• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of sheath potential coefficient in the J-TEXT tokamak

    2021-03-22 08:04:10WeiZHAO趙偉LinNIE聶林LongwenYAN嚴(yán)龍文MinXU許敏RuiKE柯銳JieYANG陽杰ZhipengCHEN陳志鵬ZhanhuiWANG王占輝YaliWANG王雅麗andTEXTTeam
    Plasma Science and Technology 2021年3期
    關(guān)鍵詞:龍文趙偉雅麗

    Wei ZHAO (趙偉), Lin NIE (聶林), Longwen YAN (嚴(yán)龍文), Min XU (許敏),Rui KE (柯銳), Jie YANG (陽杰), Zhipeng CHEN (陳志鵬), Zhanhui WANG(王占輝), Yali WANG (王雅麗) and J-TEXT Team

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 College of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract Sheath potential coefficient α is a key parameter,which is used to estimate plasma potential(Vp)for edge plasma physics study.Recently, a series of experiments has been carried out under hydrogen plasmas in the J-TEXT tokamak with swept probe, which is employed for currentvoltage (I-V) characteristic measurement.Electron temperature is evaluated from I-V curve by three-parameter fitting method, and the electron energy probability function shows that electron distribution is Maxwellian both outside and inside of last closed flux surface (LCFS).Plasma potential is obtained by crossing point between I-V exponential fitting curve and electron saturation current extrapolating line, which is in good agreement with first derivative probe technique.The α coefficient profile in the vicinity of the LCFS is obtained,which is in the range of 2.1-3, and decreases from outside to inside of LCFS.

    Keywords: Langmuir probe, sheath potential coefficient, EEPF

    1.Introduction

    Langmuir probes have been widely applied for plasma measurement and research since its simple and efficient use.They can simultaneously measure multiple plasma parameters like electron density (ne), electron temperature (Te) and floating potential (Vf) with high spatial and temporal resolutions.An important application of Langmuir probe diagnosis is to estimate the plasma potential, which can be calculated by the formulaVp=Vf+αTewhen α coeffciient is known andVfandTeare measured.In unmagnetized plasmas the coefficient α can be reliably estimated by Langmuir probe theoretical models[1-3].In some cases of tokamak plasma, the theoretical coefficient α is used for physics research:α= 3 is used for blob and hole observation in the boundary plasma of EAST tokamak[4], and this value is also used for intermittent convection transport research in the boundary of the DIII-D tokamak[5].In ASDEX-U and HL-2A tokamakα= 2.8 for deuterium and in TEXTOR tokamakα= 2.5 for hydrogen are used to study turbulent transport for calculation Er×B folw respectively[6-8].However, the real α is impacted by the effect of strong magnetic field, secondary electron emission, ion temperature,diffusion, impurity, etc [2].In [9], the experimental evaluation of α coefficient on HL-2A is different from the theoretical models, the region of α coefficient is 2-3 outside last closed flux surface (LCFS),and the α coefficient increases to about 5 inside LCFS.However, the reversed trend is found from the experimental results in the J-TEXT tokamak in this text.It means that the measurement of the real sheath potential coefficient for plasma potential evaluation and relative physics study is very important.According to the formulaVp=Vf+αTe,the α coefficient can be calculated when the parameters ofVp,VfandTeare known.The conventional method to obtain these parameters is three-parameter fitting method (equation (1)) or four-parameter fitting method (equation (2)).Where the probe currentI(V)is the function of the probe potentialV,the ftiting parameters are ion saturation current(Isi),Vf,Teand slope of the ion currentAnother way is first derivative probe technique(FDPT) which can provide plasma parameters and electron energy probability function (EEPF).

    In DITE tokamak, three-parameter fitting is used belowVfand confirms that Langmuir probe is reliable in the presence of strong magnetic fields [10].In TdeV tokamak, the results obtained from four-parameter fitting of flush probe agree with the measurements of standard cylindrical probe [11, 12].In RFX, four-parameter fitting is used for non-saturation ion current I-V characteristic [13].In CASTOR tokamak, three-parameter and four-parameter fitting methods are used to study ion sheath expansion [14].In COMPASS tokamak, three kinds of methods including the FDPT, three-parameter and four-parameter fitting are used for calculating plasma parameters[15].In[16],Langmuir probe measured the electron energy distribution function at intermediate and high pressures and in a magnetic field, and then obtained the plasma parameters.References[17,18]discussed the theory of probe and how to use EEPF to obtain plasma parameters.References [19-21] derived how to use EEPF to obtain plasma parameters and showed that the electron distribution is bi-Maxwellian near LCFS in ISTTOK,CASTOR, COMPASS tokamaks and TJ-II stellarator.

