賈西瑞 劉莉潔
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(81970893,82171541,81670935);江蘇省重癥醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室自主課題(JSKLCCM-2022-02-002)
作者單位:1東南大學(xué)生命科學(xué)與技術(shù)學(xué)院(郵編210096);2江蘇省重癥醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,東南大學(xué)醫(yī)學(xué)院
作者簡(jiǎn)介:賈西瑞(1997),女,碩士在讀,主要從事小膠質(zhì)細(xì)胞與膿毒癥相關(guān)性腦病研究。E-mail:1829071233@qq.com
△通信作者 E-mail:liulijie@seu.edu.cn
摘要:膿毒癥相關(guān)性腦病(SAE)是膿毒癥患者常見并發(fā)癥,以腦功能障礙為主要特征,且相當(dāng)比例的患者存在長(zhǎng)期認(rèn)知功能障礙。中樞神經(jīng)系統(tǒng)是較早受到膿毒癥引起的外周炎癥影響的區(qū)域之一。小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)常駐免疫細(xì)胞,可協(xié)調(diào)腦內(nèi)炎癥反應(yīng),在腦的固有免疫和適應(yīng)性免疫應(yīng)答中扮演重要角色,在SAE發(fā)生發(fā)展中起關(guān)鍵作用。就小膠質(zhì)細(xì)胞功能表型及其在SAE中的作用進(jìn)行綜述以探討小膠質(zhì)細(xì)胞在SAE防治中的潛在價(jià)值。
關(guān)鍵詞:膿毒癥;小神經(jīng)膠質(zhì)細(xì)胞;膿毒癥相關(guān)性腦??;突觸;神經(jīng)炎癥
中圖分類號(hào):R631文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20231735
The role and research progress of microglia in sepsis related encephalopathy
JIA Xirui1, LIU Lijie2△
1 Department of Biology, School of Life Science and Technology, Southeast University, Nanjing 210096, China; 2 Department of Physiology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University
△Corresponding Author E-mail: liulijie@seu.edu.cn
Abstract: Sepsis associated encephalopathy (SAE) is a common complication in patients with sepsis. It is characterized by brain dysfunction, and a considerable proportion of patients have long-term cognitive impairment. The central nervous system is one of earliest regions affected by peripheral inflammation caused by sepsis. As resident immune cells of central nervous system, microglia can coordinate inflammatory responses in brain and play an important role in the innate and adaptive immune responses of brain. Therefore, it plays a crucial role in the occurrence and development of SAE. In this paper, the functional phenotypes of microglia and their role in SAE are reviewed to explore the potential value of microglia in the prevention and treatment of SAE.
