摘 要:為探究甜茶(Rubus suavissimus)中具有α-葡萄糖苷酶抑制活性的次級(jí)代謝產(chǎn)物,該文利用多種現(xiàn)代色譜分離技術(shù)對(duì)其干燥葉進(jìn)行提取分離純化,綜合運(yùn)用質(zhì)譜、核磁共振波譜分析方法確定了單體化合物的結(jié)構(gòu),并對(duì)分離得到的化合物進(jìn)行了α-葡萄糖苷酶抑制活性的測(cè)試。結(jié)果表明:(1)從甜茶的干燥葉中分離鑒定出10個(gè)化合物,分別為甜茶苷(1)、山奈酚-3-O-洋槐糖苷(2)、沒食子酸(3)、二聚松柏醇(4)、5-甲氧基二聚松柏醇(5)、云實(shí)酸(6)、斯替維單糖苷(7)、斯替維醇(8)、16α,17-二羥基對(duì)映貝殼杉烷(9)、槲皮素-3-O-β-D-吡喃半乳糖苷(10),其中化合物2、4、5、9均為首次從甜茶中分離得到。(2)α-葡萄糖苷酶抑制活性測(cè)試結(jié)果顯示,化合物2、3、5、6、10具有較強(qiáng)的α-葡萄糖苷酶抑制活性。該研究結(jié)果豐富了甜茶中具有α-葡萄糖苷酶抑制活性的化合物,并為降血糖相關(guān)產(chǎn)品的開發(fā)提供了理論依據(jù)。
關(guān)鍵詞:甜茶,α-葡萄糖苷酶,懸鉤子屬,薔薇科,糖尿病
中圖分類號(hào):Q946 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1000-3142(2024)02-0354-08
基金項(xiàng)目:廣西科學(xué)院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(CQZ-C-1901);廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2020B1111110003)。
第一作者:陽(yáng)丙媛 (1990-),碩士,助理研究員,主要從事天然產(chǎn)物化學(xué)研究,(E-mail)616480587@qq.com。
*通信作者:黃永林,研究員,主要從事天然產(chǎn)物研究與開發(fā),(E-mail)hyl@gxib.cn。
Chemical constituents from Rubus suavissimus and their α-glucosidase inhibitory activities
YANG Bingyuan, HE Ruijie, WANG Yafeng, YAN Xiaojie, HUANG Yonglin*
( Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China )
Abstract: Rubus suavissimus is mainly distributed in Guilin, Liuzhou, Wuzhou and other regions in Guangxi Zhuang Autonomous Region, so it is called as “Guangxi tiancha” in China. R. suavissimus, together with Siraitia grosvenorii and Stevia rebaudianastevia are praised as three famous sweet plants in Guangxi Zhuang Autonomous Region. Zhuang and Yao people use the leaves of R. suavissimus as a tea to treat diabetes, and it is known as the “divine tea” of Yao medicine. Therefore, R. suavissimus is a combination of sugar, tea and medicine, which has great potential for the development of food and medicine. In order to investigate the secondary metabolites with α-glucosidase inhibitory activity from R. suavissimus, herein, the extraction, separation and purification of secondary metabolites were performed on the leaves of R. suavissimus. The structures of purified compounds were determined based on the data of mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (1H NMR and 13C NMR). In addition, the α-glucosidase inhibitory activity of the purified compounds were evaluated by pharmacological methods simultaneously. The results were as follows: (1) Ten compounds were purified and their structures were elucidated as rubusoside (1), kaempferol 3-O-robinobioside (2), gallic acid (3), dihydrodehydroconiferyl alcohol (4), 5-methoxydihydrodehydroconiferyl alcohol (5), brevifolincarboxylic acid (6), steviolmonoside (7), steviol (8), 16α, 17-dihydroxykaurane (9), and quercetin 3-O-β-D-galactopyranoside (10). Among them, compounds 2, 4, 5 and 9 were isolated from R. suavissimus for the first time. (2) Compounds 2, 3, 5, 6 and 10 showed strong inhibitory activity on α-glucosidase. The IC50 values of compounds 2, 3, 5, 6 and 10 were (0.14 ± 0.03) mg·mL-1, (0.36 ± 0.02) mg·mL-1, (0.44 ± 0.01) mg·mL-1, (0.53 ± 0.04) mg·mL-1 and (0.14 ± 0.03) mg·mL-1 respectively, which were stronger than the positive control acarbose with the IC50 values as (0.69 ± 0.02) mg·mL-1. Thus, compounds 2, 3, 5, 6 and 10, which were isolated from the leaves of R. suavissimus, could be a potential α-glucosidase inhibitors based on their bioactivity results. Compounds with α-glucosidase inhibitory activity from R. suavissimus will provide the basis for development of related hypoglycemic products.
