• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma

    2024-04-06 07:16:14WeiceWANG王威策JunCHENG程鈞ZhongbingSHI石中兵LongwenYAN嚴(yán)龍文ZhihuiHUANG黃治輝KaiyangYI弋開(kāi)陽(yáng)NaWU吳娜YuHE何鈺QianZOU鄒千XiCHEN陳熙WenZHANG張文JianCHEN陳建LinNIE聶林XiaoquanJI季小全andWulyuZHONG鐘武律
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:龍文

    Weice WANG (王威策) ,Jun CHENG (程鈞) ,Zhongbing SHI (石中兵) ,Longwen YAN (嚴(yán)龍文) ,Zhihui HUANG (黃治輝) ,Kaiyang YI (弋開(kāi)陽(yáng)) ,Na WU (吳娜),Yu HE (何鈺),Qian ZOU (鄒千),Xi CHEN (陳熙),Wen ZHANG (張文),Jian CHEN (陳建),Lin NIE (聶林),Xiaoquan JI (季小全) and Wulyu ZHONG (鐘武律)

    1 Southwestern Institute of Physics,Chengdu 610299,People’s Republic of China

    2 Institute of Fusion Science,School of Physical Science and Technology,Southwest Jiaotong University,Chengdu 610031,People’s Republic of China

    Abstract This paper reports an improved time-delay estimation (TDE) technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas.

    Keywords: gas-puff imaging,TDE method,turbulence,velocity field map

    1.Introduction

    The scrape-off layer (SOL) in a tokamak is known to exist blobs or filaments [1],which are elongated structures along the magnetic field lines with a much higher density than the background plasma [2].These structures are intermittent and contribute significantly to radial transport outside the last closed flux surface (LCFS) [3,4].These structures and smallscale turbulence together determine anomalous thermal and particle transport at the boundary and affect the SOL width.Therefore,studying these structures is crucial for understanding plasma-wall interactions (PWI) [5,6].Turbulent structure measurements of tokamak plasmas,especially in the boundary region,have been performed for decades,but they are mainly limited to single-point or one-dimensional(1D) measurements,such as Langmuir probes.Langmuir probes have traditionally been used to identify filament structures by measuring plasma fluctuations.However,the high heat load can damage probes and release impurities that pollute the plasma.In contrast,a gas-puff imaging (GPI)system,which is a diagnostic system for measuring the instantaneous two-dimensional (2D) structures of the turbulence at the boundary of magnetically confined plasmas,provides non-invasive observation with a wide and flexible view region and good spatial resolution by measuring visible light emission from boundary plasma [7,8].The 2D images obtained by the GPI system are processed using the time-delay estimation (TDE) technique to obtain velocity fluctuation map of turbulence or shear flow.The basic TDE technique,based on cross-correlation and wavelet analyses with gradient algorithm,has been applied in many tokamaks to analyze diagnostic data.

    In past studies,the TDE technique was applied to analyze 1D signals from beam emission spectroscopy (BES)diagnostic to measure the turbulence flow field in DIII-D tokamak [9-12].It has also been used to derive time-dependent 2D velocity field maps based on normal optical flow on NSTX [13].Another TDE technique based on dynamic programming has been proposed to process BES data and analyze velocimetry during L-H transition from GPI 2D signals in EAST tokamak [14].Recently,a 2D time-delay cross-correlation technique has been used to analyze zonal flow on Alcator C-Mod [15].However,these techniques do not completely address the limitations caused by the aperture problem,variable inter-frame shifts,sudden changes in brightness,one-way timing delay,and reconstruction of lowfrequency signals.To overcome these limitations,an improved TDE technique based on dense optical flow technique is applied to analyze 2D GPI signals such as velocity field map and MHD-correlated blob [16,17].It has advantages in improved accuracy,robustness to large displacements,handling of occlusions.The improved technology adaptively identifies blobs and tracks their movement,recording the number of blobs,velocities,and other dynamic characteristics.The derivation of the velocity field maps by the TDE technique is important for the understanding of turbulence,blobs-related radial transport and the determination of the poloidal flow pattern at the boundary plasma.

    In this study,poloidal and radial fluctuation velocitiesVθ,Vrare obtained directly by the TDE technique,poloidal shear flow is defined as ?Vθ/?r,Reynolds stress is also calculated by .The organization of this paper is as follows.Section 2 introduces the blob tracking method and velocity field technique,including imaging modeling and main steps of the improved TDE technique.Preliminary experiment results are shown in section 3.Section 4 is the summary.

