• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of sheath potential coefficient in the J-TEXT tokamak

    2021-03-22 08:04:10WeiZHAO趙偉LinNIE聶林LongwenYAN嚴(yán)龍文MinXU許敏RuiKE柯銳JieYANG陽杰ZhipengCHEN陳志鵬ZhanhuiWANG王占輝YaliWANG王雅麗andTEXTTeam
    Plasma Science and Technology 2021年3期
    關(guān)鍵詞:龍文趙偉雅麗

    Wei ZHAO (趙偉), Lin NIE (聶林), Longwen YAN (嚴(yán)龍文), Min XU (許敏),Rui KE (柯銳), Jie YANG (陽杰), Zhipeng CHEN (陳志鵬), Zhanhui WANG(王占輝), Yali WANG (王雅麗) and J-TEXT Team

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 College of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract Sheath potential coefficient α is a key parameter,which is used to estimate plasma potential(Vp)for edge plasma physics study.Recently, a series of experiments has been carried out under hydrogen plasmas in the J-TEXT tokamak with swept probe, which is employed for currentvoltage (I-V) characteristic measurement.Electron temperature is evaluated from I-V curve by three-parameter fitting method, and the electron energy probability function shows that electron distribution is Maxwellian both outside and inside of last closed flux surface (LCFS).Plasma potential is obtained by crossing point between I-V exponential fitting curve and electron saturation current extrapolating line, which is in good agreement with first derivative probe technique.The α coefficient profile in the vicinity of the LCFS is obtained,which is in the range of 2.1-3, and decreases from outside to inside of LCFS.

    Keywords: Langmuir probe, sheath potential coefficient, EEPF

    1.Introduction

    Langmuir probes have been widely applied for plasma measurement and research since its simple and efficient use.They can simultaneously measure multiple plasma parameters like electron density (ne), electron temperature (Te) and floating potential (Vf) with high spatial and temporal resolutions.An important application of Langmuir probe diagnosis is to estimate the plasma potential, which can be calculated by the formulaVp=Vf+αTewhen α coeffciient is known andVfandTeare measured.In unmagnetized plasmas the coefficient α can be reliably estimated by Langmuir probe theoretical models[1-3].In some cases of tokamak plasma, the theoretical coefficient α is used for physics research:α= 3 is used for blob and hole observation in the boundary plasma of EAST tokamak[4], and this value is also used for intermittent convection transport research in the boundary of the DIII-D tokamak[5].In ASDEX-U and HL-2A tokamakα= 2.8 for deuterium and in TEXTOR tokamakα= 2.5 for hydrogen are used to study turbulent transport for calculation Er×B folw respectively[6-8].However, the real α is impacted by the effect of strong magnetic field, secondary electron emission, ion temperature,diffusion, impurity, etc [2].In [9], the experimental evaluation of α coefficient on HL-2A is different from the theoretical models, the region of α coefficient is 2-3 outside last closed flux surface (LCFS),and the α coefficient increases to about 5 inside LCFS.However, the reversed trend is found from the experimental results in the J-TEXT tokamak in this text.It means that the measurement of the real sheath potential coefficient for plasma potential evaluation and relative physics study is very important.According to the formulaVp=Vf+αTe,the α coefficient can be calculated when the parameters ofVp,VfandTeare known.The conventional method to obtain these parameters is three-parameter fitting method (equation (1)) or four-parameter fitting method (equation (2)).Where the probe currentI(V)is the function of the probe potentialV,the ftiting parameters are ion saturation current(Isi),Vf,Teand slope of the ion currentAnother way is first derivative probe technique(FDPT) which can provide plasma parameters and electron energy probability function (EEPF).

    In DITE tokamak, three-parameter fitting is used belowVfand confirms that Langmuir probe is reliable in the presence of strong magnetic fields [10].In TdeV tokamak, the results obtained from four-parameter fitting of flush probe agree with the measurements of standard cylindrical probe [11, 12].In RFX, four-parameter fitting is used for non-saturation ion current I-V characteristic [13].In CASTOR tokamak, three-parameter and four-parameter fitting methods are used to study ion sheath expansion [14].In COMPASS tokamak, three kinds of methods including the FDPT, three-parameter and four-parameter fitting are used for calculating plasma parameters[15].In[16],Langmuir probe measured the electron energy distribution function at intermediate and high pressures and in a magnetic field, and then obtained the plasma parameters.References[17,18]discussed the theory of probe and how to use EEPF to obtain plasma parameters.References [19-21] derived how to use EEPF to obtain plasma parameters and showed that the electron distribution is bi-Maxwellian near LCFS in ISTTOK,CASTOR, COMPASS tokamaks and TJ-II stellarator.