    Systematic experiments have been carried out under hydrogen discharges in the J-TEXT tokamak to study the sheath potential coefficient α.In the experiments,two floating probes and a voltage swept probe are employed to simultaneously measure the floating potential and I-V characteristic;triple probe is used for crosscheckingTefrom swept probe.The floating potential is used to calculate turbulent propagation velocity in poloidal direction to indicate the location of LCFS and thus to get the relative position between probes and LCFS.Profiles of electron temperature, floating potential and plasma potential are derived from I-V characteristic.Then,sheath potential coefficient profile can be obtained.FDPT is used for I-V characteristic analysis to confirm the plasma potential obtained from three-parameter fitting, and EEPF indicates that the assumption of three-parameter fitting is valid since electron distribution is Maxwellian.

    2.Experiment setup

    Figure 1.The 2-step probe array used in experiments: a triple probe(Vf ,V+ and V? ) on the first step and a standard swept probe and two floating probes (s wept, Vf 1, Vf2) on the second step.

    J-TEXT tokamak has a major radius R = 105 cm and a minor radius a = 25.5 cm.A fast reciprocating probe array installed on the top of tokamak is used to carry out the experiments under Ohmic discharges.As shown in figure 1, the probe array has a triple probe on the first step and a standard swept probe as well as two floating probes on the second step, which can be moved about 50 mm at the speed of 1 m s?1in the vertical direction.The radial distance(Δr)between the 2 steps is 2.5 mm.All of the tips are cylindrical with the height and diameter of 2 mm, the effective collection area isAeff= 8 mm2on the first step andAeff= 4 mm2on the second step since half of probe tip is shielded by the first step.The poloidal distance between adjacent probes is 5 mm.In experiments, a 10 kHz sinusoidal wave with peak-peak value of voltage 300 V is applied for swept probe.The rough estimation of the swept probe circuit bandwidth can be calculated by the formula10 kHz, which means that the effect of capacitance on wave transmission can be ignored, where the parameters of shunt resistor and cable capacitance areRshunt= 13 Ω and C = 1.4 nF,respectively.The rest two tips on the second step are operated in floating mode with 5 mm poloidal distance.They are used for detecting the position of LCFS by measuring turbulent propagation velocity in poloidal direction.The bandwidth of the conditioning channels is higher than 300 kHz.The analog signals are sampled by a 12 bit digitizer with 2 MHz sampling frequency.

    3.Experimental results

    3.1.Main plasma parameters

    The sheath potential coefficient measurement experiments were carried out during J-TEXT tokamak Ohmic discharges under limiter configuration, of which the main parameters with time evolution are shown in figures 2(a)-(c): the plasma currentIp~ 150 kA, the toroidal magnetic fieldBt~ 2.2 T, the lineaveraged electron densityne~ 2.5 × 1019m?3.The vertical displacement of plasma and the position of fast reciprocating probes are shown in figures 2(d) and (e).According to figure 2(d),it can be found that the vertical displacement of the plasma is less than 1.5 mm during probe movement.This means that the plasma is almost kept at the same radial position,which is important for the experiment measurement since Langmuir probe is very sensitive to the position of plasma,especially in the large gradient regions.Figure 2(e)shows how the displacement of probe varies with time.Figure 2(f) shows the turbulence poloidal velocity measured by the two floating tips and estimated by time delay estimation (TDE) method in this period.It is clear that the turbulence poloidal velocity changes from ion diamagnetic drift direction (positive) to electron diamagnetic drift direction (negative) at ~251 ms,which implies that the probe passes the LCFS at that time.

    Figure 2.The main parameter evolutions of an Ohmic discharge.(a) The plasma current; (b) the toroidal magnetic field; (c) the lineaveraged electron density; (d) the plasma vertical displacement;(e) the displacement of fast reciprocating probes; (f) the poloidal velocity profile of turbulence estimated by the two floating tips with TDE method.

