• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios

    2021-04-22 05:34:14WenjunYANG楊文軍GuoqiangLI李國強XueyuGONG龔學余XiangGAO高翔andXiaoeLI李小娥
    Plasma Science and Technology 2021年4期
    關鍵詞:李國強高翔

    Wenjun YANG(楊文軍),Guoqiang LI(李國強),Xueyu GONG(龔學余),Xiang GAO(高翔) and Xiaoe LI(李小娥)

    1 University of South China,Hengyang 421001,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract In this paper,NOVA/NOVA-K codes are used to investigate the stability of Alfvén eigenmodes(AEs)in the China Fusion Engineering Test Reactor(CFETR).Firstly,the stability of AEs excited by energetic alpha particles is investigated.For the fully non-inductive scenario,it is found that all AEs are stable,and the least stable toroidal mode number is n=8.However,for the hybrid mode scenario,it is found that many AEs are unstable,and the least stable toroidal mode numbers are n=7,8.Secondly,the effect of energetic alpha-particle parameters and beam ions on AE stability is also presented.The threshold of the least stable AE is about,less than the value of alpha-particle beta(βα=1.34%).The result demonstrates that the AEs excited by alpha particles are weakly unstable.The effect of the beam ions on AE stability is found to be very weak in CFETR.

    Keywords:energetic particle,Alfvén eigenmode,NOVA/NOVA-K,CFETR

    1.Introduction

    The China Fusion Engineering Test Reactor(CFETR)is the next device in the roadmap for the realization of fusion energy in China[1,2],aiming to fill the gap between ITER[3]and DEMO[4].Significant success has been achieved in the engineering and physics design of CFETR during the past few years[5-7].In the meantime,for CFETR fusion plasma,many vital physical issues still have not been studied or understood.The stability of Alfvén eigenmodes(AEs),such as toroidal Alfvén eigenmodes(TAEs)[8],is one such issue.In the future of burning plasmas,both auxiliary heating and fusion reaction could generate energetic particles(EPs).On one hand,these EPs could heat the plasma via collisions with background ions and electrons.On the other hand,they also could excite various instabilities,such as energetic particle modes(EPMs)[9,10]and AEs[11-14].These instabilities could cause great alphaparticle loss,potentially destroying the first wall[15].Therefore,it is vital to investigate the characteristics of EPs and illuminate the effect of AE instabilities in CFETR.

    In tokamak plasmas,the instabilities of AEs excited by EPs are very common[16-18].In the past several decades,both experimental and theoretical studies of AEs have been carried out[19-21].The linear stability of AEs driven by EPs has been investigated in ITER[22-26]and CFETR[8,18].Based on small-size parameters with minor radiusa=1.6 m,major radiusR=5.7 m andBT=5.0 T,the work shows that TAEs are almost all stable[8].Based on larger ones witha=1.8 m,R=7.0 m andBT=5.7 T,GEM code[27]was used to investigate the AE stability in CFETR,showing that AEs excited by energetic alpha particles are strongly unstable[18].There are obvious differences between the two works;thus,the stability of AEs needs to be widely investigated based on the latest CFETR parameters.

    In this paper,the NOVA/NOVA-K codes[28,29]are used to investigate AE instabilities excited by EPs in CFETR.The linear characteristics of AEs have been investigated in tokamaks such as TFTR[30],JET[31]and DIII-D[32].Both the energetic alpha particles originated from fusion reaction and the beam ions generated from neutral beam injection(NBI)are considered in our study.Widespread linear simulations of AE instabilities have been carried out based on the latest CFETR parameters.First,it has been found that all AEs are stable and the least stable toroidal mode number is aboutn=8 for the CFETR fully non-inductive scenario(SCN).However,for the CFETR hybrid mode scenario(SCH)it is found that many AEs are unstable,and the most unstable toroidal mode numbers are aboutn=7,8.The excitation threshold of the least stable AE(n=8)is aboutβα0=1.12%,little less than the central alphaparticle beta(βα=1.34%).Second,the effect of the alphaparticle parameters and beam ions on AE instabilities is also presented in this paper.

    Table 1.Plasma parameters for the CFETR SCN and SCH scenarios.

