復性和跨實驗室的可比性提供了保障。
盡管斑馬魚模型存在與人類生理、代謝差異等局限性,但這些問題可以通過多模式結(jié)合研究、技術(shù)改進和模型優(yōu)化等方式來解決。未來,隨著更多技術(shù)手段的引入和規(guī)范化應用的推進,斑馬魚模型在農(nóng)產(chǎn)品健康效應研究中的潛力將進一步釋放,不僅為功能性食品的研發(fā)提供科學依據(jù),也將為全球健康領(lǐng)域帶來新的突破。總之,斑馬魚模型作為一個高效、經(jīng)濟、可重復的研究平臺,將在推動農(nóng)產(chǎn)品健康效應研究、改善人類健康中發(fā)揮重要作用。
參考文獻References
AHMADIFAR E,DAWOOD M A O, MOGHADAM M S, SHEIKHZADEHN,HOSEINIFARSH,MUSTHAFAM S.2019. Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar[J].Aquaculture,513: 734412.doi: 10.1016/j.aquaculture.2019.734412.
BAILONE R L,DE AGUIAR L K, DE OLIVEIRA ROCA R, BORRAR C,CORREAT,JANKEH,F(xiàn)UKUSHIMAH C S. 2019. Zebrafish as an animal model for food safety research: Trends in the animal research[J].Food Biotechnology,33(4): 283-302.doi: 10.1080 / 08905436.2019. 1673173.
BENCHOULA K, KHATIB A, QUZWAIN F M C, CHE MOHAMADCA,WANSULAIMANWMA,ABDULWAHABR,AHMED QU,ABDUL GHAFFARM, SAIMAN M Z,ALAJMI M F, EL-SEEDI H. 2019.Optimization of hyperglycemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with Psychotria malayana jack leaf extract[J].Molecules, 24(8):1506.doi:10.3390/molecules24081506.
BERCIERV,ROSELLOM,DELBENEF,REVENU C.2019. Zebrafish as a model for the study of live in vivo processive transport in neurons[J]. Frontiers in Cell and DevelopmentalBiology, 7: 17. doi: 10.3389/fcell.2019.00017.
BOWLEY G,KUGLER E,WILKINSON R,LAWRIE A, VAN EEDEN F,CHICO T JA,EVANS P C, NOEL E S, SERBANOVIC-CANIC J. 2022. Zebrafish as a tractable model of human cardiovascular disease[J]. British Journal of Pharmacology,179(5): 900-917. doi: 10.1111/bph.154 73.
BOWMAN T V, ZON L I. 2010. Swimming into the future of drug discovery: in vivo chemical screens in zebrafish[J]. ACS Chemical Biology,5(2): 159-161.doi: 10.1021/ cb100029t.
BOYD WA, SMITH MV, CO C A, PIRONE JR, RICE JR, SHOCKLEY K R, FREEDMAN J H. 2016.Developmental effects of the ToxCastTM phaseI and phase II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits[J]. Environmental Health Perspectives, 124(5): 586-593.doi: 10.1289/ehp.1409645.
CHAKRAVARTHY S, SADAGOPAN S, NAIR A, SUKUMARAN S K.2014. Zebrafish as an in vivo high-throughput model for genotoxicity[J]. Zebrafish, 11(2): 154-166. doi: 10.1089/zeb.2013.0924.
CHEN B, CHEN HH, QU HD, QIAO K, XU M, WU J N, SU Y C, SHI Y, LIU Z Y, WANG Q. 2022. Photoprotective effects of Sargassum thunbergii on ultraviolet B-induced mouse L929 fibroblasts and zebrafish[J].BMC Complementary Medicine and Therapies, 22(1): 144. doi: 10.1186/s12906-022-03609-x.
CHEN C,GUO L G, SHEN YH, HU J,GU J, JIG X. 2024. Oxidative damage and cardiotoxicity induced by 2-aminobenzothiazole in zebrafish (Danio rerio)[J]. Journal of Hazardous Materials,476: 135032. doi: 10.1016/j. jhazmat.2024.135032.
CHEN Q Y, WANG Y, YIN N, WANG R F, ZHENG Y, YANG Y P,AN X P,QIJ W.2022. Polysaccharides from fermented wheat bran enhanced the growth performance of zebrafish (Danio rerio) through improving gut microflora and antioxidant status[J]. Aquaculture Reports, 25: 101188.doi: 10.1016/j.aqrep.2022.101188.
