• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of ELM-induced filament structures using the VUV imaging system on EAST

    2021-03-22 08:04:14BangLI李邦TingfengMING明廷鳳QingZHUANG莊清FeifeiLONG龍飛飛ShanluGAO高善露QiqiSHI石奇奇YuminWANG王嵎民XiaojuLIU劉曉菊ShaochengLIU劉少承LongZENG曾龍andXiangGAO高翔
    Plasma Science and Technology 2021年3期
    關(guān)鍵詞:龍飛高翔

    Bang LI (李邦), Tingfeng MING (明廷鳳), Qing ZHUANG (莊清),Feifei LONG (龍飛飛), Shanlu GAO (高善露), Qiqi SHI (石奇奇),Yumin WANG (王嵎民), Xiaoju LIU (劉曉菊), Shaocheng LIU (劉少承),Long ZENG (曾龍) and Xiang GAO (高翔),,*

    1 Anhui University, Hefei 230039, People’s Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    3 University of Science and Technology of China, Hefei 230026, People’s Republic of China

    4 Nanchang University, Nanchang 330031, People’s Republic of China

    5 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China

    Abstract A high-speed vacuum ultraviolet (VUV) imaging system has been developed on the Experimental Advanced Superconducting Tokamak (EAST), which selectively measures line emission with a central wavelength of 13.5 nm (CVI, n=4-2).It has been employed to study edge/pedestal plasma behavior in EAST.Edge localized mode (ELM)-induced filament structures have been captured by the VUV imaging system during the ELMy high confinement mode discharge with both high temporal and spatial resolutions.The typical features (i.e.poloidal width and pitch angle) of the observed filaments are quantitatively characterized based on the VUV imaging data, and the dependence of these features on basic plasma parameters is analyzed.It is found that the poloidal width is proportional to the heating power, and the pitch angle is inversely proportional to the edge safety factor q9 5.The scatterplot shows a positive trend between the poloidal width and the ELM amplitude defined by the relative change in stored energy.These results are based on the condition that the perturbation induced by ELMs is confined to a narrow layer in the plasma.

    Keywords: filament, ELM, VUV imaging, H mode, EAST tokamak

    1.Introduction

    The high confinement mode (H-mode) operation was first discovered in the ASDEX tokamak in 1982 [1].It has been observed and widely studied in tokamak devices with divertor configurations, including the Experimental Advanced Superconducting Tokamak (EAST) [2].Generally, edge localized mode-y (ELMy) H-mode plasmas are characterized by the periodic crash of the edge transport barrier associated with ELMs [3].When the steep plasma pressure gradient and current density at the edge pedestal exceed the plasma stability threshold, ELMs will periodically burst.These modes feature a periodic fast collapse of the edge pressure,a sudden loss of the confinement and a subsequent release of heat and particles onto plasma-facing components.In ELMy H-mode plasmas, the transient heat loads induced by the burst of ELMs can cause serious damage to the materials of the device.In ELM-free H-mode scenarios, there are no such periodic crashes.The first wall material of the existing tokamak devices can withstand these transient heat loads under the current discharge parameters[4].In the next generation of tokamak, such as the International Thermonuclear Experimental Reactor (ITER) device, the stored energy induced by type-I ELMy H-mode in the edge pedestal region is predicted to reach about 100 MJ, compared with other devices, its plasma collision rate is very low,the energy loss caused by an ELM burst may reach about 20 MJ, and the transient heat loads caused by an ELM burst are sufficient to affect the plasma-facing components’ lifetimes [5].To ensure the reliable operation of the device, it is necessary to carry out a series of studies on the transient thermal loads induced by the burst of ELMs.Understanding of the underlying physics of the ELM dynamics may be helpful in the search for an efficient method to meet such challenges.

    In general, ELMs are classified as several types depending on the experimental observations, such as ELM frequency and its dependence on the heating power [6].The typical characteristics of type-I ELMs are that the ELM frequency increases with heating power.Although the type-I ELM-caused degradation of plasma confinement is less than that of other ELM types, the energy loss of a type-I ELM is much larger.Based on results from exiting tokamaks, the uncontrolled type-I ELM regime will not be acceptable for ITER operation [7].Therefore, dedicated experimental study of type-I ELMy H-mode related physics, such as ELMinduced filaments, is important.

