• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems

    2021-06-30 00:08:40DUANYonghong段永紅WENRuiping溫瑞萍GAOXiang高翔
    應(yīng)用數(shù)學(xué) 2021年3期
    關(guān)鍵詞:高翔

    DUAN Yonghong(段永紅),WEN Ruiping(溫瑞萍),GAO Xiang(高翔)

    (1.Department of Mathematics,Taiyuan University,Taiyuan 030600,China;2.Key Laboratory for Engineering & Computing Science,Shanxi Provincial Department of Education,Taiyuan Normal University,Jinzhong 030619,China)

    Abstract:This paper constructs two scaled preconditioned splitting iterative methods for solving the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix.The formula of the optimal parameters and the spectral radius properties of the iteration matrix for the new methods are discussed in detail.Theoretical analyses show that the new methods are convergent under the reasonable conditions.Finally,the numerical experiments show the new methods to be feasible and effective.

    Key words:Complex symmetric matrix;Splitting iterative method;Convergence;Preconditioned

    1.Introduction

    We consider the iterative solution of the linear systems

    whereA=W+iTis a non-Hermitian but symmetric matrix(=AT)withW,T∈Rn×nare real and symmetric,andWbeing positive definite andTpositive semidefinite.Here and in the sequel,we use i(i2=-1)to denote the imaginary unit.LetA=M-Nbe a splitting of the matrixA∈Cn×n,i.e.,M∈Cn×nis nonsingular andN∈Cn×n.Then a fixed point iterative method induced by this splitting has the form

    wherex(0)∈Cn×nis a given starting vector.

    Such systems(1.1)arise in many important areas in a variety scientific computing and many important engineering applications.We mention just a few:

    ·diffuse optical tomography[1];

    ·FFT-based solution of certain time-dependent PDEs[2];

    ·structural dynamics[3];

    ·lattice quantum chromodynamics[4];

    ·molecular scattering[5];

    ·numerical computations in quantum mechanics[6].

    Recently,for solving the systems(1.1)efficiently,Axelsson and Kucherov[7]presented the real valued iterative methods,Benzi and Bertaccini[8]proposed the block preconditioning of real-valued iterative algorithms,BAI et al.[9-11]introduced the modified Hermitian and skew-Hermitian splitting(MHSS)as well as PMHSS iterative methods,ZHAO et al.[12]put forward a single-step MHSS method(SMHSS)and its variants with a flexible-shift(f-SMHSS).WEN et al.[13-14]suggested also some iterative methods and preconditioned iterative methods;Van der Vorst and Melissen[15],F(xiàn)reund[16],Bunse-Gerstner and Stver[17]presented the conjugate gradient-type methods;Clements and Weiland[18]introduced the Krylov-type methods.For details one can refer to[1-19]and the references given therein.

    Considering a preconditioned system of(1.1)

    wherePis a nonsingular matrix.The corresponding iterative method is given in general by

    wherePA=MP-NPis a splitting ofPA.

    Some techniques of preconditioning which improve the convergent rate of these iterative methods have been developed.For example,ZHENG et al.[19]introduced a double-step scale splitting(DSS)iterative method by using the scaled technique.By multiplying two parameters(α-i)and(1-iα)both sides of the linear systems(1.1),two equivalent systems can be respectively yielded,i.e.,(α-i)Ax=(α-i)band(1-iα)Ax=(1-iα)b,whereαis a real positive number.Then two fixed-point equations can be generated as follows,

    The authors of[19]extended the idea of the PMHSS iterative method[11],and suggested the following iterative scheme alternatively:

    Whereas the systems(1.3)and(1.4)are in fact two preconditioned systems(1.2)whenP=(α-i)IandP=(1-iα)I,that is to say,the preconditioned matrices are both the scalar matrices.The(1.3)and(1.4)are the same whenα=1.Therefore,the alternation of the DSS iterative method was only carried out in twins of two preconditioned systems.

    In order to solve a class of the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix.We focus on the scaled preconditioned splitting iterative methods generally and consider the systems(1.2)whenP=(α-βi)Iwithα,βare both real numbers in this study.Theoretical analyses show that the new methods are convergent under the reasonable conditions,and the optimal parameters and spectral radius properties of the iteration matrix are discussed.Finally,numerical results are presented to show their feasibility and efficiency.