Key words: Rubus suavissimus, α-glucosidase, Rubus, Rosaceae, diabetes
甜茶(Rubus suavissimus),為薔薇科懸鉤子屬植物(Liu et al., 2020),主要分布于廣西桂林、柳州、梧州等地區(qū),故又被稱為廣西甜茶(閆志剛等,2017),與羅漢果、甜葉菊并稱廣西三大甜味植物。壯族和瑤族人民將其作為茶飲用于治療糖尿病,被譽(yù)為瑤藥中的“神茶”(鄭華等,2019)。壯醫(yī)記載其具有解熱毒,通龍路,調(diào)氣道、水道的功效(廣西壯族自治區(qū)壯藥質(zhì)量標(biāo)準(zhǔn),2011)。甜茶集糖、茶、藥于一體,極具食品及藥品開發(fā)的潛力。
隨著生活水平的提高和老齡化進(jìn)程的加快,糖尿病已經(jīng)成為嚴(yán)重影響人類身體健康和生活質(zhì)量的慢性疾病。為了維持血糖處于正常水平,糖尿病患者需要長(zhǎng)期服用降血糖藥物,以避免因高血糖而導(dǎo)致的并發(fā)癥,如器官損傷、衰竭等。α-葡萄糖苷酶抑制劑是一種重要的降血糖藥物,臨床一線藥物有阿卡波糖、伏格列波糖等,但是這類藥物易導(dǎo)致胃腸道紊亂、肝功能受損等(朱月霞等,2021)。因此,研發(fā)安全的新型α-葡萄糖苷酶抑制劑對(duì)糖尿病的治療具有重要意義?,F(xiàn)代化學(xué)和藥理學(xué)研究表明,甜茶的主要化學(xué)成分為萜類、黃酮類、酚酸類,具有降血糖、抗過(guò)敏、抗炎等生物活性(吳家超等,2021)。當(dāng)前,對(duì)甜茶降血糖作用的相關(guān)研究多見于其提取物(蒙淑潔等,2019;Su et al., 2020;吳婕和宮江寧,2021),而對(duì)甜茶中的α-葡萄糖苷酶抑制作用的物質(zhì)基礎(chǔ)研究較少(Liu et al., 2019),潛在的活性物質(zhì)尚待開發(fā)。甜茶作為降糖茶飲的歷史悠久,為了豐富其具有α-葡萄糖苷酶抑制作用的活性物質(zhì)基礎(chǔ),本研究綜合運(yùn)用現(xiàn)代色譜分離技術(shù)對(duì)甜茶葉進(jìn)行系統(tǒng)分離,進(jìn)而對(duì)分離得到的化合物單體進(jìn)行活性研究,以期發(fā)現(xiàn)更多具有α-葡萄糖苷酶抑制活性的化合物,為后續(xù)相關(guān)降血糖產(chǎn)品的開發(fā)提供科學(xué)的理論依據(jù)。
1 儀器與方法
1.1 材料
樣品于2019年7月采集于廣西壯族自治區(qū)桂林市灌陽(yáng)縣,經(jīng)廣西植物研究所唐輝研究員鑒定為甜茶(Rubus suavissimus)的葉子,樣品的標(biāo)本保存于廣西植物功能物質(zhì)與資源持續(xù)利用重點(diǎn)實(shí)驗(yàn)室(標(biāo)本號(hào):20190753)。
1.2 儀器和試劑
XS205 DualRange分析天平(瑞士蘇黎世的梅特勒-托利多集團(tuán)),LCMS-IT-TOF高分辨質(zhì)譜儀(日本島津公司),Avance Ⅲ HD 500 MHz核磁共振波譜儀(德國(guó)布魯克公司),LC-20AT高效液相色譜儀(日本島津公司),旋轉(zhuǎn)蒸發(fā)儀(日本東京理化公司),CF810C冷卻水循環(huán)儀(日本雅馬拓公司),SP-MAX3500FL多功能酶標(biāo)儀(上海閃譜生物科技有限公司)。
阿卡波糖(上海源葉生物科技有限公司),對(duì)硝基苯-α-D-吡喃葡萄糖苷(pNPG,上海源葉生物科技有限公司),α-葡萄糖苷酶(美國(guó)西格瑪奧德里奇公司),無(wú)水碳酸鈉(西隴化工股份有限公司),磷酸緩沖液(PBS,北京索萊寶科技有限公司),分析甲醇(西隴化工股份有限公司),分析乙醇(西隴化工股份有限公司),色譜甲醇(美國(guó)斯百全化學(xué)公司),色譜乙腈(美國(guó)斯百全化學(xué)公司)。
1.3 提取和分離
取甜茶的干燥葉(5.5 kg),加入95%乙醇溶液于室溫下浸泡提取3次,每次7 d,合并提取液,減壓回收溶劑后得到總浸膏(432.2 g)??偨嘀屑尤?0%乙醇水溶液,充分溶解,靜置分層,棄去下層沉淀物,將上清液減壓回收溶劑至無(wú)醇味后,經(jīng)凝膠柱Sephadex LH-20(10 cm×30 cm),以甲醇-水溶液(0%~100%,V/V)為洗脫劑進(jìn)行梯度洗脫,在薄層色譜分析指導(dǎo)下合并洗脫液,得到11個(gè)組分Fr.1~Fr.11。
將Fr.4 (21.9 g) 以樹脂DIAION HP20SS色譜柱(4 cm×30 cm)進(jìn)行分離,以甲醇-水(0%~100%,V/V)為洗脫劑進(jìn)行梯度洗脫,得到化合物1 (5.5 g)。Fr.6 (8.1 g) 經(jīng)過(guò)MCI柱(3 cm×23 cm),以甲醇-水溶液(0%~100%,V/V)進(jìn)行梯度洗脫,得到Fr.61~Fr.66。Fr.61經(jīng)Sephadex LH-20柱,甲醇-水溶劑分離,得到化合物3 (66.0 mg)。Fr.62經(jīng)甲醇溶劑反復(fù)結(jié)晶得到化合物6 (46.2 mg)。Fr.63依次經(jīng)MCI柱(甲醇-水溶液,0%~100%,V/V)、HPLC液相色譜柱(50%甲醇-水溶液,V/V)純化得到化合物 2 (5.9 mg)。