    Filamentary structures induced by ELMs have been observed in many tokamak devices.Filamentary structures in ELMy discharges were clearly observed on MAST by using a high-speed charge-coupled device (CCD) camera with a very short exposure time (20 μs) [8].Since then, such structures have been observed by using CCD cameras on various devices,such as EAST [9], ASDEX-upgrade [10] and DIII-D [11]devices.For these cameras,they mainly measure the emissions in the visible light band,which are mainly contributed from the SOL (scrape-off layer) region.Furthermore, the gas puff imaging diagnostics on NSTX [12, 13], Alcator C-Mod [14],TEXTOR[15]and the ASDEX-upgrade[16]devices can also observe similar blob-like structures.In addition to the above diagnostics, the electron cyclotron emission imaging (ECEI)diagnostics developed on the KSTAR successfully observed the evolution of the ELM filamentary structures [17], and the ECEI system has also been developed on EAST [18, 19].However, it is greatly affected by the lower hybrid wave(LHW)heating system,which is one of the key current driven and heating systems on EAST.

    With the development of imaging diagnostic technology,the high-speed vacuum ultraviolet imaging (VUVI) diagnostic technology has been developed for edge plasma studies[20].The diagnostic technology was first built on the Large Helical Device (LHD) [21].It selectively measures photons with a central wavelength of 13.5 nm, which is mainly contributed from the line emission of CVI (n=4-2 transition).On EAST,the high-speed vacuum ultraviolet(VUV)imaging system has been developed since 2016 and has been upgraded recently.Better performance with a semi-tangential viewing field is achieved after the upgrade.ELM-induced filaments are clearly observed from the raw images in type-I ELMy H-mode discharges.

    In this work, the features of the filament observed in the VUVI imaging data are quantitatively characterized, and the dependence of filament structures on the plasma parameters is studied.The experimental setup is described in section 2.In section 3, the method for quantitative characterization of the filament,i.e.the poloidal width and pitch angle of the filament structure, is discussed.Dependence of the filament structures on the plasma parameters, and the correlation between the filament width and the ELM amplitude, i.e.ELM-induced energy loss, are investigated in section 4.In section 5, the conclusions are drawn.

    2.Experimental setup

    After the upgrade of the heating and current drive system,LHW systems (4.6 GHz and 2.45 GHz) and neutral beam injection (NBI) systems with both co- and counter current directions have been proved to be reliable for EAST operation[22].ELMy H-mode plasmas are obtained routinely with different heating methods in the EAST experiment.Figure 1 shows the time history of basic plasma parameters of a typical type-I ELMy H-mode discharge with an upper single null configuration obtained on EAST.In figures 1(a)-(e), the plasma current, loop voltage, line-averaged electron density,plasma stored energy,normalized beta,H98,heating power and line emission intensity ofαD ,are shown,respectively.The lineaveraged electron density is supplied by the central channel of the POINT(POlarimeter-INTerferometer)system[23].TheαD signal shown here is given by an edge channel of theαD array,which monitors the outer target of the upper divertor[24].The L-H transition occurs at about 2.9 s.After t=3.0, there is a stepped increase in NBI heating to 2.7 MW, and the ELM frequency increases as the heating power increases, as shown in figures 1(f)-(h), which are the expanded view of theαD signal under different heating power conditions.It is consistent with the features of typical type-I ELMs[5].In this discharge,the toroidal magnetic fieldBTis ?1.6 T.The negative magnetic field denotes that theBTis in the clockwise direction,while the plasma current is in the anti-clockwise direction from the top view of the EAST machine.

    Figure 1.Typical plasma waveforms in type-I ELMy H-mode discharge on EAST:(a)plasma current(Ip)and loop voltage(Vloop),(b)lineaveraged density (ne) and plasma stored energy (WMHD), (c) βN andH98 factor, (d) heating powers from the LHW (PLHW), ion cyclotron range of the frequency wave(PICRF)and neutral beam injection(PNBI),(e) αD intensity,(f)-(h)a zoomed-in view region of the αD signal of the three power steps for shot: #80485 in EAST.