    Systematic experiments have been carried out under hydrogen discharges in the J-TEXT tokamak to study the sheath potential coefficient α.In the experiments,two floating probes and a voltage swept probe are employed to simultaneously measure the floating potential and I-V characteristic;triple probe is used for crosscheckingTefrom swept probe.The floating potential is used to calculate turbulent propagation velocity in poloidal direction to indicate the location of LCFS and thus to get the relative position between probes and LCFS.Profiles of electron temperature, floating potential and plasma potential are derived from I-V characteristic.Then,sheath potential coefficient profile can be obtained.FDPT is used for I-V characteristic analysis to confirm the plasma potential obtained from three-parameter fitting, and EEPF indicates that the assumption of three-parameter fitting is valid since electron distribution is Maxwellian.

    2.Experiment setup

    Figure 1.The 2-step probe array used in experiments: a triple probe(Vf ,V+ and V? ) on the first step and a standard swept probe and two floating probes (s wept, Vf 1, Vf2) on the second step.

    J-TEXT tokamak has a major radius R = 105 cm and a minor radius a = 25.5 cm.A fast reciprocating probe array installed on the top of tokamak is used to carry out the experiments under Ohmic discharges.As shown in figure 1, the probe array has a triple probe on the first step and a standard swept probe as well as two floating probes on the second step, which can be moved about 50 mm at the speed of 1 m s?1in the vertical direction.The radial distance(Δr)between the 2 steps is 2.5 mm.All of the tips are cylindrical with the height and diameter of 2 mm, the effective collection area isAeff= 8 mm2on the first step andAeff= 4 mm2on the second step since half of probe tip is shielded by the first step.The poloidal distance between adjacent probes is 5 mm.In experiments, a 10 kHz sinusoidal wave with peak-peak value of voltage 300 V is applied for swept probe.The rough estimation of the swept probe circuit bandwidth can be calculated by the formula10 kHz, which means that the effect of capacitance on wave transmission can be ignored, where the parameters of shunt resistor and cable capacitance areRshunt= 13 Ω and C = 1.4 nF,respectively.The rest two tips on the second step are operated in floating mode with 5 mm poloidal distance.They are used for detecting the position of LCFS by measuring turbulent propagation velocity in poloidal direction.The bandwidth of the conditioning channels is higher than 300 kHz.The analog signals are sampled by a 12 bit digitizer with 2 MHz sampling frequency.

    3.Experimental results

    3.1.Main plasma parameters

    The sheath potential coefficient measurement experiments were carried out during J-TEXT tokamak Ohmic discharges under limiter configuration, of which the main parameters with time evolution are shown in figures 2(a)-(c): the plasma currentIp~ 150 kA, the toroidal magnetic fieldBt~ 2.2 T, the lineaveraged electron densityne~ 2.5 × 1019m?3.The vertical displacement of plasma and the position of fast reciprocating probes are shown in figures 2(d) and (e).According to figure 2(d),it can be found that the vertical displacement of the plasma is less than 1.5 mm during probe movement.This means that the plasma is almost kept at the same radial position,which is important for the experiment measurement since Langmuir probe is very sensitive to the position of plasma,especially in the large gradient regions.Figure 2(e)shows how the displacement of probe varies with time.Figure 2(f) shows the turbulence poloidal velocity measured by the two floating tips and estimated by time delay estimation (TDE) method in this period.It is clear that the turbulence poloidal velocity changes from ion diamagnetic drift direction (positive) to electron diamagnetic drift direction (negative) at ~251 ms,which implies that the probe passes the LCFS at that time.

    Figure 2.The main parameter evolutions of an Ohmic discharge.(a) The plasma current; (b) the toroidal magnetic field; (c) the lineaveraged electron density; (d) the plasma vertical displacement;(e) the displacement of fast reciprocating probes; (f) the poloidal velocity profile of turbulence estimated by the two floating tips with TDE method.