Fr.64經(jīng)HPLC液相色譜柱,以25%乙腈-水溶液等度洗脫(V/V),純化得到化合物4 (30.7 mg) 和化合物5 (6.0 mg)。Fr.65經(jīng)ODS柱色譜分離(甲醇-水溶液,0%~100%,V/V),得到化合物7 (78.3 mg)。Fr.66經(jīng)ODS色譜柱,以甲醇-水溶液進(jìn)行梯度洗脫(0%~100%,V/V),得到化合物8 (26.7 mg)。Fr.5 (4.6 g) 以O(shè)DS色譜柱進(jìn)行分離,甲醇-水(0%~100%,V/V)為洗脫劑進(jìn)行梯度洗脫,經(jīng)Sephadex LH-20色譜柱純化,得到化合物9 (59.8 mg)。Fr.8 (5.4 g) 以MCI色譜柱進(jìn)行分離,以甲醇-水(0%~100%,V/V)為洗脫劑進(jìn)行梯度洗脫,得到化合物10 (23.6 mg)。
1.4 α-葡萄糖苷酶抑制活性測(cè)試
α-葡萄糖苷酶抑制活性測(cè)試參考文獻(xiàn)(Pan et al., 2020;梁森林等,2022)的方法,并作適當(dāng)調(diào)整,以阿卡波糖為陽(yáng)性對(duì)照藥,對(duì)硝基苯-α-D-吡喃葡萄糖苷(PNPG,1 mmol·L-1)為底物,磷酸緩沖液(PBS,50 mmol·L-1)為溶劑系統(tǒng),α-葡萄糖苷酶配置成0.25 U·mL-1。實(shí)驗(yàn)設(shè)置4個(gè)組,即樣品組、樣品背景對(duì)照組、空白組和空白對(duì)照組。按表1的反應(yīng)體系進(jìn)行活性測(cè)試,具體步驟如下。首先,取96孔板,樣品組依次加入樣品溶液40 μL、α-葡萄糖苷酶溶液20 μL,樣品背景對(duì)照組依次加入樣品溶液40 μL、PBS緩沖液20 μL,空白組依次加入α-葡萄糖苷酶溶液20 μL、PBS緩沖液40 μL,空白對(duì)照組加入PBS緩沖液60 μL;然后,將加液后的96孔板置于恒溫箱中于37℃條件下平衡5 min后取出;接著,各實(shí)驗(yàn)組加入PNPG溶液50 μL,并將其置于恒溫箱中于37℃條件下反應(yīng)30 min,取出;最后,向各實(shí)驗(yàn)組加入Na2CO3溶液50 μL終止反應(yīng),于405 nm波長(zhǎng)下測(cè)定并讀取吸光度值。樣品組的吸光度值記為A1,樣品背景對(duì)照組的吸光度值記為A2,空白組的吸光度值記為B1,空白對(duì)照組的吸光度值記為B2。按如下公式計(jì)算抑制率:抑制率 = [1-(A1-A2)/(B1-B2)]×100%。所有數(shù)據(jù)均平行測(cè)試3次,測(cè)試結(jié)果以平均值±標(biāo)準(zhǔn)偏差表示。
2 結(jié)果與分析
2.1 化合物的結(jié)構(gòu)鑒定 (圖1)
化合物1 白色粉末。HR-ESI-MS m/z: 665.311 5" [M + Na]+ (calcd for C32H50O13Na, 665.314 4)。1H NMR (500 MHz, D2O) δ: 5.38 (1H, d, J =7.8 Hz, 19-glc-H-1′′′), 5.10 (1H, s, H-17a), 4.89 (1H, s, H-17b), 4.58 (1H, d, J =7.5 Hz, 13-glc-H-1′), 3.22~3.86 (sugar proton), 1.22 (3H, s, H-18), 0.90 (3H, s, H-20); 13C NMR (125 MHz, D2O) δ: 178.6 (C-19), 153. 0 (C-16), 104.8 (C-17), 97.4 (13-glc-C-1′), 94.1 (19-glc-C-1″), 86.5 (C-13), 76.8 (19-glc-C-5″), 76.3 (13-glc-C-3′), 76.0 (19-glc-C-3″), 75.8 (13-glc-C-5′),73.3 (13-glc-C-2′), 72.0 (19-glc-C-2″), 69.8 (13-glc-C-4′), 69.4 (19-glc-C-4″), 60.9 (13-glc-C-6′), 60.7 (19-glc-C-6″), 57.1 (C-5), 53.5 (C-9), 47.2 (C-15), 44.0 (C-14), 43.9 (C-4), 42.1 (C-8), 41.0 (C-7), 40.5 (C-1), 39.3 (C-10), 37.7 (C-3), 36.3 (C-12), 28.1 (C-18), 21.4 (C-6), 20.4 (C-11), 18.8 (C-2), 15.0 (C-20)。以上數(shù)據(jù)與文獻(xiàn)(王劍霞和呂華沖,2008)報(bào)道的基本一致,故化合物1鑒定為甜茶苷。