    The paper is organized as follows:section 2 introduces the two different CFETR scenarios obtained through the integrated simulation.The stability analysis of the AEs for the CFETR SCN and SCH scenarios is shown in section 3.Section 4 gives the effect of the alpha-particle parameters and beam ions on AE instabilities.A brief discussion and summary are presented in section 5.

    2.CFETR scenarios

    Two different CFETR scenarios have been considered:SCN and SCH scenarios[33].The latest CFETR’s size is larger than ITER’s[3].The device isR=7.2 m anda=2.2 m in size,κ=2,δ=0.8 andBT(0)=6.5 T with a lower single null.Here we just consider the cases with the total fusion powerPf≈1000 MW.Table 1 shows the main plasma parameters for the two different CFETR scenarios.Pcdis the current drive power,andnbar/nGRis the ratio to Greenwald limit.SCN is a reversed shearqscenario,and auxiliary heating and current drive(H&CD)method is electron cyclotron wave(ECW)and NBI[34,35].SCH is a hybrid scenario,and the H&CD method is the combination of NBI,ECW,fast wave(FTW)[33]and/or low hybrid wave(LHW).Figure 1 shows the plasma equilibrium profiles of the relevant quantities.

    The energetic alpha-particle distribution in velocity space is an isotropic slowing-down distribution,and can be written as follows[36]

    whereS0andτsare the alpha-particle source intensity and slowing-down time,vcandαvare the slowing-down critical velocity and the maximum of the EP velocity respectively.Both alpha-particle betaβαand beam-ion betaβNBwere calculated using ONETWO code[37].The alpha-particle beta profiles for the CFETR SCN and SCH scenarios are shown in figure 2.

    3.Simulation results

    The NOVA/NOVA-K codes are used to investigate AE stability in CFETR.The kinetic effect of EPs is dealt with based on the drift-kinetic equation.The codes could deal with various damping mechanisms,including electron and ion Landau damping,electron collisional damping,radiative damping and continuum damping,and the codes also include the effect of finite Larmor radius(FLR)and finite orbit width(FOW)[38].AEs instabilities excited by the alpha particles will be presented in this section.

    3.1.Fully non-inductive scenario

    We will first consider the case of SCN.Based on the equilibria and profiles shown in section 2,the calculation results for all AEs found in the TAE gaps are shown in figure 3 for the SCN scenario.The range of toroidal mode number is 1≤n≤12.Our calculations show that the middle-n modes are the least stable case,and the drive of the high-n modes decrease withnincreasing,thus it is reasonable that the range is limited ton≤12.γα/γdampmeans the ratio of EPs’drive to total damping.If the ratioγα/γdamp>1,then AE is unstable.n=8 withthe driveγα/ω≈0.51%.The calculation result canbe explained asfollows.Theoretically,the drive is peaked atk⊥·Δorb~1[39-41],wherek⊥≈nq/rand Δorb≈m υ‖/eB.Because the minor radius and toroidal From figure 3(a)we can see that withnincreasing,the drive first increases and then decreases,and the peak drive occurs inn=8 TAE withγα/γdamp≈0.1is the least stable mode.The magnetic field in CFETR are relatively larger than those in present tokamaks,the least stable mode number tends to be more big.

    From figure 3(b)it is found that all AEs are stable,and corresponding mode structure is presented in figure 4(c),which demonstrates that the dominant poloidal harmonics arem=32 andm=33.Figure 4 shows the mode structures for the least stable eigenmodes withn=6,7,8.In order to better understand the calculated mode structures,the shear Alfvén continuous spectra withn=6,7,8 are shown in figure 5.It can be seen that the dominant poloidal harmonics are pairs of two neighboring harmonics for these modes.Furthermore,the calculation results show that the mode locations and frequencies are located within TAE gaps.Thus,they are all TAEs.

    Figure 1.Equilibrium profiles of(a)electron and ion temperatures,electron density and(c)safety factor for the CFETR SCN,(b)electron and ion temperatures,electron density and(d)safety factor for the CFETR SCH.The sqrt(Ψ)means the square root of normalized poloidal flux.

    Figure 2.The alpha-particle beta profiles for the CFETR(a)SCN and(b)SCH.

    The damping calculations mainly include the collisional damping,Landau damping and radiative damping.In order to illustrate the relative contributions of the three damping mechanisms,figure 6 shows the ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number.From the figure,we can see that both the collisional damping and the radiative damping are the main damping mechanisms.