    The EAST tokamak is equipped with a molybdenum first wall.The lower divertor and upper divertor are covered with graphite and tungsten,respectively[25].Carbon is one of the intrinsic impurities in EAST plasma.A high-speed VUV imaging system has been developed on the EAST tokamak.Filamentary structures have been successfully captured by these diagnostics [4].A semi-tangential viewing field is achieved after the upgrade in the recent experiment campaign.It is horizontally installed at the horizontal port D of the EAST tokamak, and the included angle between the primary optical axis and the centerline of port D is 22.5° from a top view, as shown in figure 2(a).The center of the detector is 250 mm above the midplane.In this work, the VUVI system is operated with a framing rate of 20 000 frames per second(fps)with an image size of 512×320 pixels.The blue area in figure 2(b)is the field of view of the target plane of the VUVI system in the pedestal region at the low field side.The image size is 512×320 pixels, which covers an area of about 560 mm (toroidally)×360 mm (poloidally) in the plasma region.The horizontal (X) and vertical (Y) axes of the image roughly represent the toroidal and poloidal directions in the plasma,respectively,as shown in figure 2(c).It is an example of the raw image captured by the VUVI system.The black area shows structures, such as shutters of beam emission spectroscopy (BES) and visible camera, support for the BES system inside the vacuum vessel, which are localized inside the viewing field of the VUVI system.For data analysis, the image is resampled by selecting the interesting area,which is defined by the red dashed square.The resampled image size is 256 (pixels)×256 (pixels), and the corresponding coordinates of the lower left and the upper right corners in the raw image are (39, 50) and (294, 305), respectively.However,only the effective plasma area of the image inside the blue dashed line is analyzed since the other area in the resampled image is still shielded by the support of the BES.It should be noted that the geometric center of the observation range of the VUVI system,i.e.the intersection of the primary optical axis and the target plane,is marked with a yellow asterisk symbol.

    Figure 2.(a)A top view of the VUV imaging system,(b)a zoomed-in view(blue line in(a))of the target plane of the VUVI system at the pedestal region in the low field side, and (c) a raw image with 512×320 pixels (about 500 mm (toroidally)×360 mm (poloidally) at R=2.28 m).The corresponding real dimensions at the plasma(R=2.28 m)are shown at the top and right axes for reference,respectively.The red dashed square defines the resampled image with a size of 256(pixels)×256(pixels).Images inside the area defined by the dashed lines are selected for analysis in this work.

    3.Quantitative characterization of filaments captured by the VUVI system

    In the ELMy H-mode discharges, filament structures induced by ELMs are successfully captured by the upgraded VUVI system.Figure 3 shows an example of VUV imaging data obtained in one ELM cycle.Figure 3(a)shows the waveform of VUV emission intensity in one ELM cycle, which is measured by the VUVI system.Figures 3(b)-(d) show a subtracted image series of the VUV imaging data during an ELM burst.Each image is obtained by subtracting imaging data,Ei,at the previous time slice,ti,from the imaging data,Ei+1, taken at the next time slice,ti+1.The magnetic field line(the black solid line)is superposed in figure 3(c).In this work,the subtracted images taken close to the timing when the peak appears on the time evolution of the VUVI signal are selected for statistical analysis since the most distinguishable filamentary structures are generally observed on these images,as shown in figure 3(c).The different colors define the amplitude of the changes in the emission intensities,i.e.yellow and blue colors correspond to positive and negative values, respectively.It should be pointed out that the effective viewing field of the VUVI system is defined by the area inside the blue dashed lines due to the shielding of the wall and other structures inside the vacuum vessel, such as shutters and support of other diagnostics,as shown in figure 2(c).Here,an image size of 256×256 pixels is shown,and only structures inside the effective viewing field will be analyzed.

    Figure 3.(a) The time history of the impurity emission intensity in one ELM cycle measured by the VUVI system, (b)-(d) a series of subtracted images during an ELM burst period for shot:#80485.The magnetic field line,i.e.the black solid line,is superposed in figure 3(c).

    As mentioned in the previous section, the X axis and Y axis of the images roughly denote the toroidal and poloidal directions in the plasma area, respectively, and the measurement is line-integrated along each sightline.It is difficult to identify the radial structure of the filament.However, perturbations induced by ELMs have ballooning-like characteristics, which means that the perturbations are localized in the low field side.It is therefore assumed that perturbations captured by VUVI systems in an ELM cycle are mainly contributed by the emission from the low field side.In this study, only approximate toroidal and poloidal characteristics of the ELM-induced filament are discussed.