    2.Improvement of TDE technique

    2.1.Image modeling

    The raw 2D digital signals taken by the camera need some processing to restore the physical information.The following methods are only for 2D greyscale images.We propose a simple yet effective background removal algorithm for lowresolution grayscale GPI data based on running average background subtraction.The algorithm assumes a relatively static background and minimal camera movement,making it well-suited for control environments.By continuously updating a running average background model with a user-defined learning rate modified in different plasma discharges,the algorithm adapts to gradual changes in the scene.The learning rate can be tailored based on specific parameters of plasma discharges.For instance,in high confinement mode discharges,a lower learning rate may be employed to avoid noise whereas in ohmic or low confinement mode discharges,higher rates might be preferable to capture rapid coherent structural changes.While the proposed model is adaptable to a variety of plasma discharge conditions simply by tweaking the learning rate,certain extreme or unique scenarios might benefit from alternative models or additional preprocessing.Nonetheless,for the bulk of scenarios we examined,adjusting the learning rate should be reasonable.The foreground is extracted by computing the absolute difference between the current frame and the running average background,followed by thresholding to generate a binary foreground mask.This method offers a computationally efficient solution for background subtraction in lowresolution grayscale GPI images,while maintaining the ability to adapt slow background variations.It is helpful to solve the interference of vacuum chamber components on imaging.

    Next,each frame in the original data is filtered with convolution kernel to remove the noise of an image.Compared with median and Gaussian filters,the convolution kernel filter,such as a high pass filter kernel and Bilateral Blur [18,19],can reduce spurious spikes of the images,it can better retain the original structure relationship of the images,primary intensity and sharpen images,which is beneficial to observe the large-scale structure of boundary plasma.In addition,the convolution kernel can be adjusted freely for different image features.In this work,due to the significant difference between the discharges,different convolution kernels are used for processing different discharge conditions.The convolution kernel is not adaptive and determined by the electron temperature and density of the boundary plasma.This process can be particularly effective for regions with a low signal-to-noise ratio (SNR),as the calculation of velocity is highly sensitive to spurious spikes in the 2D data.

    To ensure the assumption of constant brightness and identical time intervals between frames,some frames are merged when the brightness of more than two consecutive frames is below half of the average brightness of this discharge,meanwhile,the local brightness must be normalized to the average brightness.This step is accomplished by simply normalized brightness for each frame using the average brightness of all frames.After the above steps,a set of pixel matrices of the same time intervals is obtained.The velocity field is calculated based on this set of matrices.Besides,the signal of pixel in the same position of successive frames can partially approximate to the fluctuation signal of the saturation ion current measured by Langmuir probes in the SOL.

    Figure 1.A set of GPI images taken with an exposure time of 10 μs during a typical discharge.The poloidal (vertical) scale “θ” is only indicated in the first frame,and the radial scales “r” are indicated in each frame.The electron diamagnetic direction is towards the top.The radial outward direction is towards the right side.

    2.2.Blob tracking

    This section presents a comprehensive approach for detecting,tracking,and characterizing blob-like structures within GPI data.The proposed technique consists of seven interconnected steps.(i) The image is scanned row-wise from the topleft corner to identify blob trigger frames,using a predefined blob tracking trigger threshold and the number of pixels (N) above this threshold for statistics.(ii) When the number of pixels over the threshold exceeds the specified assumption value,a blob is triggered within the frame,and the value is constrained by the radial position of the SOL.(iii) A connected region recognition algorithm is then employed to determine the maximum brightness pixel in the triggered frame,which serves as basic pixel point.Adjacent pixels are iteratively examined to verify if they meet the threshold condition,and the deriving connected region represents the outline of one or multiple blobs.(iv) To ensure the continuity and separability of blob contours across frames,the Hausdorff distance [20] method is utilized to compare contour similarities.(v) Similar outlines are grouped into a blob sequence,while dissimilar outlines are separated.This similarity comparison allows the algorithm to track multiple blobs within a single frame.(vi) Only blobs persisting for at least three frames are retained for further analysis,effectively eliminating noise and transient features. After completing the aforementioned steps,a sequence of tracks for multiple blobs is extracted from a contiguous set of frames,enabling in-depth analysis of their dynamics.The centroid of each blob is calculated using a weighted average based on its profile,which aids in velocity computation.(vii)Each blob contour is fitted with an ellipse to characterize essential features,such as a 2D size,area,ellipticity,and tilt angle.The technique presented herein offers a robust and reliable solution for detecting,tracking,and characterizing blobs within a sequence of GPI data.