    3.2.Experimental measurement and estimation

    When the plasma contacts with a solid surface which is electrically isolated, the potential drop spontaneously arises between the plasma and the solid surface,a method based on probe theory under unmagnetized,pure,Maxwell distribution plasma conditions is used for this purpose [2]:

    Figure 3.Typical I-V characteristic.

    whereVpandVfare plasma potential and solid surface floating potential,Ti,miandTe,meare ion temperature, mass and electron temperature, mass respectively,δis secondary electron emission and α is probe sheath coefficient.It should be noted that some factors can impact the coefficient in tokamak plasma, such as strongly toroidal magnetic field, secondary electron emission, different electron and ion temperatures,which may change the theoretical coefficient α different from the real value.In order to obtain the practical coefficient, the following systematic experiments have been carried out on J-TEXT tokamak.

    In experimental study, the probe sheath coefficient α is calculated from the formulawhich means that plasma potentialVp,floating potentialVfand electron temperatureTeshould be obtained firstly.These parameters are estimated from the I-V characteristic of swept probe.As the probe is inserted into the plasma region with a radial velocity of 1 m s?1and the applied frequency of sweeping voltage is 10 kHz, the probe can move roughly 1 mm during 10 sweeping cycles.Figure 3 shows the typical I-V characteristic of the original data in 20 periods with pink points and the averaged value with red dotted line, the black exponential dash line is the fitting curve obtained by means of the three-parameter method,IseandIsiare the electron saturation current and ion saturation current respectively.

    From figure 3, there are three important information obtained: (1) electron and ion currents are saturated in the deeply biased voltage region; (2) floating potentialVf=?8.2 V is estimated at ( )I V= 0 A; (3) plasma potential is aboutVp= 39.2 V obtained by intersection between the fitting line of exponential andIseextrapolation line.

    Figure 4.(a) Typical I-V characteristic andVp estimated by threeparameter fitting; (b) first derivative of the experimental I-V curve(red) and fitted curve withVp estimated by three-parameter fitting(black); (c) the experimental I-V (red) and the best fitted curve(black) after iteration.

    In strongly magnetized plasma, the distortion of electron part in I-V characteristic above the floating potential is observed.As the magnetic field increases, the electron part current is gradually depressed.Based on this, first derivative of I-V characteristic method is used to estimate the plasma potential in [15, 20, 21].In J-TEXT plasma, the cylindrical probe is perpendicular to the magnetic field lines, the diffusion parameterthen the EEPF can be estimated by the first derivative of the probe current as:wheref(ε) is the EEPF,r=1 mm is the probe radius, the characteristic size of turbulenceL= 1 cm,the geometric factorγvaries from 0.71 to 4/3, B ~2.2 T, the electron Larmor radiusrL(B,ε)is in the order of 10?2mm,Uis the probe potential relative to the plasma potentialVp,εis the electron energy.The plasma potential estimation procedure is reviewed in[15,20],the first is to calculate the fitted I-V characteristic, and then use it to compare with the experimental one.If there is a discrepancy,then correction plasma potential is used to repeat the above procedure until obtains the best agreement between the fitted calculation and the measured I-V characteristic, as shown in figure 4(c).Usually, the plasma potential is shifted (0.1-0.4)Teto the positive side with respect to the maximum of the first derivative (the value ofTeexpressed in eV).In [15], a seed plasma potential is estimated for the iteration calculation, but in this text,the plasma potential calculated by three-parameter fitting before is used for the seed plasma potential,which is a good starting point for iteration calculation.As shown in figures 4(a) and (c), the plasma potential estimated from three-parameter fitting is a very good seed for FDPT calculation and the two plasma potentials agree with each other,the difference is less than 3 V (or 8%) for current curve.

    Figure 5.Experimental EEPF at different positions relative to LCFS,all EEPF curves show that the electron distribution is Maxwellian one near the LCFS.

    Figure 6.Measured results: (a) floating potential profile; (b) plasma potential profile;(c)electron temperature profile;(d)electron density profile; (e) sheath potential coefficient profile.