化合物2 黃色粉末。HR-ESI-MS m/z: 593.146 4" [M - H]- (calcd for C27H31O15, 593.151 2)。1H NMR (500 MHz, methanol-d4) δ: 8.04 (2H, d, J =8.8 Hz, H-2′, 6′), 6.83 (2H, d, J =8.8 Hz, H-3′, 5′), 6.31 (1H, s, H-8), 6.12 (1H, s, H-6), 4.95 (1H, d, J =7.8 Hz, gal-H-1″), 4.47 (1H, brs, rha-H-1′′′), 1.14 (3H, d, J =6.2 Hz, rha-H-6′′′), 3.22~3.76 (sugar proton); 13C NMR (125 MHz, methanol-d4) δ: 180.0 (C-4), 168.4 (C-7), 163.4 (C-5), 162.2 (C-4′), 159.7 (C-9), 159.2 (C-2), 136.6 (C-3), 133.0 (C-2′, 6′), 123.3 (C-1′), 116.8 (C-3′, 5′), 106.3 (gal-C-1″), 105.7 (C-10), 102.5 (rha-C-1′′′), 101.2 (C-6), 94.0 (C-8), 76.0 (gal-C-5″), 75.7 (gal-C-3″), 74.5 (rha-C-4′′′), 73.6 (rha-C-2′′′), 72.9 (rha-C-3′′′), 72.7 (gal-C-2″), 70.8 (gal-C-4″), 70.3 (rha-C-5′′′), 68.1 (gal-C-6″), 18.6 (rha-C-6′′′)。以上數(shù)據(jù)與文獻(xiàn)(Hou et al., 2005)報(bào)道的基本一致,故化合物2鑒定為山奈酚-3-O-洋槐糖苷。
化合物3 白色粉末。HR-ESI-MS m/z: 169.014 1" [M - H]- (calcd for C7H5O5, 169.014 2)。1H NMR (500 MHz, methanol-d4) δ: 7.06 (2H, s, H-2, 6); 13C NMR (125 MHz, methanol-d4) δ: 170.5 (C-7), 146.4 (C-3, 5), 139.8 (C-4), 121.9 (C-1), 110.5 (C-2, 6)。以上數(shù)據(jù)與文獻(xiàn)(呂閃閃等,2018)報(bào)道的基本一致,故化合物3鑒定為沒食子酸。
化合物4 淡黃色油狀物。HR-ESI-MS m/z: 359.150 7" [M - H]- (calcd for C20H23O6, 359.150 0)。1H NMR (500 MHz, methanol-d4) δ: 6.91 (1H, d, J =1.8 Hz, H-2), 6.78 (1H, dd, J =8.2, 1.8 Hz, H-6), 6.72 (1H, d, J =8.2 Hz, H-5), 6.68 (2H, s, H-2′, 6′), 5.45 (1H, d, J =6.2 Hz, H-7), 3.80 (3H, s, 3-OCH3), 3.76 (3H, s, 3′-OCH3), 3.71 (2H, m, H-9), 3.53 (2H, t, J =6.5 Hz, H-9′), 3.43 (1H, m, H-8), 2.58 (2H, m, H-7′), 1.77 (2H, m, H-8′); 13C NMR (125 MHz, methanol-d4) δ: 149.0 (C-3), 147.6 (C-4), 147.4 (C-2′), 145.2 (C-3′), 136.9 (C-5′), 134.8 (C-1), 129.8 (C-1′), 119.7 (C-6), 117.9 (C-6′), 116.1 (C-5), 114.0 (C-4′), 110.5 (C-2), 88.9 (C-7), 64.9 (C-9), 62.2 (C-9′), 56.7 (3-OCH3), 56.3 (3′-OCH3), 55.4 (C-8), 35.8 (C-8′), 32.9 (C-7′)。以上數(shù)據(jù)與文獻(xiàn)(汪青青,2013)報(bào)道的基本一致,故化合物4鑒定為二聚松柏醇。
化合物5 淡黃色油狀物。HR-ESI-MS m/z: 413.151 1" [M + Na]+ (calcd for C21H26O7Na, 413.157 1)。1H NMR (500 MHz, methanol-d4) δ: 6.73 (2H, d, J =2.2 Hz, H-2, 6), 6.68 (2H, s, H-2′, 6′), 5.50 (1H, d, J =6.2 Hz, H-7), 3.86 (3H, s, 3′-OCH3), 3.85 (2H, m, H-9), 3.81 (6H, s, 3-OCH3, 5-OCH3), 3.57 (2H, t, J =6.4 Hz, H-9′), 3.47 (1H, m, H-8), 2.63 (2H, m, H-7′), 1.82 (2H, m, H-8′); 13C NMR (125 MHz, methanol-d4) δ: 149.3 (C-3), 149.3 (C-5), 147.5 (C-3′), 145.2 (C-4′), 137.0 (C-4), 134.0 (C-1), 134.0 (C-1′), 129.8 (C-5′), 117.9 (C-6′), 114.1 (C-2′), 104.1 (C-2, 6), 89.1 (C-7), 65.0 (C-9), 62.6 (C-9′), 56.8 (C-8), 56.7 (3-OCH3), 56.7 (5-OCH3), 55.6 (3′-OCH3), 35.8 (C-8′), 32.9 (C-7′)。以上數(shù)據(jù)與文獻(xiàn)(汪青青,2013)報(bào)道的基本一致,故化合物5鑒定為5-甲氧基二聚松柏醇。