    3.2.Experimental measurement and estimation

    When the plasma contacts with a solid surface which is electrically isolated, the potential drop spontaneously arises between the plasma and the solid surface,a method based on probe theory under unmagnetized,pure,Maxwell distribution plasma conditions is used for this purpose [2]:

    Figure 3.Typical I-V characteristic.

    whereVpandVfare plasma potential and solid surface floating potential,Ti,miandTe,meare ion temperature, mass and electron temperature, mass respectively,δis secondary electron emission and α is probe sheath coefficient.It should be noted that some factors can impact the coefficient in tokamak plasma, such as strongly toroidal magnetic field, secondary electron emission, different electron and ion temperatures,which may change the theoretical coefficient α different from the real value.In order to obtain the practical coefficient, the following systematic experiments have been carried out on J-TEXT tokamak.

    In experimental study, the probe sheath coefficient α is calculated from the formulawhich means that plasma potentialVp,floating potentialVfand electron temperatureTeshould be obtained firstly.These parameters are estimated from the I-V characteristic of swept probe.As the probe is inserted into the plasma region with a radial velocity of 1 m s?1and the applied frequency of sweeping voltage is 10 kHz, the probe can move roughly 1 mm during 10 sweeping cycles.Figure 3 shows the typical I-V characteristic of the original data in 20 periods with pink points and the averaged value with red dotted line, the black exponential dash line is the fitting curve obtained by means of the three-parameter method,IseandIsiare the electron saturation current and ion saturation current respectively.

    From figure 3, there are three important information obtained: (1) electron and ion currents are saturated in the deeply biased voltage region; (2) floating potentialVf=?8.2 V is estimated at ( )I V= 0 A; (3) plasma potential is aboutVp= 39.2 V obtained by intersection between the fitting line of exponential andIseextrapolation line.

    Figure 4.(a) Typical I-V characteristic andVp estimated by threeparameter fitting; (b) first derivative of the experimental I-V curve(red) and fitted curve withVp estimated by three-parameter fitting(black); (c) the experimental I-V (red) and the best fitted curve(black) after iteration.

    In strongly magnetized plasma, the distortion of electron part in I-V characteristic above the floating potential is observed.As the magnetic field increases, the electron part current is gradually depressed.Based on this, first derivative of I-V characteristic method is used to estimate the plasma potential in [15, 20, 21].In J-TEXT plasma, the cylindrical probe is perpendicular to the magnetic field lines, the diffusion parameterthen the EEPF can be estimated by the first derivative of the probe current as:wheref(ε) is the EEPF,r=1 mm is the probe radius, the characteristic size of turbulenceL= 1 cm,the geometric factorγvaries from 0.71 to 4/3, B ~2.2 T, the electron Larmor radiusrL(B,ε)is in the order of 10?2mm,Uis the probe potential relative to the plasma potentialVp,εis the electron energy.The plasma potential estimation procedure is reviewed in[15,20],the first is to calculate the fitted I-V characteristic, and then use it to compare with the experimental one.If there is a discrepancy,then correction plasma potential is used to repeat the above procedure until obtains the best agreement between the fitted calculation and the measured I-V characteristic, as shown in figure 4(c).Usually, the plasma potential is shifted (0.1-0.4)Teto the positive side with respect to the maximum of the first derivative (the value ofTeexpressed in eV).In [15], a seed plasma potential is estimated for the iteration calculation, but in this text,the plasma potential calculated by three-parameter fitting before is used for the seed plasma potential,which is a good starting point for iteration calculation.As shown in figures 4(a) and (c), the plasma potential estimated from three-parameter fitting is a very good seed for FDPT calculation and the two plasma potentials agree with each other,the difference is less than 3 V (or 8%) for current curve.

    Figure 5.Experimental EEPF at different positions relative to LCFS,all EEPF curves show that the electron distribution is Maxwellian one near the LCFS.

    Figure 6.Measured results: (a) floating potential profile; (b) plasma potential profile;(c)electron temperature profile;(d)electron density profile; (e) sheath potential coefficient profile.

    The I-V characteristic with three-parameter method for evaluating plasma parameters is based on the assumption of Maxwellian electron distribution.However, some experimental evidence shows that the electron distribution is non-Maxwellian in tokamak plasmas [9, 15, 20-22].In order to confirm the reliability of results, the EEPF is calculated as shown in figure 5.Looking on the figure,from bottom to top,the three lines are corresponding to the EEPF at different positions relative to the LCFS,the bottom line is red(12 mm),then black in the middle (0 mm) and blue on the top(?18 mm).During the probe insertion into plasma, the proportion of high-energy electrons is increased, but the EEPF shows that the electron distribution is still Maxwellian distribution at the three positions.In fact,all EEPF curves in the experiments indicate that the electron distribution is Maxwellian distribution in the probe region.