Key words: sepsis; microglia; sepsis related encephalopathy; synapses; neuroinflammation
膿毒癥是由宿主對(duì)感染的反應(yīng)失調(diào)所引起的危及生命的器官功能障礙[1]。膿毒癥相關(guān)性腦?。╯epsis- associated encephalopathy,SAE)是由膿毒癥引起的急性腦功能障礙,與直接的腦部感染無關(guān),是膿毒癥患者常見的并發(fā)癥,以注意力下降、認(rèn)知功能受損等為發(fā)病特征,患者患病程度可從意識(shí)模糊到譫妄,甚至出現(xiàn)深度昏迷,相當(dāng)比例的患者存在長(zhǎng)期認(rèn)知功能障礙。SAE一旦發(fā)生,不僅升高膿毒癥患者病死率、延長(zhǎng)患者住院時(shí)間、增加醫(yī)療資源耗費(fèi),還極大增加幸存者未來發(fā)生癡呆等多種腦功能障礙的風(fēng)險(xiǎn)[2]。研究指出,SAE的發(fā)生涉及腦內(nèi)神經(jīng)炎癥、腦循環(huán)障礙、血腦屏障(blood-brain barrier,BBB)損傷、神經(jīng)遞質(zhì)異常及氧化應(yīng)激等多種病理機(jī)制,而小膠質(zhì)細(xì)胞幾乎參與了上述所有病理過程[3-4]。臨床和動(dòng)物研究顯示,即便在BBB未受損的情況下,外周炎癥信號(hào)也可通過迷走神經(jīng)和室周器官傳入大腦,從而激活小膠質(zhì)細(xì)胞,活化的小膠質(zhì)細(xì)胞可通過釋放多種炎性介質(zhì)幫助大腦抵御入侵和損害,但同時(shí)也可加重神經(jīng)元損傷,并通過增加基質(zhì)金屬蛋白酶表達(dá)等途徑加重BBB損傷[5]。BBB損傷可引起大腦內(nèi)環(huán)境穩(wěn)態(tài)改變,從而進(jìn)一步激活小膠質(zhì)細(xì)胞[6-7],最終導(dǎo)致腦損傷與逐漸異常的免疫反應(yīng)之間的惡性循環(huán)。因此,深入探討小膠質(zhì)細(xì)胞在SAE發(fā)生和發(fā)展過程中的作用對(duì)了解SAE的發(fā)病機(jī)制以及探索其有效的治療方法具有重要意義。
1 小膠質(zhì)細(xì)胞功能表型
小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)(central nervous system,CNS)的常駐巨噬細(xì)胞,具有抗原提呈、清除細(xì)胞碎片、調(diào)節(jié)突觸可塑性等功能,通過對(duì)大腦進(jìn)行持續(xù)性免疫監(jiān)控,在維持CNS穩(wěn)態(tài)方面起著關(guān)鍵作用[8-9]。正常腦組織中的小膠質(zhì)細(xì)胞形態(tài)呈高度分枝狀,傳統(tǒng)上稱之為“靜息態(tài)”小膠質(zhì)細(xì)胞。此狀態(tài)的小膠質(zhì)細(xì)胞通過利用其分枝狀突起的快速伸縮以及吞噬分泌機(jī)制執(zhí)行免疫監(jiān)視、神經(jīng)可塑性調(diào)節(jié)等功能,并可迅速響應(yīng)周圍環(huán)境的多種刺激而進(jìn)入激活狀態(tài)[4]。當(dāng)大腦發(fā)生損傷或神經(jīng)炎癥時(shí),小膠質(zhì)細(xì)胞發(fā)生逐步去分枝化,胞體增大,分泌及吞噬功能增強(qiáng),由原來的靜息狀態(tài)轉(zhuǎn)化為激活狀態(tài)?;罨男∧z質(zhì)細(xì)胞依據(jù)其抗原標(biāo)志物和功能分為M1型和M2型兩種極化表型[10]。M1型為促炎型,以分化簇(cluster of differentiation,CD)86為其標(biāo)志物,可釋放高水平的炎性因子,如腫瘤壞死因子(TNF)-α、白細(xì)胞介素(IL)-1β、IL-6等,實(shí)現(xiàn)對(duì)病原體和異常細(xì)胞的殺傷、包圍和吞噬,從而限制病原體擴(kuò)散并清除損傷細(xì)胞,但其同時(shí)也會(huì)誘導(dǎo)神經(jīng)炎癥和神經(jīng)元凋亡,形成一種不利于組織修復(fù)的微環(huán)境,甚至進(jìn)一步加重組織損傷[11-12]。