化合物6 黃色粉末。HR-ESI-MS m/z: 293.031 7" [M + H]+ (calcd for C13H9O8, 293.029 2)。1H NMR (500 MHz, DMSO-d6) δ: 10.92 (1H, s, -OH), 10.10 (2H, s, -OH×2), 7.28 (1H, s, H-3′), 4.34 (1H, brs, H-4), 2.98 (1H, dd, J =18.7, 7.6 Hz, H-5a), 2.42 (1H, d, J =18.7 Hz, H-5b);13C NMR (125 MHz, DMSO-d6) δ: 193.5 (C-1), 173.7 (C-6), 160.4 (C-7′), 149.7 (C-2), 145.8 (C-4′), 143.9 (C-6′), 140.3 (C-3), 139.2 (C-5′), 115.3 (C-2′), 113.2 (C-1′), 108.1 (C-3′), 41.1 (C-4), 37.6 (C-5)。以上數(shù)據(jù)與文獻(xiàn)(Tanaka et al., 1990)報(bào)道的基本一致,故化合物6鑒定為云實(shí)酸。
化合物7 白色粉末。HR-ESI-MS m/z: 479.258 3" [M - H]- (calcd for C26H39O8, 479.265 0)。1H NMR (500 MHz, methanol-d4) δ: 5.20 (1H, s, H-17a), 4.87 (1H, s, H-17b), 4.51 (1H, d, J =7.8 Hz, 13-glc-H-1′), 1.20 (3H, s, H-18), 0.99 (3H, s, H-20); 13C NMR (125 MHz, methanol-d4) δ: 181.6 (C-19), 154.0 (C-16), 105.5 (C-17), 99.2 (13-glc-C-1′), 87.6 (C-13), 78.1 (13-glc-C-3′), 77.6 (13-glc-C-5′), 75.2 (13-glc-C-2′), 71.6 (glc-C-4′), 62.7 (glc-C-6′), 58.1 (C-5), 55.2 (C-9), 49.0 (C-15), 45.1 (C-14), 44.6 (C-4), 43.2 (C-8), 42.6 (C-7), 41.9 (C-1), 40.6 (C-10), 39.1 (C-3), 38.7 (C-12), 29.5 (C-18), 23.0 (C-6), 21.4 (C-11), 20.3 (C-2), 16.2 (C-20)。以上數(shù)據(jù)與文獻(xiàn)(Ohtani et al., 1992)報(bào)道的基本一致,故化合物7鑒定為斯替維單糖苷。
化合物8 白色粉末。HR-ESI-MS m/z: 317.211 0" [M - H]- (calcd for C20H29O3, 317.212 2)。1H NMR (500 MHz, chloroform-d) δ: 4.98 (1H, s, H-17a), 4.81 (1H, s, H-17b), 1.23 (3H, s, H-18), 0.95 (3H, s, H-20); 13C NMR (125 MHz, chloroform-d) δ: 183.4 (C-19), 155.8 (C-16), 103.2 (C-17), 80.5 (C-13), 57.0 (C-5), 54.0 (C-9), 47.6 (C-15), 47.1 (C-14), 43.7 (C-4), 41.9 (C-8), 41.4 (C-7), 40.6 (C-1), 39.6 (C-12), 39.5 (C-10), 37.9 (C-3), 29.0 (C-18), 21.9 (C-6), 20.6 (C-11), 19.2 (C-2), 15.6 (C-20)。以上數(shù)據(jù)與文獻(xiàn)(Ohtani et al., 1992)報(bào)道的基本一致,故化合物8鑒定為斯替維醇。
化合物9 黃色粉末。HR-ESI-MS m/z: 329.246 4 "[M + Na]+ (calcd for C20H34O2Na, 329.244 2)。1H NMR (500 MHz, methanol-d4) δ: 3.71 (1H, d, J =11.3 Hz, H-17a), 3.61 (1H, d, J =11.3 Hz, H-17b), 1.10 (3H, s Me-20), 1.07 (3H, s Me-19), 1.03 (3H, s Me-18); 13C NMR (125 MHz, methanol-d4) δ: 82.8 (C-16), 66.8 (C-17), 56.8 (C-5), 56.8 (C-9), 53.4 (C-15), 46.2 (C-13), 45.5 (C-8), 42.1 (C-1), 42.1 (C-3), 40.3 (C-14), 39.7 (C-10), 37.8 (C-7), 34.9 (C-4), 34.9 (C-18), 27.1 (C-12), 22.7 (C-19), 21.3 (C-6), 19.8 (C-2, 11), 18.4 (C-20)。以上數(shù)據(jù)與文獻(xiàn)(Etse et al., 1987)報(bào)道的基本一致,故化合物9鑒定為16α,17-二羥基對(duì)映貝殼杉烷。