    To quantitatively characterize the filament structures shown in the VUV imaging data, two parameters, i.e.the poloidal widthωwidthand pitch angleθ, are introduced.It is assumed that each filament is located in the same direction in the viewing field of the VUVI system,and the poloidal width of the filament does not change in this direction.The angleθis defined by the included angle of the central line of the filament and the X axis.In principle,the poloidal widthωwidthis defined by the shortest distance of the two edges (i.e.binormal direction) of the filament in this work, as shown in figure 4(a).However, it is difficult to identify the edge of the filament structure on the raw images due to the data quality.The noise mainly comes from the instrumental effect,such as shot noise, and the complex electromagnetic environment.Technically, the poloidal width is derived through several procedures as follows: (i) select a point (xi) on theXaxis of the image and obtain the corresponding column vector(yi) in the image, (ii) plot the column vector (yi) in figure 5.The widthωiin the vertical direction is derived using Gaussian fitting of the peak or the trough shape of the column vectoryiin the imaging data.The fitting function takes the form of equation (1),

    where A represents the amplitude,yiis the position of the peak in the poloidal direction, and it corresponds to the center of the ELM filament structure.Theωirepresents the width of the fitted curve,which implies the width of the filament structure.Meanwhile, the corresponding position (yi) of the peaks or troughs can be recorded.The full width at half maximum(FWHM),ωF,i,of the fitted curve can be obtained by equation (2).

    Figure 4.(a)The distance between two black solid lines represents ω F, i ,the distance between two white dashed lines roughly represents the poloidal width of the filament,i.e.ωwidth (the red solid line),and the black dashed line represents the column vector yi .(b)The black asterisk symbols shows a group of data points (x i ,yi), and the solid red line represents the central line of the filament.

    Figure 5.Interpretation of the data fitting process.The black line with triangle markers shows the column vector yi ,i.e.the black dashed line in figure 4(a).The blue asterisk symbols denote the selected data points for fitting, and the red solid line represents the fitted curve.

    (iii)Repeat steps 1 and 2,a group of data points(xi,yi)of the filament labeled by the black asterisk symbols can be obtained,and the central line of the filament presented by the red solid line can be obtained by fitting these data points, as shown in figure 4(b).Finally,the pitch angleθof the filament can be derived, and the poloidal width of the filamentωwidthcan be obtained by equation (3).

    In equation(3),ωwidthrepresents the poloidal width of the filament structure,ωFis the averaged value of allωF,i,and theθrepresents the pitch angle of the filament structure.The specific procedure is summarized as a flow chart,as shown in figure 6.

    4.Dependence of filament characteristics on plasma parameters

    Following the data analysis method mentioned in section 3,the dependence of filament characteristics, i.e.poloidal width and pitch angle,on plasma parameters,such as heating power and plasma current, is analyzed.In the statistical process, a total of 117 ELM events were counted,and only one filament was selected for analysis during an ELM burst.Figure 7 shows the dependence of the filament poloidal width and heating power.In these discharges, the plasma current is about 0.5 MA, and the toroidal magnetic field is about?1.6 T.The total heating power ranges from 2.2 MW to 4.36 MW.It is shown that the filament poloidal width increases as the heating power increases.The error bar is defined by the standard deviation of the poloidal width data obtained under the same heating power.

    Figure 6.A flow chart for deriving the filament width and pitch angle of the filament structure.

    Figure 7.Dependence of the filament width on the heating power.

    To investigate the dependence of the pitch angle of the filament on the edge safety factorq95, the toroidal magnetic field is fixed to be ?1.6 T.The plasma current varies from 0.4 MA to 0.5 MA.Figure 8 shows the dependence of the fliament pitch angle on the edge safety factorq95.It indicates that the filament pitch angle is inversely proportional toq95when the toroidal magnetic field remains constant.The error bar is defined by the standard deviation of the pitch angle evaluated from the VUV imaging data with a constant toroidal magnetic field, and each error bar is calculated for about 20 filaments.

    Figure 8.Dependence of the filament pitch angle on the edge safety factor q9 5.

    Figure 9.The definition of energy loss in one ELM cycle.The evolution of the αD signal (a) and plasma stored energy (b).