    Figure 2 illustrates the results of tracing two blobs over 17 consecutive frames using the above technique.Figure 2(a)displays the starting and ending positions of the blobs,along with their contours and spatial locations.Figures 2(b) and (c)depict the instantaneous poloidal and radial velocities in figure 2(a),demonstrating that the poloidal velocity remains relatively invariable,while the radial velocity exhibits a slight decrease during SOL propagation where the local electron density is gradually lower.This corresponds to a local collisionality decrease which causes the radial velocity of the blob to decline [21].The errors in figures 2(b) and (c) are estimated from standard deviation of 3×3 pixel points around the center of the pixel offering velocities.The poloidal velocity of the blob is primarily related to transport in the parallel direction.Since the parallel transport varies little over short time scales,the poloidal velocity of the blob remains hardly unchanged.

    Figure 2.(a) Simultaneously recognizing a blob in 17 consecutive frames,(b) trajectory tracking exported blob poloidal velocity and (c)radial velocity.

    Figure 3.The improved method for forward and backward timing search process diagram.The bifurcation pixel between forward search and backward search in the Frame 5 makes the flow path be optimized.

    2.3.Velocity field map

    To further derive the velocity field,an improved technique akin to dense optical flow is employed to calculate the turbulent velocity field map within GPI data.This TDE technique is based on dense optical flow analysis to examine the positional changes of pixels between frames [22,23].An inverse time sequence search is introduced,which extracts the turbulent evolution displacement not only from forward to backward but also from backward to forward.

    As illustrated in figure 3,the sequence comprises seven frames,and the movement trajectory of a specific pixel is obtained by conducting a forward or downward search.Simultaneously,a backward or upward search is performed from the end pixel to acquire another movement trajectory.In the event of inconsistency between the two trajectories,the track line is adjusted accordingly.After confirming that both vectors are within the turbulent boundary plasma,we add the two velocity vectors to obtain the new velocity vector.

    The improved TDE technique operates on several key principles.The first step involves constructing a two-layer image pyramid to circumvent aperture issues [24].The technique defines an objective function to evaluate pixel displacement between frames.This objective function,G(d),is as follows:

    Here,drepresents the displacement vector,is the matching cost function withPsymbolizing the patch set,and ω·L(d) is the regularization term.The matching cost function can be expanded as,

    Here,qdenotes an offset vector within patchP,andT(P)signifies the patch following a discrete Fourier transform(DFT).I1represents the image gradient in the first frame,whileI2refers to the second frame.The regularization term,ω·L(d),ensures smoothness and consistency in the estimated motion field,with the total variation (TV) regularization term being used.L(d) can be written as:

    where ω is set as a coefficient matrix correlated to the radial position of the SOL.The initial result,d,can be obtained by iteratively calculating the objective functionG(d).The initial search area is defined by a neighborhoodN(p)centered around the initial displacement vector estimationd.Ifd′symbolizes the updated displacement estimation at the initial pixel following the execution of the inverse search,d′should be written as:

    They wandered in the woods the whole day, but could not find their way out. As night fell they found an inn and went inside. The servant gave the raven to the innkeeper to prepare for supper.

    After iteratively updating the displacement field in this manner,the search can efficiently converge on a solution that minimizes the objective function.It should be noted that the blob contour area and non-blob one,extracted in section 2.2,belong to two distinct patch sets and only share pixels near the boundary.Thus,two different sets of parameters are employed to derive the velocity field map for the contour areas.

    The improved TDE technique allows for the derivation of a velocity vector map from two frames separated by a time interval.Figures 4(a) and (b) illustrate the development of a coherent structure in the left region of the images,propagating in the SOL.Figure 4(c) presents a velocity quiver map calculated from figures 4(a) and (b) with the interval of 10μs.Each pixel velocities,vxandvy,are computed using the improved TDE technique.To make the figure clearer four adjacent velocity vectors are subsequently merged into one.In these frames,thevxof the middle plane is approximately 1 km s-1,and the poloidal velocityvyis about 4 km s-1.This aligns with both theoretical predictions and experimental observations of blob velocities [25-27].

    Figure 4.Contour plots of intensity at two successive times with the separation of 10 μs ((a) and (b)),and the derived velocity map with the TDE technique (c).

    It is important to note that the original velocity vector units are pixels [25-27].Figure 4(c) clearly demonstrates the movement of the blob near the LCFS towards the first wall,where the length of the arrow represents relative velocity.The actual turbulence movement velocity can also be determined from the time delay between the two frames and the distance between pixels.