    3.2.Hybrid mode scenario

    For the case of SCH,the calculation results for all AEs found in the TAE gaps are shown in figure 7.The range of toroidal mode number is also 1≤n≤12.As shown in figure 7(a),withnincreasing,the drive from the energetic alpha particles first increases and then decreases,and the peak drive occurs inn=8.The calculation result shows that the peak drive isThe result isconsistent with the previous theoreticalanalysis.From fgiure7(b)it can beseenthatmanyAEs are unstable,and the most unstable modes are ann=7 reversed shear Alfvén eigenmode(RSAE)withγα/γdamp≈1.19and ann=8 TAE withγα/γdamp≈1.20.The corresponding mode structure withn=7 is shown in figure 8(a),which demonstrates that the poloidal harmonic withm=9 is dominant.The mode,shown in fgiure 9(a),is located inside the TAE gap and near theqminposition,which confirms that it is a RSAE[42].The corresponding mode structure with then=8 is presented in figure 8(b),which demonstrates that the dominant poloidal harmonics arem=11 andm=12.The mode location and mode frequency are located within TAE gap.Thus it is a TAE.

    Figure 3.AE stability analysis for the CFETR SCN scenario.(a)Energetic alpha-particle drive(γα / ω)for all modes found in TAE gaps to toroidal mode number.(b)The ratio of energetic alpha-particle drive to total damping(γα /γdamp)for the modes in(a).For a given n,we have found many AEs in the TAE gaps and the different colors are used to differentiate these AEs.

    Figure 4.Mode structures for the least stable eigenmodes with toroidal mode numbers n=6,7,8.ξψ=ξ·?ψ/∣?ψ∣means the component of the perturbed displacement in the direction.

    Figure 5.Alfvén continuum spectra of SCN with n=6,7,8.

    Figure 6.Relative contributions of various dampings in SCN.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number. γi is the respective damping and is normalized to the sum of all dampings.

    For the case of SCH,the damping calculations also include the collisional damping,Landau damping and radiative damping.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number is shown in figure 10.From the figure,we can see that the collisional damping is the main damping mechanism forn=1 to 12.

    4.Effect of plasma parameters on AE stability

    4.1.Effect of alpha-particle beta on AE stability

    To see the sensibility effect of our profiles selection,we have investigated their effect on the AE stability for then=8 most unstable case for the CFETR SCH scenario.The plasma profiles shown in figure 1 are unchanged in our calculations,and the other plasma parameters are kept fixed when rescaling the alpha-particle beta.Based on the alpha-particle beta profile presented in figure 2(b),here it is just multiplied by a constant.Because the EP effects on the mode structure and frequency are neglected in NOVA-K code,the growth rate is linearly proportional to the energetic alpha-particle beta.We can obtain that the threshold for then=8 TAE is aboutβα0=1.12%,little less than the central alpha-particle betaβα=1.34%.

    In order to study the effect of alpha-particle pressure gradient on the AE stability,the alpha-particle profile distribution has been changed but the central alpha-particle beta is fixed,which is shown in figure 11.The gradients are obviously different near the axis.The corresponding calculation results are presented in table 2.The total dampings are unchanged and there is little effect on the drive of energetic alpha particles for the three cases.The linear growth rate(γ)of TAE induced by alpha particles is written by[43].

    whereωTAEandω* are the TAE eigenfrequency and the diamagnetic drift frequency of EPs respectively,fris the fraction of resonant particles,γdandqare the total damping and the safety factor respectively.Based on the drive term expression in equation(2),with the pressure gradient increasing,the valueω*(∝?βα/ ?r)will increase,thus the drive(γα/ω)will increase.However the decrease of the alpha-particle beta will make the drive decrease.The competition between the increase of the pressure gradient and the decrease of the alpha-particle beta makes the drive almost unchanged.On the contrary,with the gradient decreasing,the drive will decrease; however,the increase of the alpha-particle beta will make the drive increase.The competition between the decrease of the pressure gradient and the increase of the alpha-particle beta also makes the drive almost unchanged.Thus the growth rate is almost kept unchanged for the three cases.

    Figure 7.AE stability analysis for the CFETR SCH scenario.(a)Energetic alpha-particle drive(γα / ω)for all modes found in TAE gaps to toroidal mode number.(b)The ratio of energetic alpha-particle drive to total damping(γα /γdamp)for the modes in(a).For a given n,different colors are used to differentiate the AEs.

