• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma

    2024-04-06 07:16:14WeiceWANG王威策JunCHENG程鈞ZhongbingSHI石中兵LongwenYAN嚴(yán)龍文ZhihuiHUANG黃治輝KaiyangYI弋開(kāi)陽(yáng)NaWU吳娜YuHE何鈺QianZOU鄒千XiCHEN陳熙WenZHANG張文JianCHEN陳建LinNIE聶林XiaoquanJI季小全andWulyuZHONG鐘武律
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:龍文

    Weice WANG (王威策) ,Jun CHENG (程鈞) ,Zhongbing SHI (石中兵) ,Longwen YAN (嚴(yán)龍文) ,Zhihui HUANG (黃治輝) ,Kaiyang YI (弋開(kāi)陽(yáng)) ,Na WU (吳娜),Yu HE (何鈺),Qian ZOU (鄒千),Xi CHEN (陳熙),Wen ZHANG (張文),Jian CHEN (陳建),Lin NIE (聶林),Xiaoquan JI (季小全) and Wulyu ZHONG (鐘武律)

    1 Southwestern Institute of Physics,Chengdu 610299,People’s Republic of China

    2 Institute of Fusion Science,School of Physical Science and Technology,Southwest Jiaotong University,Chengdu 610031,People’s Republic of China

    Abstract This paper reports an improved time-delay estimation (TDE) technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.

    Keywords: gas-puff imaging,TDE method,turbulence,velocity field map

    1.Introduction

    The scrape-off layer (SOL) in a tokamak is known to exist blobs or filaments [1],which are elongated structures along the magnetic field lines with a much higher density than the background plasma [2].These structures are intermittent and contribute significantly to radial transport outside the last closed flux surface (LCFS) [3,4].These structures and smallscale turbulence together determine anomalous thermal and particle transport at the boundary and affect the SOL width.Therefore,studying these structures is crucial for understanding plasma-wall interactions (PWI) [5,6].Turbulent structure measurements of tokamak plasmas,especially in the boundary region,have been performed for decades,but they are mainly limited to single-point or one-dimensional(1D) measurements,such as Langmuir probes.Langmuir probes have traditionally been used to identify filament structures by measuring plasma fluctuations.However,the high heat load can damage probes and release impurities that pollute the plasma.In contrast,a gas-puff imaging (GPI)system,which is a diagnostic system for measuring the instantaneous two-dimensional (2D) structures of the turbulence at the boundary of magnetically confined plasmas,provides non-invasive observation with a wide and flexible view region and good spatial resolution by measuring visible light emission from boundary plasma [7,8].The 2D images obtained by the GPI system are processed using the time-delay estimation (TDE) technique to obtain velocity fluctuation map of turbulence or shear flow.The basic TDE technique,based on cross-correlation and wavelet analyses with gradient algorithm,has been applied in many tokamaks to analyze diagnostic data.

    In past studies,the TDE technique was applied to analyze 1D signals from beam emission spectroscopy (BES)diagnostic to measure the turbulence flow field in DIII-D tokamak [9-12].It has also been used to derive time-dependent 2D velocity field maps based on normal optical flow on NSTX [13].Another TDE technique based on dynamic programming has been proposed to process BES data and analyze velocimetry during L-H transition from GPI 2D signals in EAST tokamak [14].Recently,a 2D time-delay cross-correlation technique has been used to analyze zonal flow on Alcator C-Mod [15].However,these techniques do not completely address the limitations caused by the aperture problem,variable inter-frame shifts,sudden changes in brightness,one-way timing delay,and reconstruction of lowfrequency signals.To overcome these limitations,an improved TDE technique based on dense optical flow technique is applied to analyze 2D GPI signals such as velocity field map and MHD-correlated blob [16,17].It has advantages in improved accuracy,robustness to large displacements,handling of occlusions.The improved technology adaptively identifies blobs and tracks their movement,recording the number of blobs,velocities,and other dynamic characteristics.The derivation of the velocity field maps by the TDE technique is important for the understanding of turbulence,blobs-related radial transport and the determination of the poloidal flow pattern at the boundary plasma.

    In this study,poloidal and radial fluctuation velocitiesVθ,Vrare obtained directly by the TDE technique,poloidal shear flow is defined as ?Vθ/?r,Reynolds stress is also calculated by .The organization of this paper is as follows.Section 2 introduces the blob tracking method and velocity field technique,including imaging modeling and main steps of the improved TDE technique.Preliminary experiment results are shown in section 3.Section 4 is the summary.