CHIA K, KLINGSEISEN A, SIEGER D, PRILLER J. 2022. Zebrafish as a model organism for neurodegenerative disease[J].Frontiers in Molecular Neuroscience, 15: 940484. doi: 10.3389/fnmol.2022.940484.
DELVECCHIO C,TIEFENBACH J,KRAUSE H M. 2011. The zebrafish: A powerful platform for in vivo, HTS drug discovery[J]. Assay and Drug Development Technologies, 9(4): 354-361.doi: 10.1089/adt.2010.0346.
DONG RH, YU Q, LIAO W, LIU S,HE Z C,HU XB,CHEN Y, XIE J H, NIE S P, XIE M Y. 2021.Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity[J]. Food Chemistry, 339: 127879.doi: 10.1016/j.foodchem.2020.127879.
DRIESSENM,VITINS AP,PENNINGS JLA,KIENHUIS A S,VAN DE WATER B,VAN DER VEN L T M.2015.A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen[J]. Toxicology Letters, 232(2): 403-412. doi: 10.1016/j.toxlet.2014.11.020.
FISHMAN M C, STAINIER D Y, BREITBART R E,WESTERFIELD M. 1997. Zebrafish: Genetic and embryological methods in a transparent vertebrate embryo[J]. Methods in Cell Biology,52: 67-82.doi: 10.1016/s0091-679x (08)60374-x.
GONZALEZ-PENAGOS C E, ZAMORA-BRISENO J A, AMENDOLA-PIMENTA M, CRUZ-QUINTANA Y, SANTANA-PINEROS A M, TORRES-GARCIA J R, CANIZARES-MARTINEZ M A, PEREZ-VEGA J A, PENUELA-MENDOZA A C, RODRIGUEZ-CANUL R. 2024. Sargassum spp. ethanolic extract elicits toxic responses and malformations in zebrafish (Danio rerio) embryos[J]. Environmental Toxicology and Chemistry, 43 (5):1075-1089.doi: 10.1002/etc.5840.
GUT P, REISCHAUER S, STAINIER D Y R, ARNAOUT R. 2017.Little fish, big data: Zebrafish as a model for cardiovascular and metabolic disease[J]. Physiological Reviews, 97(3):889-938.doi: 10.1152/physrev.00038.2016.
HOSEINIFARSH,F(xiàn)AZELANZ,EL-HAROUNE,YOUSEFI M, YAZICI M, VAN DOAN H, PAOLUCCI M. 2023. The effects of grapevine (Vitis vinifera L.) leaf extract on growth performance, antioxidant status, and immunity of zebrafish (Danio rerio)[J].Fishes,8(6): 326.doi: 10.3390/ fishes8060326.
HOWE K, CLARK, M D, TORROJA,C F, TORRANCE J, Berthelot C, Muffato M, Collins J E, Humphray S, McLaren, K, Matthews L.2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496,498-50.https://doi.org/10.1038/nature12111.
HUANG H R, CHEN J J, AO T X, CHEN Y, XIE JH, HU X B, YU Q.2022.Exploration of the role of bound polyphenols on tea residues dietary fiber improving diabetic hepatorenal injury and metabolic disorders[J]. Food Research International, 162:112062.doi: 10.1016/j.foodres.2022. 112062.
JAYAWARDHANA H K, LIYANAGE N M, NAGAHAWATTA D P, LEE H G, JEON Y J, KANG S I. 2023. Pepsin hydrolysate from surimi industry-related olive flounder head byproducts attenuates LPS-induced inflammation and oxidative stress in RAW 264.7 macrophages and in vivo zebrafish model[J]. Marine Drugs, 22(1): 24. doi: 10.3390/md22010024.
JEAN-MARIE E,BEREAU D, ROBINSON J C.2021.Benefits of polyphenols and methylxanthines from cocoa beans on dietary metabolic disorders[J]. Foods, 10(9): 2049. doi: 10.3390/foods10092049.
JIA M, TENG M M, TIAN S N, YAN J, MENG Z Y, YAN S, LI R S, ZHOU Z Q, ZHU W T. 2020. Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio)[J]. Environmental Pollution, 267: 115450.doi: 10.1016/j.envpol.2020.115450.