    Figure 7.Electron temperature profiles retrieved by the FDPT and three-parameter fitting method.In the confined plasma, the electron temperatures are obtained by different techniques.Three-parameter fitting obtains the higher temperature,while the rough estimation by first derivative gives the lower temperature.

    Figure 8.Sheath potential coefficient profiles of 5 shots.

    Figure 6 shows the profiles of parameters estimated from I-V characteristic near LCFS.In the figure 6(a), the floating potential increases slowly with the probe movement from -8 to 0 V until LCFS, then gradually decreases to ?38 V at last.As shown in figure 6(b), the plasma potential has similar trend as floating potential, which increases slowly from about 40 V to about 60 V, and then decreases.In figure 6(c), the electron temperature monotonically increases from 17 eV outside of the LCFS to 30 eV inside of LCFS.The electron density profile is shown in figure 6(d).Figure 6(e) is the sheath potential coefficient profile;it decreases from about 3 outside of LCFS to about 2.5 inside of LCFS.Figure 7 presents the profiles of the electron temperature profiles retrieved by the FDPT and three-parameter fitting method,and a good agreement is observed.The results of plasma potential and electron temperature, confirm the consistency of the FDPT and three-parameter fitting for precise evaluation of the plasma parameters in tokamak edge plasma.Figure 8 shows the sheath potential coefficient profiles of 5 discharges.It is clear that the experimental values are different from the value(α= 2.5)roughly estimated by formula(3)using the assumptionTi=Teandδ= 0.Overall, the sheath potential coeffciient generally increases and reaches the maximum near LCFS, then gradually decreases with the probe moving into the plasma within the range from about 3 to 2.1.It should be noted that the error is dominated by the fitted error since I-V characteristic is the simple average of 20 periods from original data.

    4.Conclusion and discussion

    The floating potential, electron temperature and plasma potential have been evaluated from I-V characteristic by three-parameter fitting method.The profiles of sheath potential coefficient α and EEPF are also obtained in this paper.The results in J-TEXT tokamak show that the range of sheath potential coefficient α is between 2.1 and 3, and decreases gradually from outside to inside of LCFS, and the electron distribution is Maxwellian in the edge and SOL in the experiments.Some phenomena are different from other tokamaks, such as CASTOR, HL-2A and COMPASS, for example,there exists bi-Maxwellian electron distribution near the LCFS, and the coefficient α increases gradually from outside to inside of LCFS in HL-2A tokamak.For the EEPF difference, a possible explanation is due to the different electron-electron collision property [23].For HL-2A experimental parameters of plasma inside LCFS 20 mm:density isne~ 3 ×1018m?3, bi-Maxwellian electron temperatures are high electron temperatureTeh~90 eV and low electron temperatureTel~40 eV.The collision length for the averaged energy electrons in the distribution is~1016(Te[e V])2/ne[m?3] .Moreover, the connection length inside LCFS 20 mm is ~25 m in HL-2A, which is just satisfied for collision length of the high temperature plasma:Thus the bi-Maxwellian distribution still exists but gradually decreases along the radial direction.In J-TEXT experiments, the density and temperature inside LCFS 20 mm arene~ 9 ×1018m?3and 30 eV, the collision length is only ~1 m.The connection length in J-TEXT is ~14 m.These results indicate that the bi-Maxwellian is hard to exist in the edge of J-TEXT tokamak.However, the?18 mm EEPF in some shots’data seem a little different from Maxwllian EEPF while other shots’data seem Maxwellian.In figure 9, the bi-Maxwellian approximation was used to analyze the data.The results show that low and high temperatures are 22 eV and 39.8 eV respectively,and effective temperature23.5 eV is different from the temperature from Maxwellian EEPF (26 eV).Although the bi-Maxwellian distribution is occurred only at the deep position inside of LCFS sometimes, we speculate that ?18 mm may be the place where EEPF changes from bi-Maxwellian to Maxwllian in J-TEXT tokamak.It is interesting and worthy to further study in future.