    2.4.Comparison of standard TDE with improved one

    We assessed the standard TDE algorithm and its enhanced variant by comparing their error rates,memory usage,and execution times.This comparison used GPI data from three discharges at a resolution of 256×256 pixels and a frequency of 100 kHz on the HL-2A tokamak.Both algorithms were executed in an identical virtual machine environment and to accurately measure the memory usage of both the standard and improved TDE algorithms during runtime,we employed a profiling tool that monitors the allocation and deallocation of memory in real time.This tool records the peak memory consumption,which represents the maximum amount of memory used by the program at any point during its execution.With each discharge comprising 400-500 images,we tabulated the average outcomes of the three discharges in table 1.

    According to the data presented,the improved algorithm achieves a more substantial reduction in error compared to the standard algorithm,while only incurring a marginal increase in execution time.The slight rise in time required is negligible and within the processing capabilities of a stan-dard personal computer.Meanwhile,as shown in figure 5,we directly present a comparative illustration of the standard and the improved velocity field maps over time.Each velocity field map is spaced by 10μs,derived from four frames of data calculated pairwise consistent with the process illustrated in figure 4.Figure 5(a) represents that the results of the two methods are basically consistent.However,it is evident in figure 5(b),specifically in the upper right corner(within the purple dashed line),that the velocity vectors of the standard algorithm exhibit significant distortion.This distortion persists into the subsequent velocity field map diagram in figure 5(c).Apart from the above mentioned,the difference between the two methods is not significant during this period,but it is foreseeable that the error accumulated by a long time series will make the improved method have obvious advantages.Therefore,a direct comparison underscores the superiority of the improved method in terms of accuracy.

    Table 1.Comparison of the standard TDE algorithm and the improved one.

    Figure 5.(a)-(c) Three successive velocity field maps provide a direct comparison between the improved algorithm (new method) and the standard algorithm (old method) based on calculations from four consecutive frames.

    Figure 7.Contrasts of spectral cross-power (a),(d),the cross-coherence (b),(e) and phase (c),(f) at two radial positions estimated from two poloidal velocities with poloidal separation dθ ≈ 9 mm.

    3.Experimental confirmation

    The TDE technique is a valuable tool to analyze boundary plasma profiles.For example,when the TDE approach is applied to a series of images,a succession of velocity vectors in thexandydirections can be derived.By averaging the velocity direction ofxory,profiles of specific positions in the poloidal or radial direction can be obtained.

    Figures 6(a)-(c) display radial profiles of poloidal velocityVθ,shear flow,and Reynolds stress,with theθdirection chosen near the middle plane.The dashed area represents the error bar,calculated by the standard deviation defined as ε(i)=Observations from figure 6 demonstrate that the radial profiles are notably different inside and outside the LCFS,with the rapid movement of blobs in SOL causing a ramp-up of parameters outside LCFS.Local poloidal velocities reach up to about -2km s-1(in the electron diamagnetic direction),and Reynolds stress is up to~ 4 × 106m2s-2(outward) inside LCFS.Since the velocity is directly calculated,its profiles obtained by improved TDE method are directly derived and comparable to those calculated by the Langmuir probes arrays in the SOL regions,with rather high reasonable.

    This TDE technique can be extended for analyzing zonal flows and MHD-correlated blobs [16].To exemplify spectral analysis,the poloidal velocities,derived as single-channel signals,are further investigated using the two-point technique [28,29].Figures 7(a)-(f) contrast the spectral crosspower,cross coherence and phase using poloidal velocities at two radial positions of Δr=-3 mm and Δr=15 mm.A coherent mode peaking at 17 kHz with strong power and coherence of 0.8 is discernible in the spectrum at Δr=-3 mm.Short wavenumber components of the turbulence are filtered in the spectra due to the long distance between poloidal positions.

    Interestingly,the cross-phase of the coherent mode frequency is almost zero,distinguishing it from the highfrequency parts of ambient turbulence,as shown in figure 7(c).In contrast,no similar correlation peak is observed at Δr=15 cm,with only the spectrum of turbulence being observed.This could potentially indicate the presence of coherent poloidal flow fluctuations at Δr=-3 mm,i.e.,the presence of geodesic acoustic modes (GAM).These results are consistent with the GAM characteristics observed in a tokamak [30,31].The results demonstrate that the improved TDE technique has the potential for analyzing GAM,MHDcorrelated blobs,and turbulence in the frequency domain.