    Figure 8.Mode structures of dominant poloidal harmonics in direction for the most unstable eigenmodes.(a)n=7 RSAE with the dominant poloidal harmonic m=9.(b)n=8 TAE with the dominant poloidal harmonics m=11 and m=12.

    4.2.The effect of the beam ions on AE stability

    Here we consider the case that the beam ions with energyENB=500keV are injected on-axis in the CFETR SCH scenario.The species of the beam ion is deuterium.The beam ions have a slowing-down distribution in velocity space and are distributed exponentially in pitch angle

    Figure 9.Alfvén continua for(a)n=7 and(b)n=8.The dark lines indicate the mode positions and mode frequencies.

    Figure 10.Relative contributions of various dampings in SCH.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number γi is the respective damping.

    wherecis a normalization factor,His the step function,υ0is the beam particle injection speed,andυcis the critical velocity given by

    Figure 11.Three different alpha-particle beta profile distributions in thedirection for the origin beta,high gradient beta and low gradient beta.

    Table 2.Drive and total damping for the three cases.

    Figure 12.Alpha-particle and beam-ion beta profiles for the SCH scenario.

    Table 3.Drive from the energetic alpha particles and beam ions.

    Λ is the pitch angle parameter,Λ0=0.4,ΔΛ=0.2.The distribution of the beam ions in the radial direction is calculated using ONETWO code.The alpha-particle and beam-ion beta profiles are shown in figure 12.The other plasma parameters are fixed while investigating the effect of the beam ions on AE stability.The drive from the beam ions is aboutγNB/ω=0.02%,far less than the drive from the alpha particles for then=8 most unstable case.We also investigate the effect of beam-ion energy on the AE stability.The calculation results are shown in table 3.The selected energy range is about 200 keV to 600 keV.The drive from the alpha particles is kept unchanged in our calculations.We observe that whenENBincreases,the drive from the beam ions(γNB/ω)firstly increases,and then saturates at aboutENB=400 keV,and finally decreases.This is because the beam ions are sub-Alfvénic,the drive must mainly come from theVA/ 3resonance.

    5.Discussion and summary

    In this paper,the NOVA/NOVA-K codes are used to investigate the stability of AEs excited by EPs,based on the CFETR SCN and SCH scenarios.Firstly,the stability of AEs driven by the alpha particles is investigated.For the SCN scenario,it is found that all AEs are stable and then=8 TAE withγα/ω≈0.51%is the least stable mode.However,for the SCH scenario,it is found that many AEs are unstable,and the most unstable toroidal mode numbers are aboutn=7,8.The drive of then=8 TAE(γα/ω≈3.24%)is slightly bigger than that of then=7 mode.Because the minor radius and toroidal magnetic field in CFETR are relatively larger than those in present tokamaks,the most unstable toroidal mode number tends to be bigger.

    The effect of alpha-particle parameters on AE stability is presented.Because the growth rate is linearly proportional to the energetic alpha-particle beta in NOVA-K,the threshold is discovered to be aboutβcrit,α=1.12%,little less than the estimated value of alpha-particle beta(βα=1.34%)for then=8 most unstable case.The results demonstrate that AEs excited by the alpha particles are weakly unstable in CFETR,at least for the parameters presented in our work.However,in the work of Ren et al[18],the excitation threshold is aboutβcrit,α=0.2%,which is far less than our result.This can be explained as follows.Firstly,there is big difference in device parameters and profiles between our work and that of reference[18].Secondly,the model of reference[18]is non-perturbative and gyrokinetic whereas NOVA-K is perturbative and drift-kinetic model.Lastly,their model can not deal with the electron collisional damping,which turns out to be an important damping mechanism in our work.

    The effect of the beam ions on AE stability is also presented.The drive from the beam ions is aboutγNB/ω=0.02%,far less than the drive from the alpha particles for then=8 most unstable case.The beam ions are mainly localized close to the axis(≈0.1); however,the TAE mode structure is mainly located around≈0.4.Thus the drive from the beam ions for this TAE is very weak.On the other hand,because the beam ions are sub-Alfvénic,the drive must mainly come from the less efficientVA/3 resonance.Thus the contribution of the beam ions is found to be very weak in CFETR.