    As for the different tendency of α profile in J-TEXT,according to the formula (3), the α is related toand δ.Recently, many experiments show that theincreases from SOL to the edge and the coefficient δ will increase with temperature rising, which may be the reason for the decreasing in J-TEXT.In some devices, such as HL-2A,the electron distribution is bi-Maxwellian in the edge,thus the high temperature electron dominates the floating potential and makes it further away from plasma potential, in turn, leading to the increase of α.

    Figure 9.Bi-Maxwellian approximation at the position of ?18 mm,the experimental EEPF (blue) is fitted by bi-Maxwellian approximation (green).The low temperature is 22 eV (red) and the high temperature is 39.8 eV (black).

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (No.2018YFE0309103),National Natural Science Foundation of China (Nos.11875020, 11705052, 11875124 and U1867222), the ITER Organization and China Domestic Agency for the support of this work (ITER5.5.P01.CN.05).

    猜你喜歡
    龍文趙偉雅麗
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    到底誰會贏?
    3秒給答案
    假如你有很多錢,該怎么花?
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    如何求函數(shù)y=Asin(ωx+φ)中φ的值
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    老汉色av国产亚洲站长工具| 欧美zozozo另类| 亚洲人成网站在线播放欧美日韩| 日韩大尺度精品在线看网址| 亚洲一码二码三码区别大吗| 久久精品成人免费网站| 日韩高清综合在线| tocl精华| 久久精品国产99精品国产亚洲性色| 国产区一区二久久| 欧美日韩亚洲国产一区二区在线观看| 日本撒尿小便嘘嘘汇集6| 禁无遮挡网站| 母亲3免费完整高清在线观看| 国内毛片毛片毛片毛片毛片| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 波多野结衣巨乳人妻| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 久久久久国内视频| 国产片内射在线| 99久久99久久久精品蜜桃| 黑人操中国人逼视频| 国产片内射在线| 国内精品久久久久精免费| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区免费| 黄色毛片三级朝国网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲性夜色夜夜综合| 国产欧美日韩精品亚洲av| 国产一区二区三区在线臀色熟女| 亚洲五月天丁香| 可以在线观看的亚洲视频| 国产精品久久电影中文字幕| 亚洲欧美日韩高清在线视频| 欧美日本视频| 一边摸一边做爽爽视频免费| 在线观看www视频免费| 精品少妇一区二区三区视频日本电影| 久久久久国产精品人妻aⅴ院| 午夜两性在线视频| 亚洲成人久久性| 伊人久久大香线蕉亚洲五| 亚洲精品在线观看二区| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 亚洲一码二码三码区别大吗| 好男人在线观看高清免费视频 | 最新美女视频免费是黄的| 91在线观看av| 国产精品亚洲一级av第二区| 日韩欧美 国产精品| av天堂在线播放| 亚洲男人天堂网一区| 亚洲精品中文字幕一二三四区| 在线av久久热| 日韩国内少妇激情av| 精品久久久久久,| 露出奶头的视频| av福利片在线| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美日韩在线播放| 国产成年人精品一区二区| 国产成人影院久久av| 精品久久久久久久久久久久久 | 听说在线观看完整版免费高清| 黄色片一级片一级黄色片| 成人欧美大片| 97碰自拍视频| 香蕉丝袜av| 国产视频内射| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 色精品久久人妻99蜜桃| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合久久99| 久久久久久久精品吃奶| 哪里可以看免费的av片| 两个人免费观看高清视频| 国产一区在线观看成人免费| 一区二区日韩欧美中文字幕| 久久久久久国产a免费观看| av超薄肉色丝袜交足视频| 亚洲成人久久爱视频| 国产精品永久免费网站| 热re99久久国产66热| 一二三四在线观看免费中文在| 日韩免费av在线播放| 久久婷婷人人爽人人干人人爱| 午夜福利免费观看在线| 亚洲精品久久国产高清桃花| 免费在线观看成人毛片| 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 精品日产1卡2卡| 国产精品国产高清国产av| av在线播放免费不卡| 久久亚洲真实| 国产精品一区二区免费欧美| 亚洲 国产 在线| 亚洲九九香蕉| www.