    In addition, the dependence of poloidal width on the ELM amplitude is investigated, and about 100 ELM-induced filaments are used for statistics.In the statistical process,there are different definitions of the ELM amplitude in the literature[26].In this work, ELM amplitude is defined as the energy loss, i.e.the relative change in plasma stored energy induced by an ELM, as shown in figures 9(a) and (b).For each individual ELM, the energy loss induced by an ELM burst(WELM(i)) is calculated from theWMHD.The start time of theithELM burst is defined asti.The end time,tend(i),at whichdecreases to exp( ?3) of the peak value for theithELM burst, is also defined.For the calculation ofWELM[26], the energy loss due to theithELM,WELM(i),is calculated as the difference between the maximum value and the value ofWMHDattend(i)in a small time interval around theithELM event, i.e.WELM(i)=Wmax(i) ?Wend(i).The result is shown in figure 10.The relationship between the poloidal width of the filament and the ELM-induced energy loss shows a certain positive trend.

    Figure 10.Correlation between ELM amplitude(relative energy loss caused by an ELM burst) and filament width derived by VUVI imaging data.

    5.Conclusions and discussion

    Filament structures induced by ELMs are successfully captured by the upgraded VUVI system on the EAST tokamak.The features of the filament are quantitatively characterized by poloidal width and pitch angles.Dependence of the filament width and pitch angles on heating power and edge safety factor is investigated,i.e.the poloidal width is proportional to the heating power and the pitch angle is inversely proportional to the edge safety factorq95.By comparing the filament width with the energy loss induced by ELMs, it shows a certain positive trend between the filament width and ELM amplitude.It indicates that the VUVI system developed on the EAST tokamak can be a good tool for studies of ELMrelated physics.However, analysis in this work is only performed on data captured with type-I ELMs.In addition, it should be noted that the analysis is performed under the condition that the ELM-induced perturbation is confined to a narrow layer in the plasma.Further analysis will be performed in different types of ELMs in future.

    Acknowledgments

    This work is supported in part by the National Key R&D Program of China (No.2017YFE0301205), National Natural Science Foundation of China(Nos.11975271,12075284 and 12075283) and partly supported by Chinese Academy of President’s International Fellowship Initiative (Grant No.2021 VMA0022).The authors are grateful to all collaborators of the EAST team for their contribution to the experiments.