化合物10 黃色粉末。HR-ESI-MS m/z: 463.086 0" [M - H]- (calcd for C21H19O12, 463.088 2)。1H NMR (500 MHz, methanol-d4) δ: 7.85 (1H, d, J =2.3 Hz, H-2′), 7.60 (1H, dd, J =8.4, 2.3 Hz, H-6′), 6.88 (1H, d, J =8.4 Hz, H-5′), 6.41 (1H, d, J =2.2 Hz, H-8), 6.22 (1H, d, J =2.2 Hz, H-6), 5.17 (1H, d, J =7.8 Hz, gal-H-1″), 3.48~3.87 (6H, m, gal-H-2″-6″); 13C NMR (125 MHz, methanol-d4) δ: 179.6 (C-4), 166.0 (C-7), 163.0 (C-5), 158.8 (C-2), 158.4 (C-9), 145.0 (C-4′), 145.8 (C-3′), 135.8 (C-3), 123.0 (C-6′), 122.9 (C-1′), 117.8 (C-5′), 116.1 (C-2′), 105.6 (C-10), 105.4 (gal-C-1″), 99.9 (C-6), 94.7 (C-8), 77.2 (gal-C-5″), 75.1 (gal-C-3″), 73.2 (gal-C-2″), 70.0 (gal-C-4″), 62.0 (gal-C-6″)。以上數(shù)據(jù)與文獻(xiàn)(張維庫(kù)等,2007)報(bào)道的基本一致,故化合物10鑒定為槲皮素-3-O-β-D-吡喃半乳糖苷。
2.2 α-葡萄糖苷酶抑制活性測(cè)試結(jié)果
α-葡萄糖苷酶的抑制活性測(cè)試結(jié)果顯示,化合物2、3、5、6、10具有較強(qiáng)的活性,IC50值分別為 (0.14 ± 0.03) mg · mL-1、(0.36 ± 0.02) mg · mL-1、(0.44 ± 0.01) mg · mL-1、(0.53 ± 0.04) mg · mL-1和(0.14 ± 0.03) mg · mL-1,均優(yōu)于陽(yáng)性對(duì)照[阿卡波糖,IC50值為(0.69 ± 0.02) mg·mL-1]。具體活性測(cè)試結(jié)果見表2。
3 討論與結(jié)論
α-葡萄糖苷酶抑制劑通過(guò)抑制小腸黏膜細(xì)胞的α-葡萄糖苷酶的活性,降低葡萄糖的生成速度,從而減少小腸對(duì)葡萄糖的吸收以降低血糖,然而當(dāng)前臨床使用的該類藥物具有較嚴(yán)重的副作用(朱月霞等,2021)。因此,開發(fā)新型、安全、有效的α-葡萄糖苷酶抑制劑對(duì)糖尿病的治療具有重要意義,尋找天然的α-葡萄糖苷酶抑制劑成為研究的熱點(diǎn)(朱運(yùn)平等,2011; Quan et al., 2020; Yuca et al., 2021)。本研究基于甜茶提取物對(duì)α-葡萄糖苷酶具有抑制作用(吳婕等,2021),對(duì)其開展化學(xué)成分及生物活性研究,從甜茶葉中分離得到10個(gè)化合物,化合物2、4、5、9為首次從甜茶中分離得到。其中,化合物2和10為黃酮苷類,化合物3和6為酚酸類,活性測(cè)試結(jié)果顯示化合物2、3、6和10均具有較強(qiáng)的α-葡萄糖苷酶抑制活性,與文獻(xiàn)報(bào)道一致(Liu et al., 2019;岳丹偉,2021;Lin et al., 2022;薛深等,2023),化合物5為木脂素類,具有較強(qiáng)的α-葡萄糖苷酶抑制活性,為首次報(bào)道。化合物5的結(jié)構(gòu)與化合物4的相比,僅在C-5為多了一個(gè)甲氧基,化合物5表現(xiàn)出較強(qiáng)的活性,而化合物4在相同測(cè)試濃度下無(wú)活性,推測(cè)C-5位的甲氧基是關(guān)鍵的活性基團(tuán)。
甜茶作為茶飲有悠久的歷史,其主要成分甜茶苷的甜度是蔗糖的300倍,熱量?jī)H為蔗糖的1%(馬建春等,2008),具有高甜度、低熱量的特點(diǎn),是糖尿病患者理想的甜味劑,發(fā)達(dá)國(guó)家正大力開發(fā)相關(guān)產(chǎn)品,如日本已有多種飲料、糖果和藥品已上市(朱明婧等,2015)。本研究從甜茶中發(fā)現(xiàn)了具有較好的α-葡萄糖苷酶抑制活性的化學(xué)成分,進(jìn)一步證實(shí)了其具有降血糖作用,為甜茶開發(fā)降血糖功能食品或降血糖藥物提供了科學(xué)依據(jù)。
參考文獻(xiàn):
ETSE JT, GRAY A, WATERMAN PG, 1987. Chemistry in the Annonacesa, XXIV. Kaurane and kaur-16-ene diterpenes from the stem bark of Annona reticulate [J]. J Nat Prod, 50(5): 979-983.