精华液| 久久国产精品影院| 亚洲久久久国产精品| 成人av一区二区三区在线看| 欧美激情 高清一区二区三区| 成人手机av| 看免费av毛片| 亚洲真实伦在线观看| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 曰老女人黄片| 岛国视频午夜一区免费看| 国产精品美女特级片免费视频播放器 | 久久久水蜜桃国产精品网| 一进一出抽搐动态| 欧美乱色亚洲激情| 国产主播在线观看一区二区| 1024视频免费在线观看| 精品久久久久久久久久久久久 | 午夜日韩欧美国产| 一区二区三区精品91| 亚洲国产精品成人综合色| 亚洲七黄色美女视频| 日本一区二区免费在线视频| 黄片播放在线免费| 亚洲va日本ⅴa欧美va伊人久久| 18禁观看日本| 1024香蕉在线观看| 满18在线观看网站| 亚洲人成伊人成综合网2020| 精品国产乱子伦一区二区三区| 777久久人妻少妇嫩草av网站| 国产野战对白在线观看| 波多野结衣高清作品| 黄色视频不卡| 嫁个100分男人电影在线观看| 精品午夜福利视频在线观看一区| 又黄又粗又硬又大视频| 婷婷精品国产亚洲av在线| 亚洲av日韩精品久久久久久密| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| ponron亚洲| 国产精品av久久久久免费| 校园春色视频在线观看| 老司机靠b影院| 国产av不卡久久| 国产日本99.免费观看| 女性被躁到高潮视频| 日本 av在线| 最近最新免费中文字幕在线| 99国产精品99久久久久| 2021天堂中文幕一二区在线观 | 妹子高潮喷水视频| 欧美性猛交╳xxx乱大交人| 夜夜夜夜夜久久久久| 超碰成人久久| 黄片小视频在线播放| 久99久视频精品免费| 又黄又粗又硬又大视频| 国产一卡二卡三卡精品| 国产麻豆成人av免费视频| 在线观看舔阴道视频| 一a级毛片在线观看| 国产精华一区二区三区| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| 国产熟女午夜一区二区三区| 欧美乱色亚洲激情| 久久中文看片网| 在线看三级毛片| 777久久人妻少妇嫩草av网站| 免费高清视频大片| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 欧美午夜高清在线| 十分钟在线观看高清视频www| 亚洲精品一卡2卡三卡4卡5卡| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看| 久久国产精品男人的天堂亚洲| 成人亚洲精品一区在线观看| 久久精品91无色码中文字幕| 无人区码免费观看不卡| 国产片内射在线| 午夜日韩欧美国产| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| 午夜福利高清视频| 两个人免费观看高清视频| 51午夜福利影视在线观看| 亚洲免费av在线视频| 50天的宝宝边吃奶边哭怎么回事| 成人特级黄色片久久久久久久| 国产成人系列免费观看| 1024香蕉在线观看| 两性夫妻黄色片| 久久久久国产一级毛片高清牌| 看片在线看免费视频| 亚洲欧美精品综合一区二区三区| 大型黄色视频在线免费观看| 亚洲激情在线av| 久久午夜亚洲精品久久| 日本三级黄在线观看| 手机成人av网站| 欧美黑人精品巨大| 俄罗斯特黄特色一大片| 久久午夜亚洲精品久久| 午夜成年电影在线免费观看| 欧美乱色亚洲激情| 人人妻,人人澡人人爽秒播| 久久中文看片网| 免费人成视频x8x8入口观看| 黄色片一级片一级黄色片| 精品久久久久久久人妻蜜臀av| 嫩草影视91久久| or卡值多少钱| 国产成人av教育| 亚洲中文日韩欧美视频| 18禁观看日本| 琪琪午夜伦伦电影理论片6080| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 欧美亚洲日本最大视频资源| 他把我摸到了高潮在线观看| 欧美日韩乱码在线| 国产激情久久老熟女| 欧美国产精品va在线观看不卡| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 色播亚洲综合网| 后天国语完整版免费观看| 可以在线观看毛片的网站| 国产精品免费视频内射| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 国产一区二区在线av高清观看| 嫁个100分男人电影在线观看| 久久热在线av| 女同久久另类99精品国产91| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产看品久久| www.www免费av| 91老司机精品| 日韩中文字幕欧美一区二区| 巨乳人妻的诱惑在线观看| 国产不卡一卡二| 99精品欧美一区二区三区四区| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 