    2.Improvement of TDE technique

    2.1.Image modeling

    The raw 2D digital signals taken by the camera need some processing to restore the physical information.The following methods are only for 2D greyscale images.We propose a simple yet effective background removal algorithm for lowresolution grayscale GPI data based on running average background subtraction.The algorithm assumes a relatively static background and minimal camera movement,making it well-suited for control environments.By continuously updating a running average background model with a user-defined learning rate modified in different plasma discharges,the algorithm adapts to gradual changes in the scene.The learning rate can be tailored based on specific parameters of plasma discharges.For instance,in high confinement mode discharges,a lower learning rate may be employed to avoid noise whereas in ohmic or low confinement mode discharges,higher rates might be preferable to capture rapid coherent structural changes.While the proposed model is adaptable to a variety of plasma discharge conditions simply by tweaking the learning rate,certain extreme or unique scenarios might benefit from alternative models or additional preprocessing.Nonetheless,for the bulk of scenarios we examined,adjusting the learning rate should be reasonable.The foreground is extracted by computing the absolute difference between the current frame and the running average background,followed by thresholding to generate a binary foreground mask.This method offers a computationally efficient solution for background subtraction in lowresolution grayscale GPI images,while maintaining the ability to adapt slow background variations.It is helpful to solve the interference of vacuum chamber components on imaging.

    Next,each frame in the original data is filtered with convolution kernel to remove the noise of an image.Compared with median and Gaussian filters,the convolution kernel filter,such as a high pass filter kernel and Bilateral Blur [18,19],can reduce spurious spikes of the images,it can better retain the original structure relationship of the images,primary intensity and sharpen images,which is beneficial to observe the large-scale structure of boundary plasma.In addition,the convolution kernel can be adjusted freely for different image features.In this work,due to the significant difference between the discharges,different convolution kernels are used for processing different discharge conditions.The convolution kernel is not adaptive and determined by the electron temperature and density of the boundary plasma.This process can be particularly effective for regions with a low signal-to-noise ratio (SNR),as the calculation of velocity is highly sensitive to spurious spikes in the 2D data.

    To ensure the assumption of constant brightness and identical time intervals between frames,some frames are merged when the brightness of more than two consecutive frames is below half of the average brightness of this discharge,meanwhile,the local brightness must be normalized to the average brightness.This step is accomplished by simply normalized brightness for each frame using the average brightness of all frames.After the above steps,a set of pixel matrices of the same time intervals is obtained.The velocity field is calculated based on this set of matrices.Besides,the signal of pixel in the same position of successive frames can partially approximate to the fluctuation signal of the saturation ion current measured by Langmuir probes in the SOL.

    Figure 1.A set of GPI images taken with an exposure time of 10 μs during a typical discharge.The poloidal (vertical) scale “θ” is only indicated in the first frame,and the radial scales “r” are indicated in each frame.The electron diamagnetic direction is towards the top.The radial outward direction is towards the right side.

    2.2.Blob tracking

    This section presents a comprehensive approach for detecting,tracking,and characterizing blob-like structures within GPI data.The proposed technique consists of seven interconnected steps.(i) The image is scanned row-wise from the topleft corner to identify blob trigger frames,using a predefined blob tracking trigger threshold and the number of pixels (N) above this threshold for statistics.(ii) When the number of pixels over the threshold exceeds the specified assumption value,a blob is triggered within the frame,and the value is constrained by the radial position of the SOL.(iii) A connected region recognition algorithm is then employed to determine the maximum brightness pixel in the triggered frame,which serves as basic pixel point.Adjacent pixels are iteratively examined to verify if they meet the threshold condition,and the deriving connected region represents the outline of one or multiple blobs.(iv) To ensure the continuity and separability of blob contours across frames,the Hausdorff distance [20] method is utilized to compare contour similarities.(v) Similar outlines are grouped into a blob sequence,while dissimilar outlines are separated.This similarity comparison allows the algorithm to track multiple blobs within a single frame.(vi) Only blobs persisting for at least three frames are retained for further analysis,effectively eliminating noise and transient features. After completing the aforementioned steps,a sequence of tracks for multiple blobs is extracted from a contiguous set of frames,enabling in-depth analysis of their dynamics.The centroid of each blob is calculated using a weighted average based on its profile,which aids in velocity computation.(vii)Each blob contour is fitted with an ellipse to characterize essential features,such as a 2D size,area,ellipticity,and tilt angle.The technique presented herein offers a robust and reliable solution for detecting,tracking,and characterizing blobs within a sequence of GPI data.