    The I-V characteristic with three-parameter method for evaluating plasma parameters is based on the assumption of Maxwellian electron distribution.However, some experimental evidence shows that the electron distribution is non-Maxwellian in tokamak plasmas [9, 15, 20-22].In order to confirm the reliability of results, the EEPF is calculated as shown in figure 5.Looking on the figure,from bottom to top,the three lines are corresponding to the EEPF at different positions relative to the LCFS,the bottom line is red(12 mm),then black in the middle (0 mm) and blue on the top(?18 mm).During the probe insertion into plasma, the proportion of high-energy electrons is increased, but the EEPF shows that the electron distribution is still Maxwellian distribution at the three positions.In fact,all EEPF curves in the experiments indicate that the electron distribution is Maxwellian distribution in the probe region.

    Figure 7.Electron temperature profiles retrieved by the FDPT and three-parameter fitting method.In the confined plasma, the electron temperatures are obtained by different techniques.Three-parameter fitting obtains the higher temperature,while the rough estimation by first derivative gives the lower temperature.

    Figure 8.Sheath potential coefficient profiles of 5 shots.

    Figure 6 shows the profiles of parameters estimated from I-V characteristic near LCFS.In the figure 6(a), the floating potential increases slowly with the probe movement from -8 to 0 V until LCFS, then gradually decreases to ?38 V at last.As shown in figure 6(b), the plasma potential has similar trend as floating potential, which increases slowly from about 40 V to about 60 V, and then decreases.In figure 6(c), the electron temperature monotonically increases from 17 eV outside of the LCFS to 30 eV inside of LCFS.The electron density profile is shown in figure 6(d).Figure 6(e) is the sheath potential coefficient profile;it decreases from about 3 outside of LCFS to about 2.5 inside of LCFS.Figure 7 presents the profiles of the electron temperature profiles retrieved by the FDPT and three-parameter fitting method,and a good agreement is observed.The results of plasma potential and electron temperature, confirm the consistency of the FDPT and three-parameter fitting for precise evaluation of the plasma parameters in tokamak edge plasma.Figure 8 shows the sheath potential coefficient profiles of 5 discharges.It is clear that the experimental values are different from the value(α= 2.5)roughly estimated by formula(3)using the assumptionTi=Teandδ= 0.Overall, the sheath potential coeffciient generally increases and reaches the maximum near LCFS, then gradually decreases with the probe moving into the plasma within the range from about 3 to 2.1.It should be noted that the error is dominated by the fitted error since I-V characteristic is the simple average of 20 periods from original data.

    4.Conclusion and discussion

    The floating potential, electron temperature and plasma potential have been evaluated from I-V characteristic by three-parameter fitting method.The profiles of sheath potential coefficient α and EEPF are also obtained in this paper.The results in J-TEXT tokamak show that the range of sheath potential coefficient α is between 2.1 and 3, and decreases gradually from outside to inside of LCFS, and the electron distribution is Maxwellian in the edge and SOL in the experiments.Some phenomena are different from other tokamaks, such as CASTOR, HL-2A and COMPASS, for example,there exists bi-Maxwellian electron distribution near the LCFS, and the coefficient α increases gradually from outside to inside of LCFS in HL-2A tokamak.For the EEPF difference, a possible explanation is due to the different electron-electron collision property [23].For HL-2A experimental parameters of plasma inside LCFS 20 mm:density isne~ 3 ×1018m?3, bi-Maxwellian electron temperatures are high electron temperatureTeh~90 eV and low electron temperatureTel~40 eV.The collision length for the averaged energy electrons in the distribution is~1016(Te[e V])2/ne[m?3] .Moreover, the connection length inside LCFS 20 mm is ~25 m in HL-2A, which is just satisfied for collision length of the high temperature plasma:Thus the bi-Maxwellian distribution still exists but gradually decreases along the radial direction.In J-TEXT experiments, the density and temperature inside LCFS 20 mm arene~ 9 ×1018m?3and 30 eV, the collision length is only ~1 m.The connection length in J-TEXT is ~14 m.These results indicate that the bi-Maxwellian is hard to exist in the edge of J-TEXT tokamak.However, the?18 mm EEPF in some shots’data seem a little different from Maxwllian EEPF while other shots’data seem Maxwellian.In figure 9, the bi-Maxwellian approximation was used to analyze the data.The results show that low and high temperatures are 22 eV and 39.8 eV respectively,and effective temperature23.5 eV is different from the temperature from Maxwellian EEPF (26 eV).Although the bi-Maxwellian distribution is occurred only at the deep position inside of LCFS sometimes, we speculate that ?18 mm may be the place where EEPF changes from bi-Maxwellian to Maxwllian in J-TEXT tokamak.It is interesting and worthy to further study in future.