    Here are some essential notations and preliminaries.As usual,we use Cn×nto denote then×ncomplex matrices set and Cnthen-dimensional complex vectors space;Rn×nto stand for then×nreal matrices set and Rnthen-dimensional real vectors space.X*represents the conjugate transpose of a matrix or a vectorX,andXTrepresents the transpose of a matrix or a vectorX.

    A matrixA∈Cn×n(A∈Rn×n)is called Hermitian(symmetric)positive definite(or semidefinite),denoted byA?0(or?0),if it is Hermitian(symmetric)and for allx∈Cn,x/0,x*Ax>0(x*Ax≥0)holds true.Re(x)and Im(x)represent the real and imaginary parts of a complex numberx,respectively.The spectral radius of a matrixAis denoted byρ(A).Σ(A)represents the spectrum set of a matrixAandκ(A)stands for the condition number of a matrixA.

    A=M-Nis called a splitting of a matrixAifM∈Cn×nis nonsingular.This splitting is called a convergent splitting ifρ(M-1N)<1.

    The rest of the paper is organized as follows.Two scaled preconditioned splitting iterative methods are proposed in Section 2 and their convergence are discussed.Numerical experiments and comparison to other methods are shown in Section 3.Finally,we end the paper with a concluding remark in Section 4.

    2.The Scaled Preconditioned Iterative Methods

    First of this section,the new methods were introduced for solving a class of the system of linear equations when the coefficient matrix is a non-Hermitian but symmetric complex matrix,as shown in(1.1).

    Letα,βbe both real numbers andαβ>0.Then we consider the preconditioned systems(1.2)whenP=(α-βi)I,that is the form as follows

    Method 2.1The scaled preconditioned splitting(SPS)iterative method

    LetMP=αW+βT,NP=i(βW-αT).Then the fixed point iterative method for solving the preconditioned system(1.2)can be written as

    Alternatively,the system(1.1)can be solved iteratively based on the splittingA=Mα,β-Nα,βwith

    And the iteration matrix is

    Method 2.2The flexible-scalar preconditioned splitting(f-SPS)iterative method

    In Method 2.1,α,βare both real numbers,and are given in advance.To significantly speed up the convergence of the iterative methods,it is desirable to determine or find an accurate approximation to the optimal values ofα,β.So we concentrate on the generalized SPS iterative method with the flexible-parameters.Again motivated by the optimization models[12],the scaled parametersαk,βk,k=1,2,···,are generated by the minimizing the residuals at each step.The method is then designed as follows:

    where

    withrk=b-Ax(k),k=0,1,···.

    Next,we discuss the optimal parameters and the spectral radius properties of the iteration matrix for the SPS Method,and study the convergence of Methods 2.1-2.2 addressed above.

    For the sake of simplicity,we can assume thatα,βare both positive real numbers without loss of generality.

    Theorem 2.1LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(=AT)withW,T∈Rn×nare both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Letα,βbe both positive real numbers andλminandλmaxbe the extremal eigenvalues of the matrixW-1T.Then the following statements hold true:

    (i)the spectral radiusρ(Tα,β)in the SPS method is not more than

    (ii)the sequence{x(k)}generated by Method 2.1 converges to the unique solutionx*of the linear systems(1.1)for any initial guess if

    In particular,the iterative scheme(2.1)is convergent ifα>β>0 for the case thatTis a positive semidefinite matrix.

    Proof(i)By(2.4)and direct calculations,we have

    In the last step,the equality holds becauseW-1Tis a symmetric positive definite matrix,and so is(αI+βW-1T)-1.

    It is known thatλis nonnegative.By introducing the following function:

    it is obtained thatf(λ)is a decreasing function with respect toλsincef′(λ)=Thus,the upper bound ofρ(Tα,β)given in(2.5)is obtained.

    (ii)For the case thatλmax>1,δα<1 is equivalent toby simple calculations.And thenρ(Tα,β)<1,so the sequence{x(k)}generated by Method 2.1converges to the unique solutionx*of the linear systems(1.1).

    For the case thatΣ(W-1T)?[0,1],thenλmax≤1 at that time.Thus,δα<1 is only equivalent toα>.

    It is well-known thatλmin=0 ifTis a positive semidefinite matrix.And thenρ(Tα,β)≤α-1,the iterative scheme(2.1)is convergent ifα>β.

    The proof is completed.