Guangxi Food and Drug Administration, 2011. Zhuang medicine quality standards of Guangxi Autonomous Region: Vol. 2" [S]. Nanning: Guangxi Science amp; Technology Press: 269." [廣西壯族自治區(qū)食品藥品監(jiān)督管理局, 2011. 廣西壯族自治區(qū)壯藥質(zhì)量標(biāo)準(zhǔn):第二卷 [S]. 南寧: 廣西科學(xué)技術(shù)出版社: 269.]
HOU WC, LIN RD, LEE TH, et al., 2005. The phenolic constituents and free radical scavenging activities of Gynura formosana Kiamnra [J]. J Sci Food Agric, 85(4): 615-621.
LIANG SL, HUANG YL, HE RJ, et al., 2022. Separation and preparation of alkaloids with inhibitory activity of α-glucosidase from Sophora tonkinensis by pH-zone-refining counter-current chromatography [J]. Guihaia, 42(9): 1459-1465." [梁森林, 黃永林, 何瑞杰, 等, 2022. pH區(qū)帶精制逆流色譜法分離制備越南槐中具有抑制α-糖苷酶活性的生物堿 [J]. 廣西植物, 42(9): 1459-1465.]
LIN YT, LIN HR, YANG CS, et al., 2022. Antioxidant and anti-α-glucosidase activities of various solvent extracts and major bioactive components from the fruits of Crataegus pinnatifida [J]. Antioxidants, 11: 320.
LIU MZ, HUANG XQ, LIU Q, et al., 2019. Separation of α-glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow-rate gradient high-speed counter-current chromatography target-guided by ultrafiltration HPLC-MS screening [J]. Phytochem Anal, 30: 661-668.
LIU MZ, LI XJ, LIU Q, et al., 2020. Comprehensive profiling of α-glucosidase inhibitors from the leaves of Rubus suavissimus using an off-line hyphenation of HSCCC, ultrafiltration HPLC-UV-MS and prep-HPLC [J]. J Food Compost Anal, 85: 103336.
Lü SS, WANG X, YE QZ, et al., 2018. Chemical constituents from the leaves of Terminalia catappa and their hypoglycemic activities [J]. Chin Trad Pat Med, 40(12): 2693-2697." [呂閃閃, 王璇, 葉全知, 等, 2018. 大葉欖仁葉化學(xué)成分及其降糖活性 [J]. 中成藥, 40(12): 2693-2697.]
MA JC, HE W, WU ZF, 2008. Progress on rubusoside in Rubus suavissimu S. Lee [J]. Food Drug, 10(5): 73-75." [馬建春, 何偉, 伍振峰, 2008. 甜茶素的研究進(jìn)展 [J]. 食品與藥品, 10(5): 73-75.]
MENG SJ, YAN ZG, XU YL, et al., 2019. Effects of extract of Rubus suavissimus S. Lee on blood sugar and glucose tolerance in mice [J]. Hubei Agric Sci, 58(20): 118-120." [蒙淑潔, 閆志剛, 徐永莉, 等, 2019. 廣西甜茶醇提物對(duì)小鼠血糖及糖耐量的影響 [J]. 湖北農(nóng)業(yè)科學(xué), 58(20): 118-120.]
OHTANI K, AIKAWA Y, KASAI R, et al., 1992. Minor diterpene glycosides from sweet leaves of Rubus suavissimus [J]. Phytochemistry, 31(5): 1553-1559.
PAN ZH, NING DS, FU YX, et al., 2020. Preparative isolation of piceatannol derivatives from passion fruit (Passiflora edulis) seeds by high-speed countercurrent chromatography combined with high-performance liquid chromatography and screening for α-glucosidase inhibitory activities [J]. J Agric Food Chem, 68(6): 1555-1562.
QUAN YS, ZHANG XY, YIN XM, et al., 2020. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum [J]. Bioorg Med Chem Lett, 30(24): 127665.
SU ZH, LING X, JI KW, et al., 2020. 1H NMR-based urinary metabonomic study of the antidiabetic effects of Rubus suavissimus S. Lee in STZ-induced T1DM rats [J]. J Chromatogr B, 1158: 122347.
TANAKA T, NONAKA G, NISHIOKA I, 1990. Tannins and related compounds. C.1) Reaction of dehydrohexahydroxy-diphenic acid esters with bases, and its application to the structure determination of pomegranate tannins, granatins A and B [J]. Chem Pharm Bull, 38(9): 2424-2428.
WANG JX, Lü HC, 2008. Studies on the diterpenoids of Rubus suavissimus S. Lee [J]. Lishizhen Med Mat Med Res, 19(3): 664-665." [王劍霞, 呂華沖, 2008. 廣西甜茶二萜類成分的研究 [J]. 時(shí)珍國(guó)醫(yī)國(guó)藥, 19(3): 664-665.]