    4.Conclusion

    An improved TDE technique presented in this study provides a comprehensive framework for detecting,tracking,and characterizing turbulence structures based on GPI data.It employs an inverse timing search,utilizes coarse-to-fine processing,and uses a hierarchical approach to improve calculation efficiency,accuracy,and robustness to noise.This technique is less susceptible to variations with light intensity in GPI data and better addresses large displacement issues.The proposed methods,including the application of the TDE technique and an improved optical flowbased approach,can effectively calculate and analyze turbulent velocity field maps and blob dynamics.The TDE technique can observe significant distinctions in the radial profiles inside and outside the LCFS and fast motion of blobs in the SOL.It is important to note that the improved TDE technique has a smaller error compared to the standard TDE technique,and the directly measured velocity field maps is comparable to the results of the Langmuir probe.The power spectral analysis reveals the possibility of identifying coherent modes and distinguishing them from ambient turbulence.The application of TDE technique extends beyond blob analysis,which shows the potential in examining zonal flows and MHD-correlated blobs.This TDE technique substantially improves the ability to study boundary plasma turbulence and transport related physics based on GPI data.Future research should focus on refining these techniques and exploring their applications in other related fields.It would provide a useful tool to analyze boundary plasma physics.Meanwhile,it may be applied to other plasma diagnostics.

    Acknowledgments

    This work is partially supported by the National Key R&D Program of China (Nos. 2019YFE03030002 and 2022YFE03030001),National Natural Science Foundation of China (Nos.12175186 and 12175055),and the Natural Science Foundation of Sichuan Province (Nos.2022NSFSC1820 and 2023NSFSC1289).