    Figure 2 illustrates the results of tracing two blobs over 17 consecutive frames using the above technique.Figure 2(a)displays the starting and ending positions of the blobs,along with their contours and spatial locations.Figures 2(b) and (c)depict the instantaneous poloidal and radial velocities in figure 2(a),demonstrating that the poloidal velocity remains relatively invariable,while the radial velocity exhibits a slight decrease during SOL propagation where the local electron density is gradually lower.This corresponds to a local collisionality decrease which causes the radial velocity of the blob to decline [21].The errors in figures 2(b) and (c) are estimated from standard deviation of 3×3 pixel points around the center of the pixel offering velocities.The poloidal velocity of the blob is primarily related to transport in the parallel direction.Since the parallel transport varies little over short time scales,the poloidal velocity of the blob remains hardly unchanged.

    Figure 2.(a) Simultaneously recognizing a blob in 17 consecutive frames,(b) trajectory tracking exported blob poloidal velocity and (c)radial velocity.

    Figure 3.The improved method for forward and backward timing search process diagram.The bifurcation pixel between forward search and backward search in the Frame 5 makes the flow path be optimized.

    2.3.Velocity field map

    To further derive the velocity field,an improved technique akin to dense optical flow is employed to calculate the turbulent velocity field map within GPI data.This TDE technique is based on dense optical flow analysis to examine the positional changes of pixels between frames [22,23].An inverse time sequence search is introduced,which extracts the turbulent evolution displacement not only from forward to backward but also from backward to forward.

    As illustrated in figure 3,the sequence comprises seven frames,and the movement trajectory of a specific pixel is obtained by conducting a forward or downward search.Simultaneously,a backward or upward search is performed from the end pixel to acquire another movement trajectory.In the event of inconsistency between the two trajectories,the track line is adjusted accordingly.After confirming that both vectors are within the turbulent boundary plasma,we add the two velocity vectors to obtain the new velocity vector.

    The improved TDE technique operates on several key principles.The first step involves constructing a two-layer image pyramid to circumvent aperture issues [24].The technique defines an objective function to evaluate pixel displacement between frames.This objective function,G(d),is as follows:

    Here,drepresents the displacement vector,is the matching cost function withPsymbolizing the patch set,and ω·L(d) is the regularization term.The matching cost function can be expanded as,

    Here,qdenotes an offset vector within patchP,andT(P)signifies the patch following a discrete Fourier transform(DFT).I1represents the image gradient in the first frame,whileI2refers to the second frame.The regularization term,ω·L(d),ensures smoothness and consistency in the estimated motion field,with the total variation (TV) regularization term being used.L(d) can be written as:

    where ω is set as a coefficient matrix correlated to the radial position of the SOL.The initial result,d,can be obtained by iteratively calculating the objective functionG(d).The initial search area is defined by a neighborhoodN(p)centered around the initial displacement vector estimationd.Ifd′symbolizes the updated displacement estimation at the initial pixel following the execution of the inverse search,d′should be written as:

    They wandered in the woods the whole day, but could not find their way out. As night fell they found an inn and went inside. The servant gave the raven to the innkeeper to prepare for supper.

    After iteratively updating the displacement field in this manner,the search can efficiently converge on a solution that minimizes the objective function.It should be noted that the blob contour area and non-blob one,extracted in section 2.2,belong to two distinct patch sets and only share pixels near the boundary.Thus,two different sets of parameters are employed to derive the velocity field map for the contour areas.

    The improved TDE technique allows for the derivation of a velocity vector map from two frames separated by a time interval.Figures 4(a) and (b) illustrate the development of a coherent structure in the left region of the images,propagating in the SOL.Figure 4(c) presents a velocity quiver map calculated from figures 4(a) and (b) with the interval of 10μs.Each pixel velocities,vxandvy,are computed using the improved TDE technique.To make the figure clearer four adjacent velocity vectors are subsequently merged into one.In these frames,thevxof the middle plane is approximately 1 km s-1,and the poloidal velocityvyis about 4 km s-1.This aligns with both theoretical predictions and experimental observations of blob velocities [25-27].