M2型為抑炎型,以CD206為其標(biāo)志物,可釋放多種抑炎因子,如IL-10和轉(zhuǎn)化生長(zhǎng)因子(TGF)-β等,抑制炎癥反應(yīng)、限制損傷擴(kuò)展并促進(jìn)神經(jīng)保護(hù)和組織修復(fù)[13]??梢?,小膠質(zhì)細(xì)胞在大腦中充當(dāng)“免疫雙刃劍”,其免疫功能失衡在多種腦病進(jìn)程中起關(guān)鍵作用。
2 小膠質(zhì)細(xì)胞氧化損傷和異常激活
膿毒癥期間大腦微循環(huán)受損,導(dǎo)致腦血流量不足而引起大腦出現(xiàn)能量供應(yīng)和氧利用障礙[4]。神經(jīng)元和小膠質(zhì)細(xì)胞具有高代謝率,并且以有氧代謝作為主要供能方式[14]。在低血氧條件下,腺苷三磷酸(ATP)形式的有氧能量生成效率下降[6],細(xì)胞出現(xiàn)能量利用障礙而誘發(fā)線粒體功能障礙[4]。線粒體作為活性氧(ROS)的起源地和作用靶標(biāo)[15],在受損狀態(tài)下,ROS的生成速率和生成量遠(yuǎn)遠(yuǎn)超過線粒體對(duì)它的清除能力,從而使得線粒體發(fā)生氧化應(yīng)激,加劇自身損傷[16-17]。此外,ROS可調(diào)節(jié)核轉(zhuǎn)錄因子(NF)-κB轉(zhuǎn)錄活性,激活核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白(NLRP)3炎癥小體,促進(jìn)活性IL-1β的產(chǎn)生[2]。作為多效性細(xì)胞因子,活性IL-1β可激活小膠質(zhì)細(xì)胞,促進(jìn)CNS內(nèi)其他炎性因子的下游合成,加劇神經(jīng)炎性反應(yīng)[18]。綜上,因腦組織細(xì)胞線粒體損傷導(dǎo)致的細(xì)胞能量耗竭引起的小膠質(zhì)細(xì)胞異常激活和神經(jīng)炎癥與SAE的發(fā)生密切相關(guān)。
3 小膠質(zhì)細(xì)胞活化對(duì)中樞神經(jīng)系統(tǒng)的影響
3.1 加劇BBB損傷 BBB主要是由腦微血管內(nèi)皮細(xì)胞通過基底膜與周細(xì)胞和星形膠質(zhì)細(xì)胞相連構(gòu)成的復(fù)雜網(wǎng)絡(luò)結(jié)構(gòu),可維持大腦內(nèi)部環(huán)境穩(wěn)定,保護(hù)大腦免受循環(huán)毒素和炎性細(xì)胞的侵害[19]。膿毒癥時(shí),受到炎性因子刺激的BBB血管內(nèi)皮細(xì)胞通過上調(diào)黏附分子表達(dá)而誘導(dǎo)免疫細(xì)胞遷移并聚集到感染部位[20],同時(shí)聯(lián)同其周圍間質(zhì)細(xì)胞釋放ROS、基質(zhì)金屬蛋白酶等破壞BBB。小膠質(zhì)細(xì)胞可以響應(yīng)炎性介質(zhì)、神經(jīng)遞質(zhì)等周圍環(huán)境的多種刺激而進(jìn)入激活狀態(tài),在SAE病理過程中發(fā)揮重要作用[21]。在BBB通透性發(fā)生變化之前,小膠質(zhì)細(xì)胞通過向腦血管部位遷移以響應(yīng)周圍炎性因子的刺激,在早期對(duì)BBB的完整性起保護(hù)作用。然而,進(jìn)一步的炎性刺激導(dǎo)致小膠質(zhì)細(xì)胞異常激活,小膠質(zhì)細(xì)胞功能表型發(fā)生改變,通過分泌高水平炎性因子誘導(dǎo)神經(jīng)炎癥并加劇BBB損傷[4,6]。
3.2 加劇神經(jīng)炎癥 膿毒癥期間,神經(jīng)炎癥是導(dǎo)致膿毒癥患者腦功能障礙的重要因素,在SAE的發(fā)病機(jī)制中起著至關(guān)重要的作用。影響大腦的炎性因子包括TNF-α[22]、IL-1β和高遷移率族蛋白B1(HMGB1)等[4]。小膠質(zhì)細(xì)胞的Toll樣受體(TLR)對(duì)損傷或感染做出反應(yīng)時(shí)上調(diào)[23],其中TLR4可觸發(fā)NF-κB依賴性促炎基因的表達(dá),促進(jìn)小膠質(zhì)細(xì)胞活化和炎性細(xì)胞因子,如TNF-α的產(chǎn)生[24]。