    The work aims to linearly investigate the stability of AEs excited by EPs in CFETR.The results demonstrate that all AEs found in TAE gaps are stable or weakly unstable for the two CFETR scenarios,and the effect of the beam ions is found to be very weak.These work will offer some guidance to reduce AEs instabilities for the CFETR design.However,non-linear simulations are needed to correctly evaluate effect of the EP transport on background plasma.To offer a more decisive guidance for the CFETR design,we will carry out self-consistent non-linear simulation in future work.

    Acknowledgments

    The authors would like to acknowledge Prof.G Y Fu for his suggestion and discussion.Numerical computations were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics,Chinese Academy of Sciences.This work was supported by National Natural Science Foundation of China(Nos.11947056 and 12005100),the Natural Science Foundation of Hunan Province(No.2020JJ5468),the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFY15),the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(No.2018WK4009),and the Key Scientific Research Program of Education Department of Hunan Province(No.20A417).

    猜你喜歡
    李國強高翔
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    Rotor performance enhancement by alternating current dielectric barrier discharge plasma actuation
    Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST
    高職院校“技術差序”育人體系研究
    高級駕駛輔助系統(tǒng)課程教學探索
    Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
    Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection?
    Recent results of fusion triple product on EAST tokamak
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    我家是個動物園
    在线精品无人区一区二区三 | 乱系列少妇在线播放| 国产久久久一区二区三区| 97超碰精品成人国产| 国产免费福利视频在线观看| 亚洲av福利一区| 一级毛片我不卡| 中文字幕免费在线视频6| kizo精华| 亚洲自拍偷在线| 色哟哟·www| 成人无遮挡网站| 熟女人妻精品中文字幕| 精品久久久精品久久久| 亚洲av免费在线观看| 97在线视频观看| 亚洲婷婷狠狠爱综合网| 色婷婷久久久亚洲欧美| 欧美丝袜亚洲另类| 亚洲久久久久久中文字幕| av专区在线播放| 欧美日本视频| 久久久久久久久久人人人人人人| 交换朋友夫妻互换小说| 精华霜和精华液先用哪个| 菩萨蛮人人尽说江南好唐韦庄| 日韩av免费高清视频| 一本久久精品| 免费少妇av软件| 亚洲成色77777| 哪个播放器可以免费观看大片| 欧美国产精品一级二级三级 | 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 日日啪夜夜爽| 人人妻人人澡人人爽人人夜夜| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 色哟哟·www| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 啦啦啦在线观看免费高清www| 午夜福利视频1000在线观看| 精品视频人人做人人爽| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 乱系列少妇在线播放| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 五月玫瑰六月丁香| 国产人妻一区二区三区在| 中文字幕久久专区| 久久久久久九九精品二区国产| 国产男女内射视频| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 99九九线精品视频在线观看视频| 中文字幕制服av| 成人高潮视频无遮挡免费网站| 狠狠精品人妻久久久久久综合| 国产精品一区二区三区四区免费观看| www.