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak
    勤上光電收購(gòu)標(biāo)的經(jīng)營(yíng)亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    麻豆成人av视频| 国产极品天堂在线| 久久亚洲国产成人精品v| 91精品国产九色| 婷婷色综合www| 高清av免费在线| 视频区图区小说| 国产精品秋霞免费鲁丝片| 国产黄频视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲av日韩在线播放| 精品国产露脸久久av麻豆| 高清午夜精品一区二区三区| 国产黄频视频在线观看| 国产高清国产精品国产三级 | 九九在线视频观看精品| 亚洲欧美成人综合另类久久久| 丰满迷人的少妇在线观看| 99久国产av精品国产电影| 亚洲精品国产色婷婷电影| 一二三四中文在线观看免费高清| 少妇人妻精品综合一区二区| 久久久欧美国产精品| av.在线天堂| 最新中文字幕久久久久| 丰满乱子伦码专区| 高清欧美精品videossex| 熟妇人妻不卡中文字幕| 小蜜桃在线观看免费完整版高清| 成人毛片60女人毛片免费| 久久精品国产自在天天线| 国产亚洲午夜精品一区二区久久| 日本一二三区视频观看| 干丝袜人妻中文字幕| 最后的刺客免费高清国语| 久久久精品94久久精品| 各种免费的搞黄视频| 九色成人免费人妻av| 一级二级三级毛片免费看| 国产精品三级大全| 一级二级三级毛片免费看| 亚洲国产最新在线播放| 国产淫片久久久久久久久| 简卡轻食公司| 国精品久久久久久国模美| 婷婷色综合www| 国产av国产精品国产| 国产黄片视频在线免费观看| 欧美zozozo另类| 大片免费播放器 马上看| 色视频在线一区二区三区| 一级毛片电影观看| 亚洲美女视频黄频| 亚洲国产精品专区欧美| 亚洲国产欧美在线一区| 一级毛片 在线播放| 高清日韩中文字幕在线| 国产男人的电影天堂91| av一本久久久久| av一本久久久久| 日本av手机在线免费观看| 一本久久精品| 久久久久国产精品人妻一区二区| 韩国av在线不卡| 精品人妻熟女av久视频| 国产美女午夜福利| 韩国高清视频一区二区三区| 国产视频内射| 一本久久精品| 国产精品女同一区二区软件| 久久6这里有精品| 一级毛片我不卡| 99久国产av精品国产电影| 在线免费十八禁| av女优亚洲男人天堂| 91精品国产九色| 国产91av在线免费观看| 亚洲精品中文字幕在线视频 | 国产在视频线精品| 美女福利国产在线 | 99久久人妻综合| 国产爽快片一区二区三区| 久久精品国产鲁丝片午夜精品| 秋霞伦理黄片| 岛国毛片在线播放| 国产精品.久久久| 日本黄色日本黄色录像| 三级国产精品欧美在线观看| 肉色欧美久久久久久久蜜桃| 欧美+日韩+精品| 人人妻人人爽人人添夜夜欢视频 | 蜜桃久久精品国产亚洲av| 亚洲四区av| 在线免费观看不下载黄p国产| 久久久久网色| 男人爽女人下面视频在线观看| 日韩一区二区三区影片| 99热这里只有精品一区| 久久久久久久大尺度免费视频| 久久精品国产亚洲网站| 国产精品久久久久久精品古装| 在线亚洲精品国产二区图片欧美 | 97超视频在线观看视频| 天堂8中文在线网| 中文字幕精品免费在线观看视频 | 人妻少妇偷人精品九色| 91精品国产国语对白视频| 日日摸夜夜添夜夜爱| 亚洲综合精品二区| 能在线免费看毛片的网站| 国产免费一区二区三区四区乱码| 欧美一区二区亚洲| 国产精品三级大全| 2018国产大陆天天弄谢| 97超视频在线观看视频| 视频区图区小说| 亚洲人与动物交配视频| 亚洲精品国产av蜜桃| 蜜桃在线观看..| 一级爰片在线观看| 国产精品三级大全| 日韩欧美精品免费久久| 麻豆乱淫一区二区| 亚洲丝袜综合中文字幕| 日本黄色日本黄色录像| 国产 一区精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av不卡在线观看| 久久6这里有精品| 深爱激情五月婷婷| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 成人无遮挡网站| 亚洲国产色片| 亚洲人与动物交配视频| 丝袜喷水一区| 免费大片黄手机在线观看| 国产精品久久久久久久电影| 伦理电影大哥的女人| 天天躁夜夜躁狠狠久久av| 深夜a级毛片| 欧美日韩在线观看h| 99久久中文字幕三级久久日本| 日本wwww免费看| 亚洲国产欧美人成| 高清不卡的av网站| 久久国产亚洲av麻豆专区| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 亚洲经典国产精华液单| 最黄视频免费看| 久久综合国产亚洲精品| 一二三四中文在线观看免费高清| 亚洲国产最新在线播放| 欧美日韩视频高清一区二区三区二| 91精品国产国语对白视频| 乱系列少妇在线播放| av黄色大香蕉| 久久精品熟女亚洲av麻豆精品| 日韩成人伦理影院| 男女边摸边吃奶| 在线观看免费日韩欧美大片 | 91精品一卡2卡3卡4卡| 国产成人精品福利久久| 国产黄频视频在线观看| 黑人高潮一二区| 在线观看免费高清a一片| 成年av动漫网址| 亚洲av二区三区四区| 国产免费福利视频在线观看| 少妇丰满av| 在线观看美女被高潮喷水网站| 欧美日韩视频高清一区二区三区二| 久久青草综合色| 午夜福利影视在线免费观看| 乱系列少妇在线播放| 韩国高清视频一区二区三区| 中文在线观看免费www的网站| 日日啪夜夜爽| www.av在线官网国产| 日日啪夜夜撸| 亚洲美女视频黄频| 国产精品人妻久久久影院| 日本av手机在线免费观看| 一区二区三区免费毛片| 国产精品熟女久久久久浪| 成年av动漫网址| 丝袜喷水一区| 联通29元200g的流量卡| 日韩视频在线欧美| 欧美人与善性xxx| 我的老师免费观看完整版| 欧美亚洲 丝袜 人妻 在线| 精华霜和精华液先用哪个| 我的女老师完整版在线观看| 国产亚洲午夜精品一区二区久久| 能在线免费看毛片的网站| 国产91av在线免费观看| 久热这里只有精品99| 欧美+日韩+精品| 国产一区二区三区综合在线观看 | 男女免费视频国产| av国产免费在线观看| 我要看日韩黄色一级片| 久久久久久久精品精品| 国产亚洲精品久久久com| 久久久久久久国产电影| 小蜜桃在线观看免费完整版高清| 黄色一级大片看看| 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 国产成人免费观看mmmm| 日韩强制内射视频| 嫩草影院入口| 