TNF-α作為SAE中的關(guān)鍵炎癥介質(zhì),通過TNFR1與TNFR2兩種不同受體起作用,可上調(diào)細(xì)胞黏附分子的表達(dá),引起炎癥刺激后中性粒細(xì)胞在CNS中募集[25]。作為晚期炎癥介質(zhì),HMGB1可在外源微生物產(chǎn)物,如內(nèi)毒素或內(nèi)源TNF-α等的作用下,由免疫細(xì)胞、上皮細(xì)胞等主動(dòng)釋放進(jìn)入胞外空間。HMGB1可誘導(dǎo)多種炎性因子(包括IL-1β、IL-6等)產(chǎn)生并激活小膠質(zhì)細(xì)胞?;罨男∧z質(zhì)細(xì)胞通過進(jìn)一步誘導(dǎo)TNF-α、IL-1β、ROS等炎癥介質(zhì)的釋放,介導(dǎo)慢性進(jìn)行性神經(jīng)變性的惡性循環(huán),加劇局部炎癥反應(yīng),導(dǎo)致神經(jīng)元功能異常和細(xì)胞死亡,加劇SAE的病程進(jìn)展[19]。
3.3 參與神經(jīng)遞質(zhì)失衡 神經(jīng)遞質(zhì)失衡與SAE發(fā)病密切相關(guān)[26]。膿毒癥期間,活化的小膠質(zhì)細(xì)胞向胞外分泌過量的谷氨酸,且功能受損的星形膠質(zhì)細(xì)胞對(duì)谷氨酸的攝取減少,這導(dǎo)致谷氨酸在CNS中的積累,并通過興奮性神經(jīng)毒性在誘導(dǎo)神經(jīng)元凋亡中發(fā)揮作用[4,27]。乙酰膽堿(ACh)是腦內(nèi)廣泛分布的調(diào)節(jié)型神經(jīng)遞質(zhì),除了控制認(rèn)知、情緒、注意力等功能外,還可調(diào)控巨噬細(xì)胞中的炎性因子,如IL-1β、TNF-α和IL-18的產(chǎn)生,發(fā)揮膽堿能抗炎作用。Ach可與小膠質(zhì)細(xì)胞表達(dá)的α7煙堿型乙酰膽堿受體(α7nAChR)結(jié)合,通過調(diào)節(jié)小膠質(zhì)細(xì)胞NF-κB信號(hào)傳導(dǎo)來抑制炎性因子的產(chǎn)生,緩解神經(jīng)炎癥[28-29]。脂多糖(LPS)外源給藥是一種常用的膿毒癥動(dòng)物模型建立方法,被廣泛用于SAE的研究中[30]。乙酰膽堿酯酶(AChE)是催化ACh分解的主要膽堿酯酶,受LPS刺激的小膠質(zhì)細(xì)胞內(nèi)AChE表達(dá)上調(diào),通過催化ACh分解,逆轉(zhuǎn)了小膠質(zhì)細(xì)胞中ACh的抗炎效用,從而使小膠質(zhì)細(xì)胞無法正常發(fā)揮膽堿能抗炎功能[29]。
3.4 影響突觸可塑性 活化的小膠質(zhì)細(xì)胞可能以誘導(dǎo)突觸損傷的方式,在即使沒有明顯神經(jīng)元死亡的情況下誘發(fā)認(rèn)知障礙[31]。突觸后密度-95(PSD-95)蛋白是一種突觸后蛋白,參與突觸可塑性,其表達(dá)抑制與認(rèn)知障礙密切相關(guān)[32]。但也有研究顯示其在海馬神經(jīng)元中的過表達(dá)可以增強(qiáng)突觸后谷氨酸受體的活性,驅(qū)動(dòng)谷氨酸能突觸的成熟,增加樹突棘的復(fù)雜度并協(xié)調(diào)突觸發(fā)育,在突觸穩(wěn)定和可塑性中起重要作用[33]。蛋白質(zhì)印跡實(shí)驗(yàn)結(jié)果顯示,膿毒癥期間小鼠海馬PSD-95的表達(dá)降低,這可能與小膠質(zhì)細(xì)胞活化介導(dǎo)的神經(jīng)炎癥以及其對(duì)PSD-95的吞噬作用有關(guān)[31-32],提示小膠質(zhì)細(xì)胞的異常激活與突觸可塑性降低誘發(fā)的認(rèn)知障礙有關(guān)。
4 小膠質(zhì)細(xì)胞在治療SAE中的應(yīng)用前景