    猜你喜歡
    龍飛高翔
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    奇妙的大自然
    Orthonormality of Volkov Solutions and the Sufficient Condition?
    翼龍飛飛飛
    張強(qiáng)、肖龍飛招貼作品
    我家是個(gè)動(dòng)物園
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    Research survey and review of the effect of Compound Danshen Dripping Pills on the uric acid metabolism of patients with coronary heart disease
    Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re =3900*
    超碰成人久久| 女生性感内裤真人,穿戴方法视频| 91在线精品国自产拍蜜月 | 欧美一级a爱片免费观看看| 黑人操中国人逼视频| 不卡一级毛片| 亚洲熟妇中文字幕五十中出| 亚洲国产色片| 国产av麻豆久久久久久久| 一二三四在线观看免费中文在| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 91久久精品国产一区二区成人 | www.熟女人妻精品国产| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 久久久水蜜桃国产精品网| 欧美日韩中文字幕国产精品一区二区三区| 精品免费久久久久久久清纯| 欧美激情在线99| 国产精品久久久久久人妻精品电影| 久久中文字幕人妻熟女| 啪啪无遮挡十八禁网站| 国产精品 欧美亚洲| 少妇熟女aⅴ在线视频| 无遮挡黄片免费观看| or卡值多少钱| 国产亚洲欧美98| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 亚洲人成网站在线播放欧美日韩| 久久99热这里只有精品18| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式 | 国产私拍福利视频在线观看| 国产精华一区二区三区| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 黄片小视频在线播放| 亚洲精华国产精华精| 免费看日本二区| 欧美日韩国产亚洲二区| 美女免费视频网站| 欧美激情在线99| 亚洲av电影不卡..在线观看| 在线观看免费视频日本深夜| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 看免费av毛片| 午夜福利在线在线| 99国产综合亚洲精品| 精品无人区乱码1区二区| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 国产成人精品久久二区二区免费| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 久9热在线精品视频| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 亚洲av电影在线进入| 亚洲欧美激情综合另类| 岛国在线观看网站| 香蕉av资源在线| 最近最新免费中文字幕在线| 久久伊人香网站| 国产黄片美女视频| 一二三四社区在线视频社区8| 国产淫片久久久久久久久 | 国产激情欧美一区二区| 全区人妻精品视频| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 99热这里只有是精品50| 免费在线观看影片大全网站| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 少妇的逼水好多| 人人妻,人人澡人人爽秒播| 听说在线观看完整版免费高清| 久久久久性生活片| 成年版毛片免费区| 天堂动漫精品| aaaaa片日本免费| 亚洲无线观看免费| 久久这里只有精品中国| 国产成人影院久久av| 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 国产成人精品久久二区二区91| 久久草成人影院| 少妇熟女aⅴ在线视频| avwww免费| 午夜福利在线观看吧| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 脱女人内裤的视频| 动漫黄色视频在线观看| 最近视频中文字幕2019在线8| 很黄的视频免费| 又黄又粗又硬又大视频| 一进一出好大好爽视频| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 男女做爰动态图高潮gif福利片| www.www免费av| 天堂网av新在线| 国产99白浆流出| 老汉色av国产亚洲站长工具| 国产69精品久久久久777片 | 亚洲成人久久爱视频| 欧美高清成人免费视频www| 国产三级在线视频| 母亲3免费完整高清在线观看| 制服人妻中文乱码| 日韩欧美 国产精品| 精品久久久久久久毛片微露脸| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区不卡视频| 国产成人系列免费观看| 男人的好看免费观看在线视频| 亚洲 欧美一区二区三区| 此物有八面人人有两片| 亚洲精华国产精华精| 黑人欧美特级aaaaaa片| 国产三级在线视频| 给我免费播放毛片高清在线观看| 国产亚洲精品av在线| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 九色国产91popny在线| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 级片在线观看| 久久久久久人人人人人| 男女视频在线观看网站免费| 99热精品在线国产| 日韩 欧美 亚洲 中文字幕| 丝袜人妻中文字幕| 中文字幕av在线有码专区| 一级a爱片免费观看的视频| 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 丁香六月欧美| 国产不卡一卡二| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 在线视频色国产色| 欧美日韩乱码在线| 69av精品久久久久久| 欧美在线黄色| 久久人人精品亚洲av| 91av网一区二区| 一二三四社区在线视频社区8| 成年人黄色毛片网站| xxxwww97欧美| 日韩欧美国产在线观看| 亚洲国产精品合色在线| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 综合色av麻豆| 欧美乱妇无乱码| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 999久久久国产精品视频| 国产私拍福利视频在线观看| 日日干狠狠操夜夜爽| 久久这里只有精品19| 免费在线观看日本一区| 黄色成人免费大全| 