JOSHI V, KATTI P. 2018. Developmental toxicity assay for food additive tartrazine using zebrafish (Danio rerio) embryo cultures[J]. International Journal of Toxicology, 37 (1): 38-44. doi: 10.1177/1091581817735227.
JUNG J, PARK J, LEE M, KIM J, OH D, JUN W, KIM O K, LEE J.2023.Salacia reticulata extract suppresses fat accumulation by regulating lipid metabolism[J]. Foods, 12 (17): 3149.doi: 10.3390/foods12173149.
KIM T Y, ROYCHAUDHURY A, KIM H T, CHOI T I, BAEK S T, THYME S B, KIM C H. 2024. Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536[J]. Translational Psychiatry, 14(1): 82. doi: 10.1038/s41398-024-02806-1.
KIM Y S, KIM E K, DONG X, PARK J S, SHIN W B, KIM S J, GO E A, PARK P J, LIM B O. 2019. Lindera glauca (Siebold et Zucc.)blume stem extracts protect against tertbutyl hydroperoxide-induced oxidative stress[J]. Journal of Medicinal Food, 22(5): 508-520. doi: 10.1089/ jmf.2018.4289.
LI H P, GUO X Q, ZHU X, CHEN Y N, ZHANG L M, LU J Q,QIAN Q T.2024. Effect of ultrahigh pressure processing (UHP) on physicochemical properties, antioxidant activity and anti-inflammatory activity of insoluble dietary fiber from Pholiota nameko[J]. Food Science and Biotechnology,33(2): 453-464.doi: 10.1007/s10068-023-01342- W.
LIY, LIU X J, SU S L, YAN H, GUO S, QIAN D W, DUAN J N.2022.Evaluation of anti-inflammatory and antioxidant effects of Chrysanthemum stem and leaf extract on zebrafish inflammatory bowel disease model[J].Molecules, 27 (7): 2114.doi: 10.3390/molecules27072114.
LIU N C,ZHANGP, XUE MY, ZHANG MW,HUANG ZY, XU C,MENGY,F(xiàn)ANYD,LIUW,ZHANGFX,CHEN P, ZHOU Y. 2024. Hypolipidemic effect of rice bran oil extract tocotrienol in high-fat diet-induced hyperlipidemia zebrafish (Danio rerio) induced by high-fat diet[J].International Journal of Molecular Sciences, 25(5): 2954. doi: 10.3390/ijms25052954.
LIU N C, ZHANG P, XUE MY, ZHANG M J, XIAO Z D, XU C, FAN YD, LIU W, WU Y Y, WU M L, ZHANG Q H, ZHOU Y. 2023. Anti-inflammatory and antioxidant properties of rice bran oil extract in copper sulfate-induced inflammation in zebrafish (Danio rerio)[J]. Fish amp; Shellfish Immunol0gy,136:108740.doi:10.1016/j.fsi.2023.1087 40.
LIU Y, GUO J, LIU W J, YANG F J, DENG Y Y, MENG Y L, CHENG B,F(xiàn)U JP, ZHANG JE,LIAO X J, WEI L L, LU H Q.2023.Effects of haloxyfop-p-methylon the developmental toxicity,neurotoxicity, and immunotoxicity in zebrafish[J].Fish amp; Shellfish Immunology,132: 108466. doi: 10.1016/j.fsi.2022.108466.
LIU Z M,LEE H, DONG L S, CHEONG S H, LEE D S. 2024. Fatsia japonica extract exerts antioxidant and anti-neuroinflammatory effects on neuronal cells and a zebrafish model[J]. Journal of Ethnopharmacology, 324: 117813. doi: 10.1016/j.jep.2024.117813.
LIZARRAGA C,HERNANDEZ C,GONZALEZ G,HEREDIA J. 2019. Effect of dietary intake of phenolic compounds from mango peel extract on growth, lipid peroxidation and antioxidant enzyme activities in zebrafish (Danio rerio) [J]. Latin American Journal of Aquatic Research, 47(4): 602-611.doi: 10.3856/vol47-issue4-fultext-3.
LOVE D R, PICHLER F B, DODD A,COPP B R, GREENWOOD D R. 2004. Technology for high-throughput screens: The present and future using zebrafish[J]. Current Opinion in Biotechnology, 15(6): 564-571. doi: 10.1016/j.copbio.2004.09.004.