WANG QQ, 2013. Studies on chemical constituents of Rhododenron seniavinii Maxim [D]. Guangzhou: Jinan University." [汪青青, 2013. 滿山白化學(xué)成分研究 [D]. 廣州: 暨南大學(xué).]
WU JC, LI SP, ZHANG YY, et al., 2021. Research progress on chemical constituents and pharmacological effects of Rubus suavissimus [J]. Chin J Trad Chin Med Pharm, 36(6): 3504-3508." [吳家超, 李水萍, 張永怡, 等, 2021. 民族藥甜茶化學(xué)成分與藥理作用研究進(jìn)展 [J]. 中華中醫(yī)藥雜志, 36(6): 3504-3508.]
WU J, GONG JN, 2021. Purification of polyphenols from sweet tea by the macroporous resins and its inhibitory activity on α-glucosidase and DPPH [J]. J Agric Sci Technol, 23(6): 113-119." [吳婕, 宮江寧, 2021. 大孔樹脂純化甜茶多酚及其對(duì)α-葡萄糖苷酶抑制活性和DPPH抗氧化性的研究 [J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 23(6): 113-119.]
XUE S, WANG YJ, LIU FF, et al., 2023. Study on the inhibition mechanisms of gallic acid derivatives on α-glucosidase [J]. J Zhejiang Norm Univ (Nat Sci Ed), 46(1): 74-80." [薛琛, 王怡婷, 劉芬芬, 等, 2023. 沒食子酸衍生物抑制α-葡萄糖苷酶的機(jī)理研究 [J]. 浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 46(1): 74-80.]
YAN ZG, MENG SJ, WEI RC, et al., 2017. Current situation and application of Rubus suavissimus [J]. Chin Trad Herb Drugs, 48(12): 2572-2578." [閆志剛, 蒙淑潔, 韋榮昌, 等, 2017. 廣西甜茶研究與應(yīng)用現(xiàn)狀 [J]. 中草藥, 48(12): 2572-2578.]
YUCA H, ZBEK H, DEMIREZER L, et al., 2021. trans-Tiliroside: a potent α-glucosidase inhibitor from the leaves of Elaeagnus angustifolia L. [J]. Phytochemistry, 188: 112795.
YUE DW, 2021. Study on chemical constituents, antioxidant and hypoglycemic activities of flavonoids from Flos. Dolichoris lablab L. [D]. Wuhu: Anhui Polytechnic University." [岳丹偉, 2021. 白扁豆花黃酮類化合物分離鑒定及其抗氧化、降糖活性研究 [D]. 蕪湖: 安徽工程大學(xué).]
ZHANG WK, ZHANG XQ, YE WC, et al., 2007. Chemical constituents of the aerial parts of Euphorbia sosoria [J]. J Chin Pharm Univ, 38(4): 315-319." [張維庫(kù), 張曉琦, 葉文才, 2007. 對(duì)葉大戟地上部分的化學(xué)成分 [J]. 中國(guó)藥科大學(xué)學(xué)報(bào), 38(4): 315-319.]
ZHENG H, WEI QM, MENG CM, et al., 2019. The study of Rubus suavissimus S. Lee (RS) improving the diabetic complications of the streptozotocin (STZ) rats by promoting mitophagy" [J]. Chin J Ethnomed Ethnopharm, 28(10): 22-26." [鄭華, 魏秋梅, 孟春梅, 等, 2019. 瑤山甜茶通過(guò)調(diào)節(jié)線粒體自噬改善糖尿病大鼠并發(fā)癥的實(shí)驗(yàn)研究 [J]. 中國(guó)民族民間醫(yī)藥, 28(10): 22-26.]
ZHU MJ, LIU B, LI FF, 2015. Research progress and development prospect of natural sweeteners [J]. Chin Cond,40(11): 136-140." [朱明婧, 劉博, 李飛飛, 2015. 天然甜味劑研究進(jìn)展與開發(fā)前景分析 [J]. 中國(guó)調(diào)味品, 40(11): 136-140.]
ZHU YP, LI XT, LI LT, 2011. The source of natural α-glucosidase inhibitor and its application research situation [J]. J Chin Inst Food Sci Technol, 11(4): 154-160." [朱運(yùn)平, 李秀婷, 李里特, 2011. 天然α-葡萄糖苷酶抑制劑來(lái)源及應(yīng)用研究現(xiàn)狀 [J]. 中國(guó)食品學(xué)報(bào), 11(4): 154-160.]
ZHU YX, SHAO ZB, WU XX, et al., 2021. Research progress of α-glucosidase inhibitors from marine natural products [J]. J Nanjing Univ Trad Chin Med, 37(2): 311-320." [朱月霞, 邵仲柏, 吳小小, 等, 2021. 海洋天然產(chǎn)物中α-葡萄糖苷酶抑制劑研究進(jìn)展 [J]. 南京中醫(yī)藥大學(xué)學(xué)報(bào), 37(2): 311-320.]
(責(zé)任編輯 李 莉)