    Corollary 2.1Assume that the conditions of Theorem 2.1 are satisfied,then the optimal relation between two parametersα,βthat minimizes the upper boundδα,βof the spectral radiusρ(Tα,β)is given by

    ProofBy introducingτ=α/β,and

    we have

    Theng(τ)andh(τ)are respectively decreasing and increasing functions with respect toτ.It is deduced thatδα,βattains its minimum wheng(τ)=h(τ),which is equivalent to

    That is to say,(2.6)holds true.

    Theorem 2.2LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(AA*,A=AT)withW,T∈Rn×nbe both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Thenρ(Tα,β)<1 if for allx∈Cn,it holds that.

    ProofLetλbe an eigenvalue of the matrixTα,βandxthe corresponding eigenvector,i.e.,=λx,or equivalently,λ(αW+βT)x=i(βW-αT)x.Then we have from the assumptions that

    We obtainα>by direct calculations under|λ|<1.The theorem is proved.

    RemarkIt is implied that all eigenvalues of the matrixTα,βlie in linearly imaginary axis from Theorem 2.2.

    At the last of this section,a property of the matrixcan be given.

    Theorem 2.3LetA=W+iT∈Cn×nbe a non-Hermitian but symmetric matrix(A/A*,A=AT)withW,T∈Rn×nbe both symmetric,andWbeing positive definite andTpositive definite or semidefinite.Assume thatλis an eigenvalue of the matrixdefined by(2.2),then Re(λ)=1.

    ProofLetλbe an eigenvalue of the matrixandxthe corresponding eigenvector with‖x‖2=1.It is known that

    So,

    From assumptions,x*Wx>0,x*Tx≥0.Then we have Re(λ)=1.

    3.Numerical Experiments

    In this section,some test problems are provided to assess the feasibility and effectiveness of Methods 2.1-2.2 in terms of the numbers of iterations(denoted by IT),computing time(in seconds,denoted by CPU),and the residual(denoted by RES).The performance of Methods 2.1-2.2 in comparison with the MHSS,SMHSS and f-SMHSS methods mentioned in Section 1.All our tests are started from zero vector,and terminated when the current iteration satisfied‖RES‖≤10-6.The iteration fails if the iteration number is up to 8000.

    Example 3.1The linear systems(1.1)is of the form(W+iT)x=b,with

    whereV=tridiag(-1,2,-1)∈Rm×m,Vc=V-e11∈Rm×m,e1=(1,0,···,0)T∈Rm,em=(0,···,0,1)T∈Rm.We take the right-hand side vectorbto beb=(1+i)A1 with 1 being the vector of all entries equal to 1.

    Example 3.2The complex linear systems(1.1)is of the form

    whereωis the driving circular frequency,MandKare the inertia and stiffness matrices,CVandCHare the viscous and the hysteretic damping matrices,respectively.We takeCH=μKwithμa damping coefficient,M=I,CV=10I,K=I?Bm+Bm?I,withBm=1/h2·tridiag(-1,2,-1)∈Rm×m,and mesh sizeh=Hence,Kis ann×nblocktridiagonal matrix withn=m2.In addition,we setω=π,μ=0.02,and the right-hand vectorbto beb=(1+i)A1 with 1 being the vector of all entries equal to 1.Furthermore,we normalize the system by multiplying both sides throughout byh2.

    Example 3.3Consider the two-dimensional convection-diffusion equation

    on the unit square(0,1)×(0,1)with constant coefficientηand subject to Dirichlet type boundary condition.By applying the five-point centered finite difference discretization,we get the system of linear equations(1.1)with the coefficient matrix

    where the matricesT1,Vare given by

    with

    being the mesh Reynolds number,andh=1/(m+1)being the equidistant step-size.?denotes the Kronecker product.Moreover,the right-hand side vectorbis taken to beb=Ax*withx*=(1,1,...,1)T∈Rnbeing the exact solution.

    In these experiments,we test matrices,with sizes up to almost 270,000(n=m2=512×512=262,144).Our numerical comparisons are reported in Tables 1-3.What we can see here is that Methods 2.1-2.2 work rather well.Among them,Method 2.2 needs the fewest numbers of iterations while Method 2.1 requires the fewest computing time.How to give consideration to both and so get a better method?This will be one of the subjects of our future research.