小膠質(zhì)細(xì)胞的異常激活作為SAE發(fā)展的核心環(huán)節(jié),有望成為膿毒癥有效的治療靶點(diǎn)。TLR4作為一種免疫識(shí)別受體,在LPS處理的小膠質(zhì)細(xì)胞中高度表達(dá)。TLR4通過促進(jìn)NF-κB復(fù)合物的活化參與NLRP3和IL-β基因轉(zhuǎn)錄等下游分子事件。下調(diào)TLR4的表達(dá)可抑制NF-κB的活化以改善神經(jīng)炎癥[34]。小膠質(zhì)細(xì)胞中的NLRP3炎癥小體作為應(yīng)對(duì)組織損傷的先天免疫反應(yīng)的關(guān)鍵組成部分,介導(dǎo)IL-1β、IL-18等炎性因子的產(chǎn)生。通過抑制NLRP3/IL-1β/IL-18軸減弱小膠質(zhì)細(xì)胞激活,可緩解認(rèn)知功能障礙[35]。MCC950是一種有效的選擇性小分子NLRP3抑制劑,可阻斷NLRP3活化,改善BBB損傷,減輕因小膠質(zhì)細(xì)胞過度激活誘發(fā)的神經(jīng)炎癥[36]。趨化因子受體5(CXCR5)是趨化因子CXCL13的唯一已知受體,可通過增強(qiáng)p38絲裂原活化蛋白激酶(p38MAPK)/NF-κB/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)信號(hào)傳導(dǎo)來促進(jìn)膿毒癥患者認(rèn)知障礙,敲低小膠質(zhì)細(xì)胞的CXCR5基因表達(dá)可以部分逆轉(zhuǎn)LPS誘導(dǎo)激活的p38MAPK/NF-κB/STAT3信號(hào)通路,緩解SAE[37]。在小膠質(zhì)細(xì)胞上表達(dá)的2型髓系細(xì)胞觸發(fā)受體(TREM2)可介導(dǎo)小膠質(zhì)細(xì)胞M1表型向M2表型轉(zhuǎn)化,是神經(jīng)炎癥的新型潛在治療靶點(diǎn)[38]。在LPS誘導(dǎo)的膿毒癥模型中,TREM2的表達(dá)顯著降低,而IFN-β可通過上調(diào)TREM2的表達(dá)以改變小膠質(zhì)細(xì)胞的極化狀態(tài),從而改善LPS誘導(dǎo)的神經(jīng)炎癥[11]。
5 小結(jié)與展望
SAE是一種主要由膿毒癥引起的彌散性腦功能障礙,BBB損傷、氧化應(yīng)激、小膠質(zhì)細(xì)胞異常激活、神經(jīng)遞質(zhì)異常、突觸可塑性被破壞等病理機(jī)制均參與SAE的發(fā)生,其中由小膠質(zhì)細(xì)胞異常激活引起的自身功能表型的轉(zhuǎn)變介導(dǎo)的神經(jīng)炎癥在SAE病理進(jìn)程中發(fā)揮重要作用。研究表明,小膠質(zhì)細(xì)胞異常激活與其代謝重編程有關(guān),特別與其有氧糖酵解增加密切相關(guān)[39]。抑制糖酵解可以改善小膠質(zhì)細(xì)胞活化引起的神經(jīng)炎癥,這有望作為SAE的潛在治療策略[40]。深入探究小膠質(zhì)細(xì)胞異常激活與SAE的關(guān)系,研發(fā)小膠質(zhì)細(xì)胞活性的靶向調(diào)節(jié)藥物并應(yīng)用于臨床,可能為SAE的治療提供新的方法和途徑。
參考文獻(xiàn)
[1] LIU D,HUANG S Y,SUN J H,et al. Sepsis-induced immunosuppression:mechanisms,diagnosis and current treatment options[J]. Mil Med Res,2022,9(1):56. doi:10.1186/s40779-022-00422-y.
[2] MORAES C A,ZAVERUCHA-DO-VALLE C,F(xiàn)LEURANCE R,et al. Neuroinflammation in sepsis:molecular pathways of microglia activation[J]. Pharmaceuticals(Basel),2021,14(5):416. doi:10.3390/ph14050416.
[3] YAN X,YANG K,XIAO Q,et al. Central role of microglia in sepsis-associated encephalopathy:from mechanism to therapy[J]. Front Immunol,2022,13:929316. doi:10.3389/fimmu.2022.929316.
[4] CATARINA A V,BRANCHINI G,BETTONI L,et al. Sepsis-associated encephalopathy:from pathophysiology to progress in experimental studies[J]. Mol Neurobiol,2021,58(6):2770-2779. doi:10.1007/s12035-021-02303-2.