    As for the different tendency of α profile in J-TEXT,according to the formula (3), the α is related toand δ.Recently, many experiments show that theincreases from SOL to the edge and the coefficient δ will increase with temperature rising, which may be the reason for the decreasing in J-TEXT.In some devices, such as HL-2A,the electron distribution is bi-Maxwellian in the edge,thus the high temperature electron dominates the floating potential and makes it further away from plasma potential, in turn, leading to the increase of α.

    Figure 9.Bi-Maxwellian approximation at the position of ?18 mm,the experimental EEPF (blue) is fitted by bi-Maxwellian approximation (green).The low temperature is 22 eV (red) and the high temperature is 39.8 eV (black).

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China (No.2018YFE0309103),National Natural Science Foundation of China (Nos.11875020, 11705052, 11875124 and U1867222), the ITER Organization and China Domestic Agency for the support of this work (ITER5.5.P01.CN.05).

    猜你喜歡
    龍文趙偉雅麗
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    到底誰會贏?
    3秒給答案
    假如你有很多錢,該怎么花?
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    如何求函數(shù)y=Asin(ωx+φ)中φ的值
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    精品一区二区免费观看| 国产成人a∨麻豆精品| 午夜影院在线不卡| 欧美激情国产日韩精品一区| 久久精品aⅴ一区二区三区四区 | 精品国产一区二区三区四区第35| 国产精品久久久久久久电影| 久久久久久伊人网av| 国产1区2区3区精品| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 夫妻性生交免费视频一级片| 精品国产一区二区久久| 男男h啪啪无遮挡| 蜜桃国产av成人99| 秋霞伦理黄片| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 老司机影院成人| 午夜福利视频在线观看免费| 99精国产麻豆久久婷婷| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 精品亚洲成国产av| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频 | 人妻系列 视频| h视频一区二区三区| 亚洲欧美一区二区三区黑人 | 王馨瑶露胸无遮挡在线观看| 晚上一个人看的免费电影| 人妻一区二区av| 男女边摸边吃奶| 国产激情久久老熟女| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 三级国产精品片| 18+在线观看网站| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 少妇人妻精品综合一区二区| 午夜福利,免费看| 黑丝袜美女国产一区| 天天躁夜夜躁狠狠久久av| 色婷婷av一区二区三区视频| 搡老乐熟女国产| 欧美国产精品va在线观看不卡| 99久久人妻综合| 久久精品人人爽人人爽视色| 日本wwww免费看| av在线播放精品| 国产精品久久久久久精品古装| a级片在线免费高清观看视频| 男女边摸边吃奶| 久久久精品94久久精品| 一二三四在线观看免费中文在 | 国产国语露脸激情在线看| 人人澡人人妻人| 激情视频va一区二区三区| 色5月婷婷丁香| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 亚洲精品第二区| 免费看不卡的av| 欧美亚洲 丝袜 人妻 在线| 国产片内射在线| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 制服丝袜香蕉在线| 男女下面插进去视频免费观看 | 激情视频va一区二区三区| 国产精品不卡视频一区二区| av播播在线观看一区| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀 | 国产精品久久久av美女十八| a级毛片在线看网站| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 