久久精品夜夜夜夜夜久久蜜豆| 19禁男女啪啪无遮挡网站| 免费在线观看亚洲国产| 亚洲中文字幕一区二区三区有码在线看 | 美女cb高潮喷水在线观看 | 母亲3免费完整高清在线观看| 日韩大尺度精品在线看网址| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 女同久久另类99精品国产91| 亚洲精品中文字幕一二三四区| 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 国产精品免费一区二区三区在线| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 欧美成人性av电影在线观看| 日韩大尺度精品在线看网址| 他把我摸到了高潮在线观看| 久久久久国产一级毛片高清牌| 国产一级毛片七仙女欲春2| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 老熟妇仑乱视频hdxx| cao死你这个sao货| 99久久99久久久精品蜜桃| cao死你这个sao货| 麻豆一二三区av精品| 草草在线视频免费看| 操出白浆在线播放| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 中文在线观看免费www的网站| 97碰自拍视频| 成年人黄色毛片网站| 日本熟妇午夜| 九九热线精品视视频播放| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 69av精品久久久久久| 99久久精品一区二区三区| 国产又色又爽无遮挡免费看| 国产日本99.免费观看| 九九在线视频观看精品| 欧美在线一区亚洲| 一本综合久久免费| 久久精品综合一区二区三区| 男女那种视频在线观看| 久久99热这里只有精品18| 亚洲人成伊人成综合网2020| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 最近最新免费中文字幕在线| 少妇熟女aⅴ在线视频| 国产午夜精品久久久久久| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 亚洲av美国av| 人妻久久中文字幕网| 久久精品人妻少妇| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 国产精品一区二区免费欧美| 国产一区二区在线观看日韩 | 久久草成人影院| 国产精品综合久久久久久久免费| 青草久久国产| 99视频精品全部免费 在线 | 亚洲国产高清在线一区二区三| 香蕉丝袜av| 欧美最黄视频在线播放免费| 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| 村上凉子中文字幕在线| av女优亚洲男人天堂 | 国产成人aa在线观看| 国产精品亚洲一级av第二区| 国产精品 国内视频| 一本综合久久免费| 最近视频中文字幕2019在线8| 亚洲在线观看片| 日韩 欧美 亚洲 中文字幕| 狂野欧美白嫩少妇大欣赏| 国产亚洲av高清不卡| 日日干狠狠操夜夜爽| 亚洲国产欧美网| 波多野结衣高清作品| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 成年免费大片在线观看| 日本五十路高清| av女优亚洲男人天堂 | 国产成人一区二区三区免费视频网站| 日本黄大片高清| 色精品久久人妻99蜜桃| 成年版毛片免费区| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 九九热线精品视视频播放| 夜夜躁狠狠躁天天躁| 国产精品香港三级国产av潘金莲| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费| 欧美色视频一区免费| 99视频精品全部免费 在线 | 日韩欧美 国产精品| 性色avwww在线观看| 亚洲午夜精品一区,二区,三区| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 宅男免费午夜| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 我的老师免费观看完整版| 久久久久九九精品影院| 国产亚洲av高清不卡| 91久久精品国产一区二区成人 | 日韩中文字幕欧美一区二区| 男女视频在线观看网站免费| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| av中文乱码字幕在线| 性色avwww在线观看| 亚洲av成人一区二区三| 丁香欧美五月| 在线观看午夜福利视频| 看免费av毛片| 巨乳人妻的诱惑在线观看| 国产视频内射| 日韩欧美 国产精品| 久久性视频一级片| 国产一级毛片七仙女欲春2| 又大又爽又粗| 女同久久另类99精品国产91| 久久久久久大精品| 精品一区二区三区视频在线 | 韩国av一区二区三区四区| 久久这里只有精品中国| 在线免费观看不下载黄p国产 | 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 成年版毛片免费区| 久久精品aⅴ一区二区三区四区| 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 三级毛片av免费| 一进一出抽搐gif免费好疼| 毛片女人毛片| 欧美日韩黄片免| a在线观看视频网站| 变态另类成人亚洲欧美熟女| www.www免费av| av天堂中文字幕网| 桃红色精品国产亚洲av| 熟女电影av网| 给我免费播放毛片高清在线观看| 人妻夜夜爽99麻豆av| 嫁个100分男人电影在线观看| 免费av不卡在线播放| 亚洲国产欧美一区二区综合| 99国产精品99久久久久| 成年女人看的毛片在线观看| 久久久久精品国产欧美久久久| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 国内精品久久久久久久电影| 日本成人三级电影网站| 亚洲精品国产精品久久久不卡| 精品午夜福利视频在线观看一区| 久久国产精品影院| 91av网站免费观看| 天堂av国产一区二区熟女人妻| 国产高清激情床上av| 久久亚洲真实| 波多野结衣巨乳人妻| 国产精品香港三级国产av潘金莲| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 久久久国产欧美日韩av| 禁无遮挡网站| 少妇的逼水好多| 成人特级av手机在线观看| 99国产精品99久久久久| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 动漫黄色视频在线观看| 最新美女视频免费是黄的| 色老头精品视频在线观看| 啦啦啦免费观看视频1| 欧美日韩一级在线毛片| 99视频精品全部免费 在线 | 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 曰老女人黄片| 露出奶头的视频| 亚洲av成人精品一区久久| 日本 av在线| 性欧美人与动物交配| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 