日韩有码中文字幕| 色av中文字幕| 淫妇啪啪啪对白视频| 欧美绝顶高潮抽搐喷水| 在线观看www视频免费| 午夜影院日韩av| 国产私拍福利视频在线观看| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片 | 国产片内射在线| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 午夜久久久久精精品| 日本五十路高清| 亚洲精品久久国产高清桃花| 亚洲 欧美一区二区三区| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 两个人看的免费小视频| 波多野结衣高清无吗| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 两个人视频免费观看高清| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 精品熟女少妇八av免费久了| 啦啦啦韩国在线观看视频| 99久久久亚洲精品蜜臀av| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 欧美乱色亚洲激情| 久久狼人影院| 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 国产爱豆传媒在线观看 | 女生性感内裤真人,穿戴方法视频| 欧美人与性动交α欧美精品济南到| 成人18禁在线播放| 国产99白浆流出| 久久中文字幕人妻熟女| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 欧美午夜高清在线| 国产欧美日韩一区二区精品| 人人妻人人看人人澡| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 97超级碰碰碰精品色视频在线观看| 香蕉久久夜色| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 午夜久久久久精精品| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 亚洲av五月六月丁香网| 免费在线观看完整版高清| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| 国产高清激情床上av| 桃红色精品国产亚洲av| 亚洲在线自拍视频| ponron亚洲| 久久精品成人免费网站| 欧美大码av| 亚洲成人免费电影在线观看| 男女床上黄色一级片免费看| 操出白浆在线播放| 男男h啪啪无遮挡| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 久久久久久久精品吃奶| 可以在线观看毛片的网站| 成人三级黄色视频| 久久九九热精品免费| 成人精品一区二区免费| 国产精品久久久人人做人人爽| 久久香蕉激情| 亚洲一区中文字幕在线| 亚洲精品美女久久av网站| 国产v大片淫在线免费观看| 精品国产亚洲在线| 香蕉丝袜av| 国产人伦9x9x在线观看| 久久香蕉精品热| 香蕉丝袜av| xxx96com| 村上凉子中文字幕在线| 日本免费a在线| 精品一区二区三区av网在线观看| 久久久久亚洲av毛片大全| 国产高清有码在线观看视频 | 一边摸一边抽搐一进一小说| 精品国产国语对白av| av在线播放免费不卡| 桃红色精品国产亚洲av| 成人欧美大片| 无遮挡黄片免费观看| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 热99re8久久精品国产| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 国产精品国产高清国产av| 老汉色av国产亚洲站长工具| 国产精品免费一区二区三区在线| 十八禁人妻一区二区| 亚洲国产欧美网| 久久国产乱子伦精品免费另类| 两个人视频免费观看高清| 我的亚洲天堂| 午夜免费成人在线视频| 99riav亚洲国产免费| 亚洲午夜理论影院| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 91老司机精品| 搡老岳熟女国产| 一级作爱视频免费观看| 成人国产综合亚洲| 色综合站精品国产| 国产成人啪精品午夜网站| 国产黄片美女视频| 一个人免费在线观看的高清视频| 成人国语在线视频| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 国产色视频综合| 国产精品一区二区精品视频观看| 天天添夜夜摸| 免费观看精品视频网站| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 黄色 视频免费看| www.www免费av| 曰老女人黄片| 日本免费a在线| 一级毛片高清免费大全| 亚洲男人天堂网一区| svipshipincom国产片| 亚洲国产精品sss在线观看| bbb黄色大片| 无限看片的www在线观看| 黑人巨大精品欧美一区二区mp4| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| 国产成年人精品一区二区| 九色国产91popny在线| 1024香蕉在线观看| 精品久久久久久久久久久久久 | 日韩欧美一区二区三区在线观看| 亚洲成国产人片在线观看| 午夜免费成人在线视频| x7x7x7水蜜桃| 成人av一区二区三区在线看| 给我免费播放毛片高清在线观看| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 