    Figure 4.Contour plots of intensity at two successive times with the separation of 10 μs ((a) and (b)),and the derived velocity map with the TDE technique (c).

    It is important to note that the original velocity vector units are pixels [25-27].Figure 4(c) clearly demonstrates the movement of the blob near the LCFS towards the first wall,where the length of the arrow represents relative velocity.The actual turbulence movement velocity can also be determined from the time delay between the two frames and the distance between pixels.

    2.4.Comparison of standard TDE with improved one

    We assessed the standard TDE algorithm and its enhanced variant by comparing their error rates,memory usage,and execution times.This comparison used GPI data from three discharges at a resolution of 256×256 pixels and a frequency of 100 kHz on the HL-2A tokamak.Both algorithms were executed in an identical virtual machine environment and to accurately measure the memory usage of both the standard and improved TDE algorithms during runtime,we employed a profiling tool that monitors the allocation and deallocation of memory in real time.This tool records the peak memory consumption,which represents the maximum amount of memory used by the program at any point during its execution.With each discharge comprising 400-500 images,we tabulated the average outcomes of the three discharges in table 1.

    According to the data presented,the improved algorithm achieves a more substantial reduction in error compared to the standard algorithm,while only incurring a marginal increase in execution time.The slight rise in time required is negligible and within the processing capabilities of a stan-dard personal computer.Meanwhile,as shown in figure 5,we directly present a comparative illustration of the standard and the improved velocity field maps over time.Each velocity field map is spaced by 10μs,derived from four frames of data calculated pairwise consistent with the process illustrated in figure 4.Figure 5(a) represents that the results of the two methods are basically consistent.However,it is evident in figure 5(b),specifically in the upper right corner(within the purple dashed line),that the velocity vectors of the standard algorithm exhibit significant distortion.This distortion persists into the subsequent velocity field map diagram in figure 5(c).Apart from the above mentioned,the difference between the two methods is not significant during this period,but it is foreseeable that the error accumulated by a long time series will make the improved method have obvious advantages.Therefore,a direct comparison underscores the superiority of the improved method in terms of accuracy.

    Table 1.Comparison of the standard TDE algorithm and the improved one.

    Figure 5.(a)-(c) Three successive velocity field maps provide a direct comparison between the improved algorithm (new method) and the standard algorithm (old method) based on calculations from four consecutive frames.

    Figure 7.Contrasts of spectral cross-power (a),(d),the cross-coherence (b),(e) and phase (c),(f) at two radial positions estimated from two poloidal velocities with poloidal separation dθ ≈ 9 mm.

    3.Experimental confirmation

    The TDE technique is a valuable tool to analyze boundary plasma profiles.For example,when the TDE approach is applied to a series of images,a succession of velocity vectors in thexandydirections can be derived.By averaging the velocity direction ofxory,profiles of specific positions in the poloidal or radial direction can be obtained.

    Figures 6(a)-(c) display radial profiles of poloidal velocityVθ,shear flow,and Reynolds stress,with theθdirection chosen near the middle plane.The dashed area represents the error bar,calculated by the standard deviation defined as ε(i)=Observations from figure 6 demonstrate that the radial profiles are notably different inside and outside the LCFS,with the rapid movement of blobs in SOL causing a ramp-up of parameters outside LCFS.Local poloidal velocities reach up to about -2km s-1(in the electron diamagnetic direction),and Reynolds stress is up to~ 4 × 106m2s-2(outward) inside LCFS.Since the velocity is directly calculated,its profiles obtained by improved TDE method are directly derived and comparable to those calculated by the Langmuir probes arrays in the SOL regions,with rather high reasonable.

    This TDE technique can be extended for analyzing zonal flows and MHD-correlated blobs [16].To exemplify spectral analysis,the poloidal velocities,derived as single-channel signals,are further investigated using the two-point technique [28,29].Figures 7(a)-(f) contrast the spectral crosspower,cross coherence and phase using poloidal velocities at two radial positions of Δr=-3 mm and Δr=15 mm.A coherent mode peaking at 17 kHz with strong power and coherence of 0.8 is discernible in the spectrum at Δr=-3 mm.Short wavenumber components of the turbulence are filtered in the spectra due to the long distance between poloidal positions.