黄色视频在线播放观看不卡| 久久久久久久大尺度免费视频| 欧美老熟妇乱子伦牲交| 人妻夜夜爽99麻豆av| av国产免费在线观看| 亚洲欧美精品自产自拍| 少妇人妻一区二区三区视频| 97超视频在线观看视频| 丰满少妇做爰视频| 亚洲图色成人| h日本视频在线播放| 午夜福利在线在线| 男女下面进入的视频免费午夜| 久久综合国产亚洲精品| 亚洲精品国产av成人精品| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 亚洲av日韩在线播放| 欧美bdsm另类| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区三区| 插阴视频在线观看视频| 国产精品久久久久久久久免| 国产色婷婷99| 精品酒店卫生间| 国产免费一级a男人的天堂| 少妇人妻 视频| 国产高清有码在线观看视频| 国产精品一区www在线观看| 中文在线观看免费www的网站| 91狼人影院| 久久99蜜桃精品久久| 久久久久人妻精品一区果冻| 成人二区视频| 久久久久久久久久久免费av| 成人国产av品久久久| 啦啦啦在线观看免费高清www| 亚洲,一卡二卡三卡| 日韩欧美精品免费久久| 22中文网久久字幕| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 色视频www国产| 欧美区成人在线视频| 亚洲一级一片aⅴ在线观看| videossex国产| 超碰97精品在线观看| 黄色配什么色好看| 亚洲国产av新网站| 午夜福利影视在线免费观看| 精品久久久噜噜| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 欧美日韩综合久久久久久| 黑人高潮一二区| 国产老妇伦熟女老妇高清| kizo精华| 视频区图区小说| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 午夜福利高清视频| 久久ye,这里只有精品| 嘟嘟电影网在线观看| av福利片在线观看| 深夜a级毛片| 校园人妻丝袜中文字幕| 九九爱精品视频在线观看| 国产一区二区三区综合在线观看 | 久久久久人妻精品一区果冻| 亚洲美女搞黄在线观看| 男女边摸边吃奶| 国产综合精华液| 国产精品久久久久成人av| 青春草亚洲视频在线观看| 一级二级三级毛片免费看| 97在线视频观看| 精品久久久久久久久av| 久久99热这里只有精品18| 成人黄色视频免费在线看| 男人舔奶头视频| 在线看a的网站| 国产有黄有色有爽视频| 成人免费观看视频高清| 一个人看视频在线观看www免费| 赤兔流量卡办理| 久久这里有精品视频免费| 国产淫语在线视频| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 国产欧美日韩精品一区二区| 国产精品无大码| 国产精品一区www在线观看| 日韩成人伦理影院| 日日撸夜夜添| 国产中年淑女户外野战色| 国产精品一区二区在线观看99| 九色成人免费人妻av| 一级av片app| 国产熟女欧美一区二区| 一级毛片电影观看| 在线 av 中文字幕| 国产成人精品一,二区| 久久精品国产亚洲av天美| 黑丝袜美女国产一区| 欧美区成人在线视频| 深夜a级毛片| 久久久久久久精品精品| 韩国av在线不卡| 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 中文字幕亚洲精品专区| 亚洲精品乱码久久久v下载方式| 高清在线视频一区二区三区| 亚洲av成人精品一区久久| 成人综合一区亚洲| 亚洲三级黄色毛片| a级毛色黄片| 精品少妇黑人巨大在线播放| 精品国产三级普通话版| 又大又黄又爽视频免费| 男女下面进入的视频免费午夜| www.色视频.com| 免费不卡的大黄色大毛片视频在线观看| 日韩中文字幕视频在线看片 | 热99国产精品久久久久久7| 国产淫片久久久久久久久| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人一二三区av| 99视频精品全部免费 在线| 一级a做视频免费观看| 国产中年淑女户外野战色| 五月开心婷婷网| 成人国产av品久久久| 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 精品酒店卫生间| 欧美精品一区二区大全| av网站免费在线观看视频| 久久国产乱子免费精品| 日本vs欧美在线观看视频 | 在线观看免费日韩欧美大片 | 青春草国产在线视频| 久久精品国产亚洲av天美| 国产爽快片一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 亚洲av二区三区四区| 1000部很黄的大片| 亚洲真实伦在线观看| 视频区图区小说| 有码 亚洲区| 一区二区三区四区激情视频| 美女cb高潮喷水在线观看| 最近的中文字幕免费完整| 亚洲精品国产av蜜桃| 日韩电影二区| 国产探花极品一区二区| 在线天堂最新版资源| 男人舔奶头视频| 搡女人真爽免费视频火全软件| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久大av| 免费av中文字幕在线| 久久6这里有精品| 男人爽女人下面视频在线观看| 一级av片app| 欧美97在线视频| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 国产精品.久久久| 日韩人妻高清精品专区| 久久精品久久久久久噜噜老黄| 欧美精品国产亚洲| 欧美zozozo另类| 水蜜桃什么品种好| 直男gayav资源| 欧美老熟妇乱子伦牲交| 99视频精品全部免费 在线| 免费人妻精品一区二区三区视频| 七月丁香在线播放| 深爱激情五月婷婷| 男人和女人高潮做爰伦理| 欧美 日韩 精品 国产| av专区在线播放| 一个人看的www免费观看视频| 午夜福利高清视频| 国产精品秋霞免费鲁丝片| 久久久精品94久久精品| 97热精品久久久久久| 国产无遮挡羞羞视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲最大成人中文| 国内少妇人妻偷人精品xxx网站| 亚洲av成人精品一二三区| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产乱来视频区| 黄色欧美视频在线观看| 久久久久久久久久久免费av| 国产极品天堂在线| 五月玫瑰六月丁香| 精品久久久久久久末码| a级毛色黄片| 免费人成在线观看视频色| 欧美最新免费一区二区三区| 