日本熟妇午夜| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看 | 精品久久久久久久末码| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 亚洲av中文字字幕乱码综合 | 一本精品99久久精品77| 亚洲国产精品999在线| 亚洲熟女毛片儿| 88av欧美| 精品久久久久久久久久久久久 | 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 成人国语在线视频| 91字幕亚洲| 99热6这里只有精品| 丁香欧美五月| 久久人妻av系列| 亚洲中文av在线| 91九色精品人成在线观看| 国产成人精品久久二区二区91| 久久香蕉精品热| 女警被强在线播放| 99re在线观看精品视频| 黄片播放在线免费| 极品教师在线免费播放| 国产精品1区2区在线观看.| 桃红色精品国产亚洲av| 久久欧美精品欧美久久欧美| 亚洲avbb在线观看| 十八禁网站免费在线| 精品久久久久久久人妻蜜臀av| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 亚洲国产精品成人综合色| 在线观看www视频免费| 中文字幕精品亚洲无线码一区 | 97超级碰碰碰精品色视频在线观看| 久久狼人影院| 一级毛片女人18水好多| 91av网站免费观看| 亚洲人成网站在线播放欧美日韩| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 日本一本二区三区精品| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 1024手机看黄色片| 成人三级黄色视频| 黄片播放在线免费| 91av网站免费观看| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| 男女下面进入的视频免费午夜 | 国产精品久久久人人做人人爽| 日日夜夜操网爽| 搡老妇女老女人老熟妇| 国产午夜福利久久久久久| 亚洲成a人片在线一区二区| 久久婷婷人人爽人人干人人爱| 成人一区二区视频在线观看| 欧美成人性av电影在线观看| 色哟哟哟哟哟哟| 亚洲成国产人片在线观看| 1024香蕉在线观看| 中文资源天堂在线| 中国美女看黄片| 伊人久久大香线蕉亚洲五| 校园春色视频在线观看| АⅤ资源中文在线天堂| 757午夜福利合集在线观看| 给我免费播放毛片高清在线观看| 午夜影院日韩av| 一本精品99久久精品77| 亚洲性夜色夜夜综合| 少妇 在线观看| 国产成人av教育| 欧美黑人精品巨大| 99国产精品99久久久久| a级毛片在线看网站| 12—13女人毛片做爰片一| 久久久久国产一级毛片高清牌| 深夜精品福利| 国产精品亚洲美女久久久| 俺也久久电影网| av天堂在线播放| 亚洲欧洲精品一区二区精品久久久| 国产午夜精品久久久久久| 久久久久国产精品人妻aⅴ院| 1024手机看黄色片| 99re在线观看精品视频| 亚洲 欧美一区二区三区| av视频在线观看入口| 亚洲五月色婷婷综合| x7x7x7水蜜桃| 亚洲成人国产一区在线观看| 在线观看舔阴道视频| 国产成人影院久久av| 女人高潮潮喷娇喘18禁视频| 制服人妻中文乱码| 免费观看人在逋| 动漫黄色视频在线观看| 成人国语在线视频| 啦啦啦免费观看视频1| 午夜久久久在线观看| 亚洲一区二区三区色噜噜| 巨乳人妻的诱惑在线观看| 欧美丝袜亚洲另类 | 欧美中文日本在线观看视频| 亚洲第一av免费看| 日韩欧美在线二视频| 色综合亚洲欧美另类图片| 怎么达到女性高潮| 亚洲人成77777在线视频| 亚洲国产日韩欧美精品在线观看 | 成年女人毛片免费观看观看9| 午夜福利欧美成人| 国产精品 欧美亚洲| 宅男免费午夜| 高潮久久久久久久久久久不卡| 黄色视频不卡| 韩国av一区二区三区四区| 日本免费a在线| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 99热6这里只有精品| 美女大奶头视频| 成人18禁在线播放| 一二三四社区在线视频社区8| 人人妻人人看人人澡| 一夜夜www| 黄色成人免费大全| 真人一进一出gif抽搐免费| 伊人久久大香线蕉亚洲五| 性欧美人与动物交配| 丁香欧美五月| 欧美中文综合在线视频| 国产免费av片在线观看野外av| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 中文字幕久久专区| 成在线人永久免费视频| 岛国在线观看网站| 俺也久久电影网| 97碰自拍视频| 亚洲avbb在线观看| 亚洲成av片中文字幕在线观看| 久久精品国产综合久久久| 国产亚洲精品久久久久5区| av免费在线观看网站| 国产欧美日韩一区二区精品| av中文乱码字幕在线| 欧美中文综合在线视频| 长腿黑丝高跟| 国产熟女xx| 日本a在线网址| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 国产伦一二天堂av在线观看| 一夜夜www| 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| 精品国产亚洲在线| 精品熟女少妇八av免费久了| 一边摸一边做爽爽视频免费| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看 | 淫妇啪啪啪对白视频| 久久香蕉国产精品| 国产伦在线观看视频一区| 99久久无色码亚洲精品果冻| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 女同久久另类99精品国产91| 欧美日韩福利视频一区二区| 午夜福利18| 久久午夜综合久久蜜桃|