    Interestingly,the cross-phase of the coherent mode frequency is almost zero,distinguishing it from the highfrequency parts of ambient turbulence,as shown in figure 7(c).In contrast,no similar correlation peak is observed at Δr=15 cm,with only the spectrum of turbulence being observed.This could potentially indicate the presence of coherent poloidal flow fluctuations at Δr=-3 mm,i.e.,the presence of geodesic acoustic modes (GAM).These results are consistent with the GAM characteristics observed in a tokamak [30,31].The results demonstrate that the improved TDE technique has the potential for analyzing GAM,MHDcorrelated blobs,and turbulence in the frequency domain.

    4.Conclusion

    An improved TDE technique presented in this study provides a comprehensive framework for detecting,tracking,and characterizing turbulence structures based on GPI data.It employs an inverse timing search,utilizes coarse-to-fine processing,and uses a hierarchical approach to improve calculation efficiency,accuracy,and robustness to noise.This technique is less susceptible to variations with light intensity in GPI data and better addresses large displacement issues.The proposed methods,including the application of the TDE technique and an improved optical flowbased approach,can effectively calculate and analyze turbulent velocity field maps and blob dynamics.The TDE technique can observe significant distinctions in the radial profiles inside and outside the LCFS and fast motion of blobs in the SOL.It is important to note that the improved TDE technique has a smaller error compared to the standard TDE technique,and the directly measured velocity field maps is comparable to the results of the Langmuir probe.The power spectral analysis reveals the possibility of identifying coherent modes and distinguishing them from ambient turbulence.The application of TDE technique extends beyond blob analysis,which shows the potential in examining zonal flows and MHD-correlated blobs.This TDE technique substantially improves the ability to study boundary plasma turbulence and transport related physics based on GPI data.Future research should focus on refining these techniques and exploring their applications in other related fields.It would provide a useful tool to analyze boundary plasma physics.Meanwhile,it may be applied to other plasma diagnostics.

    Acknowledgments

    This work is partially supported by the National Key R&D Program of China (Nos. 2019YFE03030002 and 2022YFE03030001),National Natural Science Foundation of China (Nos.12175186 and 12175055),and the Natural Science Foundation of Sichuan Province (Nos.2022NSFSC1820 and 2023NSFSC1289).