成人综合一区亚洲| 国产色婷婷99| 青春草视频在线免费观看| 国产精品蜜桃在线观看| av视频免费观看在线观看| 精品久久蜜臀av无| 观看av在线不卡| 亚洲丝袜综合中文字幕| 夫妻性生交免费视频一级片| 免费观看a级毛片全部| 男女国产视频网站| 国产片特级美女逼逼视频| 男人添女人高潮全过程视频| 中文字幕免费在线视频6| 日韩制服丝袜自拍偷拍| 老熟女久久久| 国产精品国产av在线观看| 欧美激情极品国产一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 国产成人av激情在线播放| 亚洲高清免费不卡视频| 免费观看无遮挡的男女| 亚洲精品久久午夜乱码| 国产成人a∨麻豆精品| av电影中文网址| 男男h啪啪无遮挡| 亚洲av免费高清在线观看| 国产精品久久久久久av不卡| av电影中文网址| 国产亚洲精品久久久com| 亚洲精品第二区| 亚洲av在线观看美女高潮| 日本欧美视频一区| 久久久久精品人妻al黑| 亚洲av男天堂| 亚洲精品第二区| 久久久久久久久久成人| 最新中文字幕久久久久| 亚洲成人手机| 亚洲丝袜综合中文字幕| 欧美日韩视频精品一区| 亚洲国产最新在线播放| 少妇被粗大的猛进出69影院 | 五月天丁香电影| 久久精品aⅴ一区二区三区四区 | 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 欧美日本中文国产一区发布| 中文精品一卡2卡3卡4更新| 欧美xxxx性猛交bbbb| 免费在线观看完整版高清| 欧美人与性动交α欧美精品济南到 | 97在线视频观看| 激情视频va一区二区三区| 伦理电影大哥的女人| 亚洲精品色激情综合| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 最后的刺客免费高清国语| 亚洲三级黄色毛片| av免费观看日本| 性色avwww在线观看| 国产色婷婷99| 日韩伦理黄色片| 咕卡用的链子| 精品99又大又爽又粗少妇毛片| 精品视频人人做人人爽| av国产久精品久网站免费入址| 欧美xxxx性猛交bbbb| 国产一区有黄有色的免费视频| 伦精品一区二区三区| 你懂的网址亚洲精品在线观看| 成人黄色视频免费在线看| 天堂8中文在线网| 免费日韩欧美在线观看| 亚洲国产毛片av蜜桃av| 一级毛片黄色毛片免费观看视频| 免费av不卡在线播放| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 卡戴珊不雅视频在线播放| 人妻少妇偷人精品九色| 成人综合一区亚洲| 久久99一区二区三区| 美女主播在线视频| 日本av手机在线免费观看| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 久久久久久久久久成人| 肉色欧美久久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 日韩成人av中文字幕在线观看| 热re99久久国产66热| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 国产国语露脸激情在线看| 久久韩国三级中文字幕| 亚洲精品av麻豆狂野| 久久韩国三级中文字幕| 日韩一区二区三区影片| 日日啪夜夜爽| 欧美老熟妇乱子伦牲交| 大话2 男鬼变身卡| 成人国产av品久久久| 最近中文字幕2019免费版| 有码 亚洲区| 久久久久久人人人人人| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 麻豆精品久久久久久蜜桃| 免费高清在线观看日韩| 综合色丁香网| 久久精品aⅴ一区二区三区四区 | 婷婷色麻豆天堂久久| 不卡视频在线观看欧美| 亚洲第一av免费看| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 少妇的逼水好多| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 99视频精品全部免费 在线| 男女高潮啪啪啪动态图| 久久人人97超碰香蕉20202| 一级片免费观看大全| 美女福利国产在线| 99国产精品免费福利视频| 中国三级夫妇交换| 欧美3d第一页| 春色校园在线视频观看| 日本黄色日本黄色录像| 99久久中文字幕三级久久日本| 黄网站色视频无遮挡免费观看| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 尾随美女入室| 黑人猛操日本美女一级片| 久久精品国产a三级三级三级| 日韩av不卡免费在线播放| 精品少妇内射三级| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 三级国产精品片| 你懂的网址亚洲精品在线观看| 免费大片18禁| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 午夜老司机福利剧场| 午夜视频国产福利| 五月玫瑰六月丁香| 亚洲伊人色综图| 18在线观看网站| 最后的刺客免费高清国语| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久 | 成人手机av| 免费日韩欧美在线观看| 精品国产露脸久久av麻豆| 9色porny在线观看| 国产av一区二区精品久久| 成人国产麻豆网| 岛国毛片在线播放| 两个人看的免费小视频| 国产成人精品一,二区| 99香蕉大伊视频| 一二三四在线观看免费中文在 | 免费观看无遮挡的男女| 欧美激情国产日韩精品一区| 久久影院123| 欧美精品高潮呻吟av久久| 最黄视频免费看| 