    Table 3.1 The numerical results of these methods for Example 3.1

    Table 3.2 The numerical results of these methods for Example 3.2

    Table 3.3 The numerical results of these methods for Example 3.3

    4.Concluding Remark

    In this paper,we presented the scaled preconditioned splitting iterative methods generally for solving a class of complex symmetric linear systems,and studied the preconditioned systems when the preconditioned matrixP=(α-βi)I.Theoretical analyses show that the new methods are convergent under the reasonable conditions,and the formula between the optimal parametersα,βand the spectral radius properties of the iteration matrix are revealed in detail.Finally,we compared our algorithms against three existing ones from[10,12].Overall,numerical results are reported to show that Methods 2.1-2.2 are feasibility and efficiency comparably.

    AcknowledgmentsThe authors gratefully acknowledge the anonymous referees for their helpful comments and suggestions which greatly improved the original manuscript of this paper.

    猜你喜歡
    高翔
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection?
    Recent results of fusion triple product on EAST tokamak
    《巧用對稱形》教學(xué)設(shè)計
    Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios
    我家是個動物園
    不如歸去
    牡丹(2017年22期)2017-08-05 19:24:49
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    Research survey and review of the effect of Compound Danshen Dripping Pills on the uric acid metabolism of patients with coronary heart disease
    亚洲 国产 在线| 国产黄频视频在线观看| 一个人免费在线观看的高清视频 | 日本精品一区二区三区蜜桃| 岛国毛片在线播放| 亚洲性夜色夜夜综合| 丝袜人妻中文字幕| 午夜免费观看性视频| 久久人人97超碰香蕉20202| 巨乳人妻的诱惑在线观看| 美女高潮喷水抽搐中文字幕| 99精国产麻豆久久婷婷| 大陆偷拍与自拍| 汤姆久久久久久久影院中文字幕| 欧美精品人与动牲交sv欧美| av网站免费在线观看视频| 国产福利在线免费观看视频| 亚洲精华国产精华精| 亚洲一区二区三区欧美精品| 亚洲美女黄色视频免费看| 波多野结衣一区麻豆| 精品久久久久久电影网| 午夜激情久久久久久久| 亚洲av电影在线观看一区二区三区| 91精品伊人久久大香线蕉| 五月天丁香电影| 亚洲精品成人av观看孕妇| 亚洲av成人不卡在线观看播放网 | 久久人妻福利社区极品人妻图片| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 亚洲七黄色美女视频| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 欧美97在线视频| 中文字幕另类日韩欧美亚洲嫩草| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 午夜免费成人在线视频| 天堂中文最新版在线下载| 亚洲av男天堂| 色婷婷久久久亚洲欧美| 热99久久久久精品小说推荐| 两性夫妻黄色片| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 宅男免费午夜| 91国产中文字幕| 9色porny在线观看| 三上悠亚av全集在线观看| 国产在线视频一区二区| 免费不卡黄色视频| 五月天丁香电影| 国产真人三级小视频在线观看| 免费女性裸体啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 亚洲一区中文字幕在线| 国产91精品成人一区二区三区 | 国产精品欧美亚洲77777| 色老头精品视频在线观看| 国产在线观看jvid| a级毛片在线看网站| 成人三级做爰电影| 国产精品国产三级国产专区5o| 蜜桃在线观看..