久久99精品国语久久久| 大码成人一级视频| 精品久久久久久久末码| 国产一级毛片在线| 熟女av电影| 在线观看av片永久免费下载| 一本色道久久久久久精品综合| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区国产| 国产色爽女视频免费观看| 亚洲中文av在线| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 久久国内精品自在自线图片| 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区av在线| 日韩强制内射视频| 在线 av 中文字幕| 一个人免费看片子| 久久久久久久久久人人人人人人| 最黄视频免费看| 日本av手机在线免费观看| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 午夜福利网站1000一区二区三区| 久久久久久久久大av| 久久韩国三级中文字幕| 国产v大片淫在线免费观看| 中文资源天堂在线| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 国产久久久一区二区三区| 黄色一级大片看看| 成人黄色视频免费在线看| 在线观看美女被高潮喷水网站| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 日韩中文字幕视频在线看片 | 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 婷婷色av中文字幕| 看免费成人av毛片| 亚洲欧洲国产日韩| 99久久综合免费| videos熟女内射| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 日本欧美国产在线视频| 国产色婷婷99| 国产免费一区二区三区四区乱码| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 大香蕉97超碰在线| 成人免费观看视频高清| 国国产精品蜜臀av免费| 亚洲精品一区蜜桃| 一区二区三区精品91| 亚洲四区av| 国产成人freesex在线| 九色成人免费人妻av| 中文字幕免费在线视频6| av福利片在线观看| 久久韩国三级中文字幕| 伊人久久精品亚洲午夜| 国产综合精华液| 99热这里只有精品一区| 日本免费在线观看一区| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 日韩一区二区视频免费看| 久久久午夜欧美精品| 综合色丁香网| 伊人久久国产一区二区| 国产精品一区二区性色av| 成人特级av手机在线观看| 亚洲av综合色区一区| 一个人看的www免费观看视频| 一本色道久久久久久精品综合| 精品人妻熟女av久视频| 91狼人影院| 亚洲怡红院男人天堂| 2021少妇久久久久久久久久久| 80岁老熟妇乱子伦牲交| av免费观看日本| 能在线免费看毛片的网站| 国产淫语在线视频| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频 | 国产黄色免费在线视频| 嫩草影院新地址| 97在线人人人人妻| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| 高清在线视频一区二区三区| 男的添女的下面高潮视频| 91在线精品国自产拍蜜月| 老女人水多毛片| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩卡通动漫| 国产免费又黄又爽又色| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 午夜免费观看性视频| 3wmmmm亚洲av在线观看| 在现免费观看毛片| 99国产精品免费福利视频| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的 | 99热6这里只有精品| 网址你懂的国产日韩在线| 一边亲一边摸免费视频| 久热久热在线精品观看| 大话2 男鬼变身卡| 久久97久久精品| 日韩视频在线欧美| 久久精品国产自在天天线| 精品一区二区三区视频在线| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 国产欧美日韩精品一区二区| 黄片wwwwww| 国产人妻一区二区三区在| 女人久久www免费人成看片| 欧美国产精品一级二级三级 | 亚洲av不卡在线观看| 视频区图区小说| 国产成人精品一,二区| 成人影院久久| 亚洲欧美日韩东京热| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 亚洲欧美日韩另类电影网站 | 中文字幕av成人在线电影| 亚洲高清免费不卡视频| 中文资源天堂在线| 久久6这里有精品| 亚洲第一区二区三区不卡| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 黄色日韩在线| 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| 免费久久久久久久精品成人欧美视频 | 日韩电影二区| 亚洲综合色惰| 晚上一个人看的免费电影| 午夜福利高清视频| 97热精品久久久久久| 国产在线视频一区二区| 久久久精品94久久精品| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 亚洲精品第二区| 亚洲欧美精品自产自拍| 欧美成人a在线观看| 久久av网站| 国产精品欧美亚洲77777| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 一级av片app| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 国产精品一区二区在线观看99| 一级毛片久久久久久久久女| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 高清毛片免费看| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 中文字幕av成人在线电影| 一本一本综合久久| 国产熟女欧美一区二区| 男男h啪啪无遮挡| 伊人久久精品亚洲午夜| 一级二级三级毛片免费看| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 一级爰片在线观看|