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak
    勤上光電收購(gòu)標(biāo)的經(jīng)營(yíng)亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    91麻豆精品激情在线观看国产| 男人和女人高潮做爰伦理| 久久九九热精品免费| 国产欧美日韩一区二区精品| 一级作爱视频免费观看| 毛片女人毛片| 国产淫片久久久久久久久 | 国产伦精品一区二区三区四那| 窝窝影院91人妻| 国产精品野战在线观看| 中文字幕av在线有码专区| 国产 一区 欧美 日韩| 人妻丰满熟妇av一区二区三区| 天堂网av新在线| netflix在线观看网站| 国产免费男女视频| 婷婷亚洲欧美| 在线观看免费视频日本深夜| 亚洲精品一卡2卡三卡4卡5卡| 久久精品亚洲精品国产色婷小说| 久久精品亚洲精品国产色婷小说| 国产亚洲精品av在线| 一本综合久久免费| 又黄又爽又免费观看的视频| 成年女人看的毛片在线观看| 人妻夜夜爽99麻豆av| 久久精品91蜜桃| 一进一出抽搐gif免费好疼| 国产av在哪里看| 国产一区二区在线观看日韩 | 99国产极品粉嫩在线观看| 婷婷精品国产亚洲av在线| 午夜福利18| 精品国产三级普通话版| 男女床上黄色一级片免费看| 久久久国产精品麻豆| 最近最新中文字幕大全免费视频| 这个男人来自地球电影免费观看| 在线免费观看不下载黄p国产 | 国产69精品久久久久777片 | 亚洲中文字幕一区二区三区有码在线看 | 欧美av亚洲av综合av国产av| 91在线精品国自产拍蜜月 | 日本熟妇午夜| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 久久天躁狠狠躁夜夜2o2o| 免费在线观看成人毛片| 狂野欧美激情性xxxx| 国产激情久久老熟女| 久久久久久久久免费视频了| 国产亚洲精品综合一区在线观看| 又黄又爽又免费观看的视频| 999久久久精品免费观看国产| 午夜免费成人在线视频| 男女做爰动态图高潮gif福利片| 免费高清视频大片| 我要搜黄色片| a在线观看视频网站| 99热6这里只有精品| 国产精品久久电影中文字幕| 怎么达到女性高潮| 日韩国内少妇激情av| 老汉色∧v一级毛片| 久久人人精品亚洲av| 精品国产美女av久久久久小说| 综合色av麻豆| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 91麻豆av在线| 精品国内亚洲2022精品成人| 国产免费男女视频| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 亚洲片人在线观看| 国产午夜精品久久久久久| 国产高清有码在线观看视频| 香蕉国产在线看| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区视频在线观看免费| 日韩欧美 国产精品| 亚洲精品一区av在线观看| 国产蜜桃级精品一区二区三区| 国产精品日韩av在线免费观看| 亚洲aⅴ乱码一区二区在线播放| tocl精华| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 超碰成人久久| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 哪里可以看免费的av片| 狠狠狠狠99中文字幕| 真人一进一出gif抽搐免费| 91麻豆av在线| 99热精品在线国产| 手机成人av网站| 日韩免费av在线播放| 日韩 欧美 亚洲 中文字幕| 成年女人永久免费观看视频| 啪啪无遮挡十八禁网站| 黄色片一级片一级黄色片| 国产久久久一区二区三区| 波多野结衣巨乳人妻| 黄色成人免费大全| 午夜福利在线在线| 亚洲美女视频黄频| 成人特级av手机在线观看| 性色avwww在线观看| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 又粗又爽又猛毛片免费看| 亚洲,欧美精品.| 两个人视频免费观看高清| 操出白浆在线播放| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品综合一区在线观看| 亚洲电影在线观看av| 成人三级黄色视频| 国产黄a三级三级三级人| 成人午夜高清在线视频| 一进一出抽搐动态| 精品99又大又爽又粗少妇毛片 | 午夜免费成人在线视频| 久久精品国产清高在天天线| 欧美日韩乱码在线| 久99久视频精品免费| 伦理电影免费视频| 两个人看的免费小视频| 好看av亚洲va欧美ⅴa在| 一区二区三区激情视频| 啦啦啦免费观看视频1| 久久久久久国产a免费观看| 成人无遮挡网站| 亚洲一区高清亚洲精品| 一级毛片女人18水好多| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 国产黄a三级三级三级人| 最近最新免费中文字幕在线| 国产视频内射| 国产探花在线观看一区二区| 欧美日韩综合久久久久久 | 一a级毛片在线观看| 国产一区二区三区在线臀色熟女| 日本一二三区视频观看| 免费在线观看成人毛片| 精品一区二区三区av网在线观看| 婷婷亚洲欧美| 久久久国产欧美日韩av| 国产高清视频在线观看网站| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 亚洲精品一区av在线观看| АⅤ资源中文在线天堂| 母亲3免费完整高清在线观看| 首页视频小说图片口味搜索| 中文字幕最新亚洲高清| 亚洲自偷自拍图片 自拍| 日韩人妻高清精品专区| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 又爽又黄无遮挡网站| 一区二区三区国产精品乱码| 国产一级毛片七仙女欲春2| 日韩大尺度精品在线看网址| www.www免费av| 人妻久久中文字幕网| 一本综合久久免费| 午夜福利在线在线| 久久久国产精品麻豆| 在线观看日韩欧美| 精品国产乱子伦一区二区三区| 全区人妻精品视频| 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 欧美一级毛片孕妇| 国产亚洲精品一区二区www| 老熟妇仑乱视频hdxx| 宅男免费午夜| 成熟少妇高潮喷水视频| 好看av亚洲va欧美ⅴa在| 久久欧美精品欧美久久欧美| www.999成人在线观看| 久久久久九九精品影院| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 99re在线观看精品视频| 最近最新中文字幕大全免费视频| 成年女人毛片免费观看观看9| 香蕉久久夜色| 欧美日本亚洲视频在线播放| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 亚洲人成网站高清观看| 国产精品久久久久久久电影 | 18禁国产床啪视频网站| 