侵犯人妻中文字幕一二三四区| 九九在线视频观看精品| 国产成人a∨麻豆精品| 午夜福利,免费看| 高清av免费在线| av黄色大香蕉| 国产一区二区在线观看av| 免费看av在线观看网站| 这个男人来自地球电影免费观看 | 亚洲成人手机| 精品酒店卫生间| 成人影院久久| 国产午夜精品一二区理论片| 高清av免费在线| 极品少妇高潮喷水抽搐| 人人妻人人澡人人看| 三级国产精品片| 男女下面插进去视频免费观看 | 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 久久av网站| 亚洲综合色网址| 伊人久久国产一区二区| 又大又黄又爽视频免费| 丝袜在线中文字幕| 男人操女人黄网站| 妹子高潮喷水视频| av在线观看视频网站免费| 9热在线视频观看99| 最近中文字幕2019免费版| 国精品久久久久久国模美| 日韩成人伦理影院| 中国国产av一级| 日韩精品免费视频一区二区三区 | 久久久久久人妻| 国产精品无大码| 午夜激情av网站| 国产成人精品久久久久久| 精品少妇内射三级| 波野结衣二区三区在线| 99久久综合免费| 久久久久精品人妻al黑| xxxhd国产人妻xxx| 久久久欧美国产精品| av播播在线观看一区| 看免费av毛片| 午夜福利视频在线观看免费| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 新久久久久国产一级毛片| a级毛片在线看网站| 免费大片18禁| 一个人免费看片子| 伊人亚洲综合成人网| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 永久免费av网站大全| 国产视频首页在线观看| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院 | 两个人看的免费小视频| 日日啪夜夜爽| 久久久亚洲精品成人影院| 精品一区在线观看国产| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 日韩三级伦理在线观看| 国产 精品1| 亚洲精品美女久久久久99蜜臀 | 最后的刺客免费高清国语| h视频一区二区三区| 久久精品aⅴ一区二区三区四区 | 亚洲五月色婷婷综合| www.av在线官网国产| 视频中文字幕在线观看| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 色94色欧美一区二区| 国产免费视频播放在线视频| 亚洲经典国产精华液单| 黑人猛操日本美女一级片| 在线亚洲精品国产二区图片欧美| av电影中文网址| 久久久久国产精品人妻一区二区| 免费看不卡的av| 夫妻午夜视频| 国产精品不卡视频一区二区| 黑人欧美特级aaaaaa片| 亚洲成av片中文字幕在线观看 | 一级a做视频免费观看| 纯流量卡能插随身wifi吗| 永久免费av网站大全| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看 | 国产毛片在线视频| 久久99热这里只频精品6学生| 亚洲性久久影院| 国产高清国产精品国产三级| 亚洲经典国产精华液单| 人妻人人澡人人爽人人| 亚洲国产精品一区二区三区在线| 老司机亚洲免费影院| 男女免费视频国产| 亚洲欧美一区二区三区国产| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 国产欧美日韩综合在线一区二区| 97在线人人人人妻| 精品一区二区免费观看| 精品亚洲成国产av| 国产国拍精品亚洲av在线观看| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产精品男人的天堂亚洲 | 深夜精品福利| 看免费av毛片| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 全区人妻精品视频| 亚洲国产精品成人久久小说| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 亚洲美女黄色视频免费看| 妹子高潮喷水视频| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| av片东京热男人的天堂| 男人添女人高潮全过程视频| 午夜激情久久久久久久| 日韩欧美一区视频在线观看| 久久影院123| 欧美人与善性xxx| 色视频在线一区二区三区| 99re6热这里在线精品视频| 色视频在线一区二区三区| 黄色配什么色好看| 午夜91福利影院| 精品熟女少妇av免费看| 97人妻天天添夜夜摸| 亚洲一区二区三区欧美精品| 黄色 视频免费看| 久久久久精品久久久久真实原创| 伊人久久国产一区二区| 啦啦啦在线观看免费高清www| 精品一品国产午夜福利视频| 久久热在线av| 亚洲成av片中文字幕在线观看 | 亚洲国产色片| 一区二区三区精品91| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 久久久久久久亚洲中文字幕| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 久久韩国三级中文字幕| 永久网站在线| 少妇 在线观看| 蜜臀久久99精品久久宅男| 激情视频va一区二区三区| av福利片在线| 老女人水多毛片| 久久人人爽人人爽人人片va| 免费看不卡的av| 久久99热这里只频精品6学生| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 成人毛片a级毛片在线播放| 韩国av在线不卡| 香蕉国产在线看| 九九爱精品视频在线观看| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院 | 另类亚洲欧美激情| 91在线精品国自产拍蜜月| 日韩熟女老妇一区二区性免费视频| 久久精品国产综合久久久 | 国产无遮挡羞羞视频在线观看| 免费在线观看黄色视频的| 亚洲欧美一区二区三区国产| 男女下面插进去视频免费观看 | 亚洲国产av影院在线观看| 国产一区有黄有色的免费视频| 多毛熟女@视频| 国产伦理片在线播放av一区| 国产成人免费无遮挡视频| 国产熟女欧美一区二区| 丝袜脚勾引网站| 黄片无遮挡物在线观看| 久久久久久久国产电影| 亚洲国产欧美在线一区| kizo精华| 99久久综合免费| 久久99一区二区三区| 三级国产精品片| 日韩精品有码人妻一区| 夜夜爽夜夜爽视频| 人人澡人人妻人| 久久女婷五月综合色啪小说| 9热在线视频观看99| 日本av免费视频播放| 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 久久精品国产亚洲av涩爱| 午夜91福利影院| 母亲3免费完整高清在线观看 | 午夜影院在线不卡| 成人漫画全彩无遮挡| 国产在线视频一区二区| 久久国内精品自在自线图片| 欧美日韩成人在线一区二区| 高清毛片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩成人伦理影院| 国产免费一区二区三区四区乱码| 欧美精品人与动牲交sv欧美| 女人被躁到高潮嗷嗷叫费观| xxx大片免费视频| 中国美白少妇内射xxxbb| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| 一本久久精品| 欧美日韩成人在线一区二区| 国产乱人偷精品视频| 多毛熟女@视频| 免费大片黄手机在线观看| 春色校园在线视频观看| 久久99精品国语久久久| videos熟女内射| 97在线视频观看| 少妇高潮的动态图| 男人爽女人下面视频在线观看| 国产精品成人在线| 男女午夜视频在线观看 | 九草在线视频观看| 五月天丁香电影| 制服诱惑二区| 亚洲第一av免费看| 久久99热这里只频精品6学生| av.在线天堂| 久久久精品区二区三区| 日韩制服骚丝袜av| 亚洲精品久久成人aⅴ小说| 一区二区三区四区激情视频| 精品熟女少妇av免费看| 亚洲精品中文字幕在线视频| 大码成人一级视频| 午夜视频国产福利| 中文字幕最新亚洲高清| 人妻一区二区av| 一级片'在线观看视频| 国产精品久久久久久av不卡| 欧美日本中文国产一区发布| 黄色怎么调成土黄色| 91国产中文字幕| 国产精品免费大片| 午夜免费观看性视频| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美| 男女边摸边吃奶| 韩国高清视频一区二区三区| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 街头女战士在线观看网站| 婷婷成人精品国产| 午夜av观看不卡| 三上悠亚av全集在线观看| 草草在线视频免费看| 99久久人妻综合| 女人精品久久久久毛片| 午夜福利视频在线观看免费| 日韩三级伦理在线观看| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 高清毛片免费看| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡 | av女优亚洲男人天堂| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡 | 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 国产男人的电影天堂91| 久久久精品免费免费高清| 精品一区在线观看国产| 少妇的逼水好多| 亚洲国产精品一区三区| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 99国产精品免费福利视频| 国产高清国产精品国产三级| 久久av网站| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 精品福利永久在线观看| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 啦啦啦啦在线视频资源| 日本av免费视频播放| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 新久久久久国产一级毛片| 啦啦啦在线观看免费高清www| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 国产成人精品福利久久| 一区二区三区乱码不卡18| 制服丝袜香蕉在线| 99热6这里只有精品| 波多野结衣一区麻豆| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 欧美97在线视频| av天堂久久9| 亚洲中文av在线| 久久国内精品自在自线图片| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 26uuu在线亚洲综合色| 国产亚洲精品第一综合不卡 | 国产亚洲av片在线观看秒播厂| 国产成人精品婷婷| 18+在线观看网站| 最近中文字幕高清免费大全6| 亚洲av电影在线进入| 亚洲综合精品二区| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 国产精品无大码| 伊人久久国产一区二区| 2018国产大陆天天弄谢| a级片在线免费高清观看视频| 啦啦啦中文免费视频观看日本| 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 久久久久久久久久久久大奶|