LUO M,XIE D, LIN ZY, SUN HQ, LIU Y Y. 2022. Toxicology evaluation of overdose hydroxychloroquine on zebrafish (Danio rerio) embryos[J]. Scientific Reports, 12(1): 18259.doi: 10.1038/s41598-022-23187-9.
MACRAE C A. 2010. Cardiac arrhythmia: in vivo screening in the zebrafish to overcome complexity in drug discovery [J].Expert Opinion on Drug Discovery, 5(7): 619-632. doi: 10.1517/17460441.2010.492826.
MAKHIJA D T, JAGTAP A G. 2014. Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: Comparison with rat model[J]. Journal of Pharmacology amp; Pharmacotherapeutics, 5(1): 39-46.doi: 10.4103/0976- 500X.124422.
MCGRATH P, LI C Q. 2008. Zebrafish: A predictive model for assessing drug-induced toxicity[J]. Drug Discovery Today, 13(9-10): 394-401. doi: 10.1016/j.drudis.2008.03. 002.
MENG Y L,ZHONG K Y, XIAO J H, HUANG Y, WEI Y, TANG L, CHEN S P, WU J, MA J Z, CAO Z G,LIAO X J, LU H Q. 2020. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish[J]. Chemosphere,255:126889.doi: 10.1016 /j.chemosphere. 2020.126889.
MUJAMAMMIAH,SABIEM,ALTHAFAZM,SUMAILY K M,BIN DAHMAN L S. 2022. Crataegus oxyacantha extract mitigates diabetic nephropathy via oxidative stress regulation in streptozotocin-induced zebrafish model[J]. International Journal of Pharmacology, 18(6):1252-1260. doi: 10.3923/ijp.2022.1252.1260.
OMAR N A, KUMAR J, TEOH S L. 2023. Parkinson's disease model in zebrafish using intraperitoneal MPTP injection [J].Frontiers in Neuroscience, 17: 1236049. doi: 10.3389/ fnins.2023.1236049.
PARK H, LEE J Y, PARK S, SONG G, LIM W. 2020. Developmental toxicity of fipronil in early development of zebrafish (Danio rerio) larvae: Disrupted vascular formation with angiogenic failure and inhibited neurogenesis[J]. Journal of Hazardous Materials, 385: 121531. doi: 10.1016/jhazmat.2019.12131.
PEREZ GUTIERREZ R M,MARTINEZ JERONIMO F F, CONTRERAS SOTO J G,MUNIZ RAMIREZ A,ESTRELLA MENDOZA M F. 2022. Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of Cinnamomum verum, Origanum majorana, and Origanum vulgare and their anti-diabetic capacity in zebrafish (Danio rerio) [J]. Heliyon, 8(1): e08682.doi: 10.1016/j.heliyon.2021.e08682.
RALDUA D, PINA B. 2014. In vivo zebrafish assays for analyzing drug toxicity[J]. Expert Opinion on Drug Metabolism amp;Toxicology,10(5): 685-697. doi: 10.1517 / 17425255.2014.896339.
SHIMIZU N, SHIRAISHI H, HANADA T. 2023. Zebrafish as a useful model system for human liver disease[J]. Cells, 12(18):2246.doi: 10.3390/cells12182246.
STEWART A M, GERLAI R, KALUEFF A V. 2015. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery[J].Frontiers in Behavioral Neuroscience, 9: 14.doi: 10.3389/fnbeh.2015.00014.
STURTZELC, GRISSENBERGER S, BOZATZI P, SCHEURINGER E,WENNINGER-WEINZIERL A, ZAJEC Z,DERNOVSEK J,PASCOAL S,GEHL V, KUTSCH A,GRANIG A,RIFATBEGOVIC F, CARRE M, LANG A,VALTINGOJER I, MOLL J, LOTSCH D, ERHART F,WIDHALM G, SURDEZ D, DELATTRE O, ANDRE N, STAMPFL J, TOMASIC T, TASCHNERMANDL S,DISTEL M.2023.Refined high-content imaging-based phenotypic drug screening in zebrafish xenografts[J]. NPJ Precision Oncology, 7: 44.doi: 10.1038/ s41698-023-00386-9.