| 日韩大码丰满熟妇| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 老司机影院毛片| 性少妇av在线| 欧美日韩av久久| 日韩电影二区| 色精品久久人妻99蜜桃| 黄色怎么调成土黄色| 亚洲成人免费电影在线观看| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 美女国产高潮福利片在线看| 久久久精品免费免费高清| 男女边摸边吃奶| 欧美精品av麻豆av| 欧美 日韩 精品 国产| 成人免费观看视频高清| 国产麻豆69| 一区二区三区乱码不卡18| 一个人免费看片子| 交换朋友夫妻互换小说| 亚洲欧美日韩高清在线视频 | 国产在线免费精品| 亚洲国产欧美在线一区| 亚洲欧美激情在线| 五月开心婷婷网| 99久久国产精品久久久| 在线十欧美十亚洲十日本专区| 久久狼人影院| 青草久久国产| 欧美日韩国产mv在线观看视频| 日本91视频免费播放| 亚洲七黄色美女视频| 夫妻午夜视频| 每晚都被弄得嗷嗷叫到高潮| 欧美xxⅹ黑人| a级毛片黄视频| av不卡在线播放| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 91av网站免费观看| 男人操女人黄网站| √禁漫天堂资源中文www| 丰满少妇做爰视频| 蜜桃国产av成人99| 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 悠悠久久av| 午夜福利乱码中文字幕| 岛国毛片在线播放| 欧美成狂野欧美在线观看| 狂野欧美激情性xxxx| 窝窝影院91人妻| 亚洲精品av麻豆狂野| 日韩 亚洲 欧美在线| 91字幕亚洲| 成年动漫av网址| 少妇被粗大的猛进出69影院| 亚洲av电影在线进入| 老鸭窝网址在线观看| 成人国产av品久久久| 十分钟在线观看高清视频www| www.熟女人妻精品国产| 国产亚洲精品一区二区www | 欧美一级毛片孕妇| 国产99久久九九免费精品| 在线观看www视频免费| 色94色欧美一区二区| 人人妻人人澡人人看| av电影中文网址| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 9热在线视频观看99| avwww免费| 天堂中文最新版在线下载| 久久国产精品大桥未久av| 免费少妇av软件| 每晚都被弄得嗷嗷叫到高潮| 99久久人妻综合| 乱人伦中国视频| 国产亚洲午夜精品一区二区久久| 老鸭窝网址在线观看| 国产成人精品在线电影| 亚洲天堂av无毛| 成人三级做爰电影| 99国产精品一区二区三区| 国产高清视频在线播放一区 | e午夜精品久久久久久久| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 老熟妇乱子伦视频在线观看 | 啪啪无遮挡十八禁网站| 老司机午夜十八禁免费视频| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| av视频免费观看在线观看| cao死你这个sao货| 国产精品久久久久久人妻精品电影 | av福利片在线| 91大片在线观看| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 黄色视频,在线免费观看| 久久久国产成人免费| 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 国产亚洲精品久久久久5区| 国产成人一区二区三区免费视频网站| 人人妻人人添人人爽欧美一区卜| 久久人人爽人人片av| 亚洲第一av免费看| 国产伦人伦偷精品视频| e午夜精品久久久久久久| 国产精品一区二区精品视频观看| 色94色欧美一区二区| 亚洲国产中文字幕在线视频| 丝瓜视频免费看黄片| 欧美精品人与动牲交sv欧美| 黑人操中国人逼视频| 久久精品国产亚洲av香蕉五月 | 久久久久国内视频| 亚洲专区字幕在线| 十八禁网站网址无遮挡| 欧美中文综合在线视频| 亚洲伊人色综图| a级毛片在线看网站| 免费一级毛片在线播放高清视频 | 人成视频在线观看免费观看| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 蜜桃国产av成人99| 老鸭窝网址在线观看| 国产成人免费无遮挡视频| 美女午夜性视频免费| 成人黄色视频免费在线看| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 亚洲综合色网址| 免费在线观看影片大全网站| 伊人亚洲综合成人网| 91精品国产国语对白视频| avwww免费| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三区在线| 亚洲激情五月婷婷啪啪| 精品卡一卡二卡四卡免费| 他把我摸到了高潮在线观看 | 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 一区二区av电影网| 午夜久久久在线观看| www日本在线高清视频| 男女午夜视频在线观看| 日韩欧美免费精品| 午夜成年电影在线免费观看| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 久久久国产精品麻豆| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 丝袜美足系列| 成人国产一区最新在线观看| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 久久国产亚洲av麻豆专区| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 久久国产精品影院| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 考比视频在线观看| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 亚洲精品中文字幕一二三四区 | 亚洲精品国产区一区二| 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 