色视频.com| 性插视频无遮挡在线免费观看| 成年av动漫网址| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 国产男女内射视频| 三级国产精品片| 熟女av电影| 久久99蜜桃精品久久| 少妇裸体淫交视频免费看高清| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 日产精品乱码卡一卡2卡三| av一本久久久久| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频 | 中国美白少妇内射xxxbb| 2021天堂中文幕一二区在线观| 久久人人爽av亚洲精品天堂 | 国产精品国产av在线观看| 男人舔奶头视频| 国产高清国产精品国产三级 | 亚洲欧美日韩东京热| 精品人妻视频免费看| 一区二区三区四区激情视频| 国产综合懂色| 日韩人妻高清精品专区| 午夜免费鲁丝| 中文字幕人妻熟人妻熟丝袜美| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 日本欧美国产在线视频| 小蜜桃在线观看免费完整版高清| 少妇丰满av| 亚洲国产最新在线播放| 青春草视频在线免费观看| 午夜福利高清视频| 欧美性感艳星| 伊人久久国产一区二区| 日本黄大片高清| 一级毛片电影观看| 男人狂女人下面高潮的视频| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 国产精品国产三级国产专区5o| 国产毛片在线视频| 九九久久精品国产亚洲av麻豆| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 日本午夜av视频| 久久午夜福利片| 免费少妇av软件| 日韩一本色道免费dvd| 亚洲最大成人av| 国产精品伦人一区二区| 欧美区成人在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本黄色片子视频| 亚洲美女视频黄频| 97人妻精品一区二区三区麻豆| 欧美bdsm另类| av又黄又爽大尺度在线免费看| 亚洲,一卡二卡三卡| 国产精品国产三级专区第一集| av免费观看日本| 啦啦啦在线观看免费高清www| av国产精品久久久久影院| 成年人午夜在线观看视频| 成人亚洲精品av一区二区| 亚洲人成网站在线观看播放| 人体艺术视频欧美日本| 亚洲欧美日韩无卡精品| 久久人人爽人人爽人人片va| 嫩草影院入口| 人妻系列 视频| 亚洲人成网站高清观看| 国产欧美亚洲国产| 日韩人妻高清精品专区| 亚洲av福利一区| 97精品久久久久久久久久精品| 尾随美女入室| 又大又黄又爽视频免费| 老司机影院成人| 国产毛片在线视频| 九九久久精品国产亚洲av麻豆| 国产在视频线精品| 久热这里只有精品99| 国产精品成人在线| 精品久久久精品久久久| 熟女av电影| 九九久久精品国产亚洲av麻豆| 成年人午夜在线观看视频| 人妻一区二区av| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 岛国毛片在线播放| 九色成人免费人妻av| 日本黄色片子视频| av天堂中文字幕网| a级毛片免费高清观看在线播放| 干丝袜人妻中文字幕| av福利片在线观看| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 亚洲最大成人av| 欧美成人午夜免费资源| 国产乱人视频| 成人无遮挡网站| 少妇的逼水好多| 日韩伦理黄色片| 在线 av 中文字幕| 大香蕉久久网| 我要看日韩黄色一级片| 免费黄频网站在线观看国产| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 在线播放无遮挡| 少妇人妻 视频| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 亚洲国产欧美人成| 熟妇人妻不卡中文字幕| 中文天堂在线官网| 久久97久久精品| 久久久久久久亚洲中文字幕| 又大又黄又爽视频免费| 午夜激情福利司机影院| 精品久久久久久久久av| 99热这里只有是精品在线观看| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久 | 国产极品天堂在线| 性插视频无遮挡在线免费观看| 午夜免费观看性视频| eeuss影院久久| 国产精品嫩草影院av在线观看| av在线亚洲专区| 久久久久久伊人网av| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| av在线老鸭窝| 亚洲欧洲国产日韩| 韩国av在线不卡| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 久久久a久久爽久久v久久| 亚洲真实伦在线观看| 性色avwww在线观看| 91狼人影院| 日韩大片免费观看网站| 91精品国产九色| 人妻夜夜爽99麻豆av| 国产黄片视频在线免费观看| 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 精品午夜福利在线看| 亚洲精品日韩在线中文字幕| 亚洲国产欧美人成| 久久99热6这里只有精品| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| 欧美日韩视频高清一区二区三区二| 免费黄网站久久成人精品| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久| 最近手机中文字幕大全| 一级爰片在线观看| 亚洲欧美精品自产自拍| 一区二区三区精品91| 久久久久久久午夜电影| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看 | 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 一区二区av电影网| 男男h啪啪无遮挡| 亚洲国产精品国产精品| 国产精品偷伦视频观看了| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看 | 97热精品久久久久久| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 