亚洲人成网站在线播放欧美日韩| 欧美成人性av电影在线观看| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 国产av一区在线观看免费| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| avwww免费| 欧美成人免费av一区二区三区| 国产av在哪里看| 一级作爱视频免费观看| av天堂中文字幕网| 成人午夜高清在线视频| 亚洲av成人一区二区三| 长腿黑丝高跟| 91老司机精品| 男女下面进入的视频免费午夜| 国产真实乱freesex| 国产激情久久老熟女| 亚洲国产精品sss在线观看| 久久久久性生活片| 日本黄大片高清| а√天堂www在线а√下载| 国产亚洲精品综合一区在线观看| 亚洲激情在线av| 欧美3d第一页| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 综合色av麻豆| 国产精品野战在线观看| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 一区福利在线观看| 国产乱人视频| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 欧美最黄视频在线播放免费| 国产精品久久久人人做人人爽| 很黄的视频免费| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 亚洲av成人av| 日本黄色片子视频| 午夜福利成人在线免费观看| 伊人久久大香线蕉亚洲五| 精品久久久久久久末码| 欧美不卡视频在线免费观看| 色播亚洲综合网| 白带黄色成豆腐渣| cao死你这个sao货| 成人国产综合亚洲| 欧美zozozo另类| 国产黄片美女视频| 我要搜黄色片| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 久久久久久久久免费视频了| 岛国视频午夜一区免费看| 国产 一区 欧美 日韩| 在线免费观看的www视频| 真实男女啪啪啪动态图| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 精品久久久久久久末码| 99国产精品一区二区三区| 我要搜黄色片| 久久精品国产综合久久久| 五月玫瑰六月丁香| 91老司机精品| 欧美黑人欧美精品刺激| 91麻豆av在线| 人人妻人人澡欧美一区二区| 女警被强在线播放| 12—13女人毛片做爰片一| 日本 欧美在线| 在线十欧美十亚洲十日本专区| 成年女人永久免费观看视频| 国产精品一区二区免费欧美| 国产高清视频在线观看网站| 亚洲国产日韩欧美精品在线观看 | www.www免费av| 日韩人妻高清精品专区| 欧美成人免费av一区二区三区| 亚洲,欧美精品.| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 国产激情欧美一区二区| 亚洲av免费在线观看| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产| 高清在线国产一区| 午夜福利欧美成人| 女警被强在线播放| 欧美日韩精品网址| 成在线人永久免费视频| 精品一区二区三区av网在线观看| 免费av毛片视频| 老司机福利观看| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 亚洲精品在线观看二区| 热99re8久久精品国产| 精品人妻1区二区| 免费在线观看亚洲国产| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 麻豆久久精品国产亚洲av| 午夜精品久久久久久毛片777| 人妻夜夜爽99麻豆av| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| www.www免费av| 一级黄色大片毛片| 欧美在线一区亚洲| h日本视频在线播放| 男女之事视频高清在线观看| 日本熟妇午夜| 91久久精品国产一区二区成人 | 曰老女人黄片| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆 | 精品乱码久久久久久99久播| 国产1区2区3区精品| 国产精品久久久久久人妻精品电影| 免费在线观看影片大全网站| 人妻久久中文字幕网| 久久久水蜜桃国产精品网| 国产乱人伦免费视频| 欧美乱妇无乱码| 成人三级黄色视频| 看免费av毛片| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 两人在一起打扑克的视频| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 午夜免费激情av| 亚洲美女黄片视频| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 黄色 视频免费看| 久久草成人影院| 国产av不卡久久| 老熟妇乱子伦视频在线观看| 两性夫妻黄色片| 日韩成人在线观看一区二区三区| 久久热在线av| 制服丝袜大香蕉在线| 国内精品美女久久久久久| 色av中文字幕| 久久久国产精品麻豆| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 国产成人啪精品午夜网站| 淫秽高清视频在线观看| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 亚洲成av人片在线播放无| 性色avwww在线观看| 亚洲成人精品中文字幕电影| 一级毛片女人18水好多| 夜夜爽天天搞| 国产男靠女视频免费网站| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 国内少妇人妻偷人精品xxx网站 | 欧美日韩中文字幕国产精品一区二区三区| 免费av不卡在线播放| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 日本熟妇午夜| 女警被强在线播放| 1024香蕉在线观看| 免费看光身美女| 女警被强在线播放| 色吧在线观看| 亚洲国产精品合色在线| 国产成人av教育| 免费av毛片视频| 亚洲自偷自拍图片 自拍| 成人性生交大片免费视频hd| 国产精品久久久久久精品电影| 国产伦在线观看视频一区| 1024手机看黄色片| 久久99热这里只有精品18| 成人永久免费在线观看视频| 精品一区二区三区视频在线 | www.www免费av| 一级a爱片免费观看的视频| 国产1区2区3区精品| 一本久久中文字幕| 日韩 欧美 亚洲 中文字幕| 在线国产一区二区在线| 毛片女人毛片| 久久亚洲精品不卡| 一本综合久久免费| 午夜精品久久久久久毛片777| 日韩欧美一区二区三区在线观看| 国产精品99久久久久久久久| 精品一区二区三区视频在线 | 久久久久九九精品影院| av国产免费在线观看| 看黄色毛片网站| 给我免费播放毛片高清在线观看| 国产精品香港三级国产av潘金莲| 黑人操中国人逼视频| 久9热在线精品视频| 一进一出好大好爽视频| 欧美精品啪啪一区二区三区|