国内毛片毛片毛片毛片毛片| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 国产精品久久久久久精品电影小说| 亚洲av日韩精品久久久久久密| 国产高清videossex| 国产日韩欧美亚洲二区| 女警被强在线播放| 12—13女人毛片做爰片一| av网站免费在线观看视频| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 国产高清videossex| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 久久精品亚洲av国产电影网| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 老司机影院成人| 欧美日韩中文字幕国产精品一区二区三区 | 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 69av精品久久久久久 | 天天躁狠狠躁夜夜躁狠狠躁| 操美女的视频在线观看| 亚洲全国av大片| 两性夫妻黄色片| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 久久久国产一区二区| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 99久久99久久久精品蜜桃| 日本91视频免费播放| 国产成人精品无人区| 男女高潮啪啪啪动态图| 悠悠久久av| 欧美激情高清一区二区三区| 免费久久久久久久精品成人欧美视频| 久久国产精品影院| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 欧美乱码精品一区二区三区| avwww免费| 黄片大片在线免费观看| 亚洲 欧美一区二区三区| 精品亚洲成国产av| 1024视频免费在线观看| 啦啦啦在线免费观看视频4| 国产亚洲av片在线观看秒播厂| 十八禁人妻一区二区| 丝袜脚勾引网站| 51午夜福利影视在线观看| 咕卡用的链子| 性高湖久久久久久久久免费观看| 久久国产亚洲av麻豆专区| 日本精品一区二区三区蜜桃| 黄色a级毛片大全视频| 国产91精品成人一区二区三区 | 国产老妇伦熟女老妇高清| 国产精品自产拍在线观看55亚洲 | 丰满迷人的少妇在线观看| 欧美变态另类bdsm刘玥| 正在播放国产对白刺激| 久久久精品免费免费高清| 一级片'在线观看视频| 国产野战对白在线观看| 日韩大片免费观看网站| tube8黄色片| 女人精品久久久久毛片| 老熟女久久久| 亚洲av男天堂| 精品人妻一区二区三区麻豆| 成人国语在线视频| 国产日韩欧美亚洲二区| 国产成人欧美在线观看 | 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 蜜桃国产av成人99| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 久久香蕉激情| 老汉色∧v一级毛片| 欧美亚洲 丝袜 人妻 在线| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 五月天丁香电影| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲 | www.精华液| 日韩电影二区| av网站在线播放免费| 欧美97在线视频| 精品欧美一区二区三区在线| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 日本欧美视频一区| 亚洲国产欧美在线一区| 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 深夜精品福利| 看免费av毛片| av在线老鸭窝| 少妇的丰满在线观看| 欧美精品高潮呻吟av久久| 最新在线观看一区二区三区| 日本五十路高清| 国产麻豆69| 亚洲伊人色综图| 欧美精品一区二区免费开放| www日本在线高清视频| 久热爱精品视频在线9| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区黑人| 成人影院久久| 无遮挡黄片免费观看| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 久久中文看片网| 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人一区二区三| 少妇精品久久久久久久| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美软件| 捣出白浆h1v1| 国产亚洲午夜精品一区二区久久| 国产在线一区二区三区精| 超色免费av| 老司机深夜福利视频在线观看 | cao死你这个sao货| 亚洲avbb在线观看| 99久久人妻综合| 久久九九热精品免费| 99国产精品一区二区三区| 深夜精品福利| 国产成人一区二区三区免费视频网站| 老司机亚洲免费影院| 国产欧美亚洲国产| 大码成人一级视频| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 国产成人a∨麻豆精品| 亚洲视频免费观看视频| 成人国语在线视频| 成人国产一区最新在线观看| 国产黄频视频在线观看| 欧美精品亚洲一区二区| 少妇裸体淫交视频免费看高清 | av福利片在线| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 波多野结衣av一区二区av| 99香蕉大伊视频| 一级a爱视频在线免费观看| 成在线人永久免费视频| 精品少妇久久久久久888优播| 精品人妻在线不人妻| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 亚洲国产精品一区二区三区在线| 丝袜美足系列| 啦啦啦 