[5] HEMING N,MAZERAUD A,VERDONK F,et al. Neuroanatomy of sepsis-associated encephalopathy[J]. Crit Care,2017,21(1):65. doi:10.1186/s13054-017-1643-z.
[6] BARICHELLO T,GIRIDHARAN V V,CATAL?O C,et al. Neurochemical effects of sepsis on the brain[J]. Clin Sci(Lond),2023,137(6):401-414. doi:10.1042/CS20220549.
[7] KANG R,GAMDZYK M,LENAHAN C,et al. The dual role of microglia in blood-brain barrier dysfunction after stroke[J]. Curr Neuropharmacol,2020,18(12):1237-1249. doi:10.2174/1570159X18666200529150907.
[8] BORST K,DUMAS A A,PRINZ M. Microglia:immune and non-immune functions[J]. Immunity,2021,54(10):2194-2208. doi:10.1016/j.immuni.2021.09.014.
[9] BENNETT M L,BENNETT F C. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci,2020,23(2):157-166. doi:10.1038/s41593-019-0545-6.
[10] LI Y F,REN X,ZHANG L,et al. Microglial polarization in TBI:signaling pathways and influencing pharmaceuticals[J]. Front Aging Neurosci,2022,14:901117. doi:10.3389/fnagi.2022.901117.
[11] QIU Z,WANG H,QU M,et al. Consecutive injection of high-dose lipopolysaccharide modulates microglia polarization via TREM2 to alter status of septic mice[J]. Brain Sci,2023,13(1):126. doi:10.3390/brainsci13010126.
[12] FAIRLEY L H,LAI K O,WONG J H,et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease[J]. Proc Natl Acad Sci U S A,2023,120(8):e2209177120. doi:10.1073/pnas.2209177120.
[13] 莊欣琪,謝克亮,于泳浩,等. 小膠質(zhì)細(xì)胞與膿毒癥腦病的研究進(jìn)展 [J]. 天津醫(yī)藥,2020,48(4):338-342. ZHUANG X Q,XIE K L,YU Y H,et al. Advances in research on microglia and sepsis associated encephalopathy[J] Tianjin Med J,2020,48(4):338-342. doi:10.11958/20193358.
[14] PENG W,TAN C,MO L,et al. Glucose transporter 3 in neuronal glucose metabolism:health and diseases[J]. Metabolism,2021,123:154869. doi:10.1016/j.metabol.2021.154869.
[15] DE SOUZA STORK S,H?BNER M,BIEHL E,et al. Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction[J]. Inflammation,2022,45(6):2352-2367. doi:10.1007/s10753-022-01697-y.
[16] GU M,MEI X L, ZHAO Y N. Sepsis and cerebral dysfunction:BBB damage,neuroinflammation,oxidative stress,apoptosis and autophagy as key mediators and the potential therapeutic approaches[J]. Neurotox Res,2021,39(2):489-503. doi:10.1007/s12640-020-00270-5.
[17] ZHANG B,PAN C,F(xiàn)ENG C,et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep,2022,27(1):45-52. doi:10.1080/13510002.2022.2046423.
[18] RAUF A,BADONI H,ABU-IZNEID T,et al. Neuroinflammatory markers:key indicators in the pathology of neurodegenerative diseases[J]. Molecules,2022,27(10):3194. doi:10.3390/molecules27103194.
[19] GAO Q,HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation,2021,44(6):2143-2150. doi:10.1007/s10753-021-01501-3.
[20] VAN DER POLL T,SHANKAR-HARI M,WIERSINGA W J. The immunology of sepsis[J]. Immunity,2021,54(11):2450-2464. doi:10.1016/j.immuni.2021.10.012.
[21] LI Y,YIN L,F(xiàn)AN Z,et al. Microglia:a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain[J]. Front Pharmacol,2020,11:600421. doi:10.3389/fphar.2020.600421.
[22] TIEGS G,HORST A K. TNF in the liver:targeting a central player in inflammation[J]. Semin Immunopathol,2022,44(4):445-459. doi:10.1007/s00281-022-00910-2.