亚洲国产欧美一区二区综合| 精品久久久久久成人av| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 成年女人永久免费观看视频| 亚洲色图 男人天堂 中文字幕| 欧美国产日韩亚洲一区| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 国产精品精品国产色婷婷| bbb黄色大片| 国产1区2区3区精品| 日本免费一区二区三区高清不卡| 亚洲精品美女久久久久99蜜臀| 免费观看的影片在线观看| 欧美大码av| 99视频精品全部免费 在线 | 久久国产精品人妻蜜桃| 全区人妻精品视频| 日韩欧美三级三区| 毛片女人毛片| 高潮久久久久久久久久久不卡| 精品一区二区三区视频在线观看免费| 97超视频在线观看视频| 国产亚洲精品久久久com| 午夜久久久久精精品| 小说图片视频综合网站| 国产精品av视频在线免费观看| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 日韩国内少妇激情av| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 国产精品香港三级国产av潘金莲| 日韩av在线大香蕉| 亚洲av电影不卡..在线观看| 又黄又爽又免费观看的视频| 九九久久精品国产亚洲av麻豆 | 亚洲欧美日韩卡通动漫| 色视频www国产| 在线国产一区二区在线| 男人舔女人的私密视频| 精品久久久久久久毛片微露脸| 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 日本与韩国留学比较| 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 欧美不卡视频在线免费观看| 久久精品国产亚洲av香蕉五月| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 999精品在线视频| 国产成人福利小说| 成人av在线播放网站| 天堂影院成人在线观看| 色综合婷婷激情| 国产爱豆传媒在线观看| 日本精品一区二区三区蜜桃| 日本一二三区视频观看| 精品久久久久久成人av| 一个人看的www免费观看视频| avwww免费| 18美女黄网站色大片免费观看| 日韩欧美在线二视频| 亚洲av成人一区二区三| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 99视频精品全部免费 在线 | 一级黄色大片毛片| 欧美在线一区亚洲| 国产亚洲精品一区二区www| 99精品欧美一区二区三区四区| 色av中文字幕| 亚洲成人精品中文字幕电影| 国内精品久久久久久久电影| 久久香蕉精品热| 午夜亚洲福利在线播放| 国产亚洲精品一区二区www| 哪里可以看免费的av片| 中文字幕最新亚洲高清| 国产伦精品一区二区三区视频9 | 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看 | 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 午夜福利欧美成人| 最新在线观看一区二区三区| 精品人妻1区二区| 成年人黄色毛片网站| 精品福利观看| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| svipshipincom国产片| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av| 国产成人一区二区三区免费视频网站| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| or卡值多少钱| 国产97色在线日韩免费| h日本视频在线播放| 国产精品免费一区二区三区在线| 一本久久中文字幕| 国产伦精品一区二区三区四那| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 精品国产乱子伦一区二区三区| av中文乱码字幕在线| 制服丝袜大香蕉在线| 老司机午夜十八禁免费视频| 久久热在线av| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 小说图片视频综合网站| 成年女人永久免费观看视频| 亚洲第一欧美日韩一区二区三区| 99视频精品全部免费 在线 | 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 又大又爽又粗| 成人精品一区二区免费| 亚洲乱码一区二区免费版| 国产精品爽爽va在线观看网站| 成年免费大片在线观看| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 三级毛片av免费| 国产免费男女视频| 久久中文看片网| 国产成人av教育| 亚洲国产精品合色在线| 国产精品九九99| 久久精品国产99精品国产亚洲性色| 一区二区三区国产精品乱码| 亚洲18禁久久av| 久久热在线av| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线| 久久久成人免费电影| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区视频9 | 欧美3d第一页| 免费av不卡在线播放| 变态另类丝袜制服| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 久久这里只有精品中国| 欧美日韩福利视频一区二区| 一本精品99久久精品77| 成人特级黄色片久久久久久久| 嫩草影院精品99| 性欧美人与动物交配| 国产精品一区二区精品视频观看| 哪里可以看免费的av片| 成人亚洲精品av一区二区| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 天堂网av新在线| www日本黄色视频网| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 88av欧美| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 成人一区二区视频在线观看| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| www.