在线观看视频| 欧美另类一区| 波多野结衣av一区二区av| 日本一区二区免费在线视频| 秋霞在线观看毛片| 69av精品久久久久久 | 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 91老司机精品| 欧美97在线视频| 一区二区av电影网| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| av不卡在线播放| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| av欧美777| 国产国语露脸激情在线看| 99久久人妻综合| 欧美一级毛片孕妇| 欧美老熟妇乱子伦牲交| 午夜福利视频精品| 高清黄色对白视频在线免费看| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 韩国精品一区二区三区| 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 丝袜喷水一区| 大片电影免费在线观看免费| 久久亚洲国产成人精品v| 淫妇啪啪啪对白视频 | 1024视频免费在线观看| 悠悠久久av| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 国产欧美日韩一区二区精品| 丁香六月天网| 欧美另类一区| 大香蕉久久网| 欧美性长视频在线观看| 国产精品偷伦视频观看了| 久久人人97超碰香蕉20202| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 精品国内亚洲2022精品成人 | 在线观看一区二区三区激情| 正在播放国产对白刺激| 亚洲av日韩精品久久久久久密| 久久精品亚洲熟妇少妇任你| 国产黄频视频在线观看| 极品少妇高潮喷水抽搐| √禁漫天堂资源中文www| www.999成人在线观看| 黑人操中国人逼视频| 欧美精品人与动牲交sv欧美| 免费在线观看影片大全网站| 狂野欧美激情性xxxx| 亚洲精品一二三| 精品高清国产在线一区| 亚洲黑人精品在线| 少妇粗大呻吟视频| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 搡老熟女国产l中国老女人| av超薄肉色丝袜交足视频| 国产精品久久久久久精品古装| 99热网站在线观看| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 青春草视频在线免费观看| www.精华液| 久久天堂一区二区三区四区| 久久午夜综合久久蜜桃| 日韩欧美一区二区三区在线观看 | 天天影视国产精品| 久久久久久亚洲精品国产蜜桃av| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 中文字幕制服av| 别揉我奶头~嗯~啊~动态视频 | 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 男女边摸边吃奶| 精品福利观看| 99国产精品一区二区蜜桃av | 一区二区av电影网| 狠狠精品人妻久久久久久综合| 久久香蕉激情| 丝袜在线中文字幕| 久久香蕉激情| 精品少妇久久久久久888优播| 叶爱在线成人免费视频播放| 国产精品国产三级国产专区5o| 一区在线观看完整版| 在线观看一区二区三区激情| 淫妇啪啪啪对白视频 | 啦啦啦视频在线资源免费观看| 满18在线观看网站| 999精品在线视频| 精品久久蜜臀av无| 国产在线视频一区二区| 在线 av 中文字幕| 精品熟女少妇八av免费久了| 精品一品国产午夜福利视频| 一区二区三区四区激情视频| 亚洲av欧美aⅴ国产| 亚洲专区中文字幕在线| 操美女的视频在线观看| 久久中文看片网| 一本综合久久免费| 中文欧美无线码| 黑人巨大精品欧美一区二区蜜桃| 日韩大片免费观看网站| 天天躁夜夜躁狠狠躁躁| 美女午夜性视频免费| 色综合欧美亚洲国产小说| 精品视频人人做人人爽| 多毛熟女@视频| 国产精品国产av在线观看| 欧美大码av| 亚洲av美国av| 又黄又粗又硬又大视频| 亚洲熟女精品中文字幕| 久久精品熟女亚洲av麻豆精品| 免费一级毛片在线播放高清视频 | 热99re8久久精品国产| 欧美变态另类bdsm刘玥| 天天躁日日躁夜夜躁夜夜| 欧美日韩成人在线一区二区| 欧美av亚洲av综合av国产av| 看免费av毛片| av超薄肉色丝袜交足视频| 人人妻,人人澡人人爽秒播| 制服人妻中文乱码| 中文字幕人妻丝袜制服| 不卡一级毛片| 免费久久久久久久精品成人欧美视频| videosex国产| 精品少妇一区二区三区视频日本电影| 国产区一区二久久| 91精品三级在线观看| 亚洲午夜精品一区,二区,三区| 视频区图区小说| 蜜桃在线观看..| 中文字幕精品免费在线观看视频| 欧美人与性动交α欧美精品济南到| 日韩精品免费视频一区二区三区| 99久久综合免费| 18在线观看网站| 亚洲欧美色中文字幕在线| 啦啦啦在线免费观看视频4| 色精品久久人妻99蜜桃| 亚洲成人免费av在线播放| 久久青草综合色| 电影成人av| 国产亚洲精品第一综合不卡| 高潮久久久久久久久久久不卡| 人成视频在线观看免费观看| 国产在线一区二区三区精| 欧美久久黑人一区二区| 国产成人精品无人区| 日韩制服丝袜自拍偷拍| 国产精品一区二区在线不卡| 欧美xxⅹ黑人| 成人国产一区最新在线观看| 丰满迷人的少妇在线观看| 大型av网站在线播放| 国产精品影院久久| 色视频在线一区二区三区| 永久免费av网站大全| 亚洲精品一区蜜桃| 精品国产乱子伦一区二区三区 | 国产欧美日韩一区二区三区在线| 男女国产视频网站| 免费观看人在逋| 少妇粗大呻吟视频| 成人影院久久| 满18在线观看网站| 午夜免费成人在线视频| xxxhd国产人妻xxx| 1024视频免费在线观看| 午夜影院在线不卡| 亚洲国产欧美网| 后天国语完整版免费观看| 久久精品国产亚洲av香蕉五月 | 午夜日韩欧美国产|