[23]CASTRO L V G,GON?ALVES-DE-ALBUQUERQUE C F,SILVA A R. Polarization of microglia and its therapeutic potential in sepsis[J]. Int J Mol Sci,2022,23(9):4925. doi:10.3390/ijms23094925.
[24] LI R,ZHOU Y,ZHANG S,et al. The natural(poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke[J]. Eur J Pharmacol,2022,914:174660. doi:10.1016/j.ejphar.2021.174660.
[25] MUNOZ PINTO M F,CAMPBELL S J,SIMOGLOU KARALI C,et al. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein[J]. Neuro Oncol,2022,24(1):52-63. doi:10.1093/neuonc/noab177.
[26] TANG C,JIN Y,WANG H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy[J]. Front Synaptic Neurosci,2022,14:1054605. doi:10.3389/fnsyn.2022.1054605.
[27] IOVINO L,TREMBLAY M E,CIVIERO L. Glutamate-induced excitotoxicity in Parkinson's disease:the role of glial cells[J]. J Pharmacol Sci,2020,144(3):151-164. doi:10.1016/j.jphs.2020.07.011.
[28] PIOVESANA R,SALAZAR INTRIAGO M S,DINI L,et al. Cholinergic modulation of neuroinflammation:focus on α7 nicotinic receptor[J]. Int J Mol Sci,2021,22(9):4912. doi:10.3390/ijms22094912.
[29] XIA Y,WU Q,MAK S,et al. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells[J]. FASEB J,2022,36(3):e22189. doi:10.1096/fj.202101302RR.
[30] QIN M,GAO Y,GUO S,et al. Establishment and evaluation of animal models of sepsis-associated encephalopathy [J]World J Emerg Med,2023,14(5):349-353. doi:10.5847/wjem.j.1920-8642.2023.088.
[31] WANG C,LI H,CHEN C,et al. High-fat diet consumption induces neurobehavioral abnormalities and neuronal morphological alterations accompanied by excessive microglial activation in the medial prefrontal cortex in adolescent mice[J]. Int J Mol Sci,2023,24(11):9394. doi:10.3390/ijms24119394.
[32] ZONG M M,ZHOU Z Q,JI M H,et al. Activation of β2-adrenoceptor attenuates sepsis-induced hippocampus-dependent cognitive impairments by reversing neuroinflammation and synaptic abnormalities[J]. Front Cell Neurosci,2019,13:293. doi:10.3389/fncel.2019.00293.
[33] EL-HUSSEINI A E,SCHNELL E,CHETKOVICH D M,et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science,2000,290(5495):1364-1368. doi:10.1126/science.290.5495.1364.
[34] WU H,WANG Y,F(xiàn)U H,et al. Maresin1 ameliorates sepsis-induced microglial neuritis induced through blocking TLR4-NF-κB-NLRP3 signaling pathway[J]. J Pers Med,2023,13(3):534. doi:10.3390/jpm13030534.
[35] LUO X Y,YING J H,WANG Q S. miR-25-3p ameliorates SAE by targeting the TLR4/NLRP3 axis[J]. Metab Brain Dis,2022,37(6):1803-1813. doi:10.1007/s11011-022-01017-1.
[36] BAKHSHI S,SHAMSI S. MCC950 in the treatment of NLRP3-mediated inflammatory diseases:latest evidence and therapeutic outcomes[J]. Int Immunopharmacol,2022,106:108595. doi:10.1016/j.intimp.2022.108595.
[37] SHEN Y,ZHANG Y,DU J,et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation,2021,18(1):246. doi:10.1186/s12974-021-02300-1.
[38] LIU W,TASO O,WANG R,et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions[J]. Hum Mol Genet,2020,29(19):3224-3248. doi:10.1093/hmg/ddaa209.
[39] BERNIER L P,YORK E M,MACVICAR B A. Immunometabolism in the brain:how metabolism shapes microglial function[J]. Trends Neurosci,2020,43(11):854-869. doi:10.1016/j.tins.2020.08.008.
[40] CHENG J,ZHANG R,XU Z,et al. Early glycolytic reprogramming controls microglial inflammatory activation[J]. J Neuroinflammation,2021,18(1):129. doi:10.1186/s12974-021-02187-y.
(2023-11-10收稿 2023-11-24修回)
(本文編輯 李志蕓)