精华液| 亚洲av成人不卡在线观看播放网| 久久久久国内视频| 国产精品亚洲美女久久久| www.999成人在线观看| 成年免费大片在线观看| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 99久久国产精品久久久| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 精品99又大又爽又粗少妇毛片 | 亚洲熟妇中文字幕五十中出| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 91av网站免费观看| 国内精品久久久久精免费| 在线观看一区二区三区| 99热6这里只有精品| 国产精品99久久99久久久不卡| 变态另类丝袜制服| 亚洲精品乱码久久久v下载方式 | 一a级毛片在线观看| 美女 人体艺术 gogo| 亚洲成人免费电影在线观看| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 嫩草影视91久久| 日本一二三区视频观看| 网址你懂的国产日韩在线| or卡值多少钱| 淫妇啪啪啪对白视频| 在线观看一区二区三区| 很黄的视频免费| 国产99白浆流出| 国产精品 国内视频| 国产激情欧美一区二区| 中文字幕人成人乱码亚洲影| 精品一区二区三区四区五区乱码| 国产亚洲精品一区二区www| 色吧在线观看| 亚洲精品456在线播放app | 日本精品一区二区三区蜜桃| 校园春色视频在线观看| 最好的美女福利视频网| 久久久国产成人免费| 国产精品一区二区精品视频观看| 偷拍熟女少妇极品色| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| xxx96com| 精品国产三级普通话版| 久久久国产成人精品二区| 日韩人妻高清精品专区| 这个男人来自地球电影免费观看| 超碰成人久久| 舔av片在线| 国产av麻豆久久久久久久| avwww免费| 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 禁无遮挡网站| 一级黄色大片毛片| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| 国产成人福利小说| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 国产单亲对白刺激| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 国产精品久久久久久久电影 | 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 成人国产一区最新在线观看| 性色avwww在线观看| 曰老女人黄片| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看 | av在线天堂中文字幕| 国产欧美日韩精品一区二区| 在线免费观看的www视频| 亚洲第一电影网av| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 不卡一级毛片| 黄片大片在线免费观看| 三级男女做爰猛烈吃奶摸视频| cao死你这个sao货| 在线十欧美十亚洲十日本专区| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 一本精品99久久精品77| 久久99热这里只有精品18| 成人亚洲精品av一区二区| 啦啦啦免费观看视频1| 精品久久蜜臀av无| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 嫩草影视91久久| 亚洲人与动物交配视频| 99久久久亚洲精品蜜臀av| 青草久久国产| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 亚洲色图av天堂| cao死你这个sao货| 国产精品一区二区三区四区免费观看 | 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 国产伦精品一区二区三区四那| 19禁男女啪啪无遮挡网站| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 久久中文看片网| 精品一区二区三区av网在线观看| www.999成人在线观看| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 久久国产精品人妻蜜桃| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 五月玫瑰六月丁香| 免费在线观看日本一区| 亚洲精品国产精品久久久不卡| 国产激情偷乱视频一区二区| 亚洲av日韩精品久久久久久密| 久久久久久久久中文| 成在线人永久免费视频| 99国产精品99久久久久| a级毛片a级免费在线| 小蜜桃在线观看免费完整版高清| or卡值多少钱| 欧美日韩国产亚洲二区| 日韩欧美免费精品| 搞女人的毛片| 欧美在线一区亚洲| 一级黄色大片毛片| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 在线观看免费午夜福利视频| 黄色 视频免费看| 国产真实乱freesex| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av在线| 美女高潮的动态| 精华霜和精华液先用哪个| 亚洲男人的天堂狠狠| 午夜a级毛片| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 怎么达到女性高潮| 久久精品综合一区二区三区| 99久久99久久久精品蜜桃| 欧美日韩乱码在线| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 国产精品av久久久久免费| 国产精品乱码一区二三区的特点| 69av精品久久久久久| 在线观看66精品国产| 两性夫妻黄色片| 男人舔女人的私密视频| 国产视频内射| 国产又色又爽无遮挡免费看| 在线播放国产精品三级| 美女高潮喷水抽搐中文字幕| 美女被艹到高潮喷水动态| 国产精品自产拍在线观看55亚洲| 欧美日韩国产亚洲二区| 欧美在线一区亚洲| 午夜两性在线视频| 青草久久国产| 精品一区二区三区视频在线观看免费| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 国产午夜精品论理片| 色播亚洲综合网| 中文亚洲av片在线观看爽| 午夜精品在线福利| 日韩精品青青久久久久久| 欧美色欧美亚洲另类二区| 日韩成人在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 少妇的逼水好多| 亚洲av第一区精品v没综合| 免费av不卡在线播放| 最近在线观看免费完整版| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 国产精品av视频在线免费观看| 91老司机精品| 视频区欧美日本亚洲| 超碰成人久久| 性色avwww在线观看| 大型黄色视频在线免费观看| www国产在线视频色| 免费av毛片视频| 啦啦啦韩国在线观看视频| av在线天堂中文字幕| 国产精品99久久99久久久不卡| tocl精华| 久久人人精品亚洲av| 日本在线视频免费播放| 天堂√8在线中文| 国产精品亚洲美女久久久| 色精品久久人妻99蜜桃| 日韩欧美 国产精品|