SUN X D, ZHOU Y, ZHANG R B, WANG Z Q,XU M, ZHANG D L, HUANG J L,LUO F T, LI F F, NI Z H, ZHOU S R, CHEN H G, CHEN S, CHEN L, DU X L, CHENB,HUANGHY,LIU P,YINLJ,QIUJH, CHEN D, DENG C X, XIE Y L, LUO L F, CHEN L. 2020. Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway[J]. Nature Communications, 11(1): 479. doi: 10.1038/s41467-019-14169-z.
TAN X H, WANG L P, SMITH W K, SUN HY, LONG L Y, MAO L Y, HUANG Q W, HUANG HF, ZHONG Z M. 2023.Aquilaria sinensis leaf tea affects the immune system and increases sleep in zebrafish[J].Frontiers in Pharmacology,14: 1246761. doi: 10.3389/fphar.2023.1246 761.
TAT J, LIU MY, WEN XY. 2013. Zebrafish cancer and metastasis models for in vivo drug discovery[J]. Drug Discovery Today: Technologies,10(1): 83-89.doi: 10.1016/j. DDTec.2012.04.006.
WANG Z K, LI GY,WU Q,LIU C S, SHEN JZ, YAN W. 2019. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish[J]. Chemosphere,214: 598-605.doi: 10.1016/j.chemosphere.2018. 09.103.
WARSI W, JASWIR I, AHMED Q U, MAHFUDH N, BIN MOHD NAWI M S,ROHMAN A,KHATIB A.2024. Morphological, teratogenic and behavioral evaluations of Gelidium spinosum methanol extract on zebrafish embryos [J].Pharmacia, 71: 1-10. doi: 10.3897/pharmacia.71. e109918.
WU S, HUANG C, CHEN YR, HUANG HC, HUANG W C, LAIY H. 2021.Momordica charantia leaf extract reduces hepatic lipid accumulation and diet-induced dyslipidemia in zebrafish through lipogenesis and beta-oxidation[J]. Journal of Functional Foods,87:104857.doi: 10.1016/j. jff.2021.104857.
YAMAGATA K, TAGAMI M, YAMORI Y. 2015. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease[J].Nutrition, 31(1): 28-37. doi: 10.1016/j. nut.2014.04.011.
ZALUSKI A B, WIPRICH M T, DE ALMEIDA L F, DE AZEVEDO A P, BONAN C D, VIANNA M R M. 2022. Atrazine and diuron effects on survival, embryo development, and behavior in larvae and adult zebrafish[J]. Frontiers in Pharmacology,13:841826.doi:10.3389/fphar.2022.841826.
ZHANG L, DENG M, WANG S Y, DING Q, LIU J H, XIE X, HUANG Y H, TU Z C. 2023.Mitigation of Paeoniae Radix Alba extracts on induced oxidative damage in HepG2 cells and hyperglycemia in zebrafish, and identification of phytochemical constituents[J]. Frontiers in Nutrition,10:1135759.doi: 10.3389/fnut.2023.1135759.
ZHANG M Q, CHEN B, ZHANG J P, CHEN N, LIU C Z, HU C Q. 2020. Liver toxicity of macrolide antibiotics in zebrafish[J].Toxicology,441:152501.doi: 10.1016 /j. tox.2020.152501.
ZHAO Y S, JAYACHANDRAN M, XU B J. 2020. In vivo antioxidant and anti-inflammatory effects of soluble dietary fiber Konjac glucomannan in type-2 diabetic rats[J]. International Journal of Biological Macromolecules, 159: 1186-1196.doi: 10.1016/j.ijbiomac.2020.05.105.
ZHENGYT,LIUS,XIEJH,CHENY,DONGRH,ZHANG XJ,LIUSQ,XIEJY,HUXB,YUQ.2020.Antioxidant, $\mathfrak{a}$ -amylaseand $\mathfrak{a}$ -glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber[J].LWT,132:109943.doi:10.1016/j.lwt.2020.109943.
ZHONGKY,MENGYL,WUJ,WEI Y,HUANGY,MAJZ, LU H Q.2021.Effect of flupyradifurone on zebrafish em
bryonic development[J].Environmental Pollution,285: 117323.doi: 10.1016/j.envpol.2021.117323. ZHU XY,XIAB,YE T,DAI M Z,YANGH,LI C Q,LI P. 2020.Ponatinib-induced ischemic stroke in larval zebrafish for drug screening[J]. European Journal of Pharmacology,889:173292.doi: 10.1016/j.ejphar.2020.173292.
(責任編輯 李菊馨)