欧美精品人与动牲交sv欧美| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 尤物成人国产欧美一区二区三区| av播播在线观看一区| 久久久久网色| 国产午夜福利久久久久久| 国产成人免费无遮挡视频| kizo精华| av一本久久久久| 亚洲人成网站高清观看| 免费av毛片视频| 亚洲精品中文字幕在线视频 | 中文资源天堂在线| 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 国产精品一区www在线观看| 黄色一级大片看看| 色视频在线一区二区三区| 亚洲av中文字字幕乱码综合| 大片电影免费在线观看免费| 国产乱人偷精品视频| 亚洲欧美精品专区久久| 久久久久网色| 亚洲av日韩在线播放| 国产免费一区二区三区四区乱码| 天天一区二区日本电影三级| 午夜免费鲁丝| 国产伦在线观看视频一区| 久久久国产一区二区| 高清在线视频一区二区三区| 日韩伦理黄色片| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 久久午夜福利片| 内射极品少妇av片p| 国产国拍精品亚洲av在线观看| 国产久久久一区二区三区| 深夜a级毛片| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 禁无遮挡网站| 国产午夜福利久久久久久| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 超碰av人人做人人爽久久| 久久这里有精品视频免费| 亚州av有码| 日日啪夜夜爽| 免费av毛片视频| 成人亚洲精品av一区二区| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 亚洲精品aⅴ在线观看| 插阴视频在线观看视频| 九九在线视频观看精品| 一区二区三区免费毛片| 在线精品无人区一区二区三 | 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 免费人成在线观看视频色| 亚洲国产精品国产精品| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 久久久久网色| 色5月婷婷丁香| 日本午夜av视频| 少妇 在线观看| 1000部很黄的大片| 亚洲精品日本国产第一区| 成人一区二区视频在线观看| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 免费黄色在线免费观看| 成人免费观看视频高清| 激情 狠狠 欧美| 精品久久久噜噜| 成人黄色视频免费在线看| 性色avwww在线观看| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 97超碰精品成人国产| 国产亚洲午夜精品一区二区久久 | 最近最新中文字幕免费大全7| 九九爱精品视频在线观看| 黄片wwwwww| 91精品国产九色| 亚洲欧美日韩无卡精品| 欧美日韩亚洲高清精品| 3wmmmm亚洲av在线观看| 欧美成人精品欧美一级黄| 国产午夜精品久久久久久一区二区三区| 一级黄片播放器| 亚洲av国产av综合av卡| 久久99热6这里只有精品| 免费高清在线观看视频在线观看| 欧美丝袜亚洲另类| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲网站| 国产精品无大码| 超碰97精品在线观看| 国产午夜精品久久久久久一区二区三区| 三级国产精品片| 只有这里有精品99| 又爽又黄无遮挡网站| 只有这里有精品99| 蜜桃亚洲精品一区二区三区| 久久精品国产自在天天线| 欧美日韩亚洲高清精品| 亚洲欧美成人综合另类久久久| 99热这里只有精品一区| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 精品国产三级普通话版| 尤物成人国产欧美一区二区三区| 各种免费的搞黄视频| 日本一本二区三区精品| 有码 亚洲区| 久久久精品免费免费高清| 亚洲自偷自拍三级| 高清毛片免费看| 内地一区二区视频在线| 久久久成人免费电影| 久久精品国产鲁丝片午夜精品| 日韩制服骚丝袜av| 在线观看人妻少妇| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 18禁在线播放成人免费| 天天一区二区日本电影三级| 亚洲婷婷狠狠爱综合网| 永久网站在线| 亚洲人与动物交配视频| 只有这里有精品99| 18禁动态无遮挡网站| av国产免费在线观看| 狠狠精品人妻久久久久久综合| 成人国产麻豆网| 国产乱人偷精品视频| 我的女老师完整版在线观看| 亚洲在线观看片| 国产成人福利小说| 亚洲国产精品999| 亚洲精品久久午夜乱码| 网址你懂的国产日韩在线| 国产免费一区二区三区四区乱码| 制服丝袜香蕉在线| 免费黄色在线免费观看| 日本色播在线视频| 欧美高清性xxxxhd video| 免费av毛片视频| 国产精品麻豆人妻色哟哟久久| 又粗又硬又长又爽又黄的视频| 久久久精品免费免费高清| 在线观看国产h片| av在线亚洲专区| av在线播放精品| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频 | 精品午夜福利在线看| 国产欧美日韩精品一区二区| 国产精品女同一区二区软件| 国产黄片美女视频| 热99国产精品久久久久久7| 欧美精品一区二区大全| 性色av一级| 亚洲精品日韩av片在线观看| 日日啪夜夜爽| 国产黄a三级三级三级人| 成人欧美大片| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 亚洲美女视频黄频| 国产人妻一区二区三区在| 极品教师在线视频| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 三级国产精品片| 久久热精品热| 欧美激情在线99| 国产探花极品一区二区| 国产成人福利小说| 成人一区二区视频在线观看| 国产精品人妻久久久影院| 日日啪夜夜爽| 日日撸夜夜添| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 日日啪夜夜撸| 亚洲欧美日韩另类电影网站 | av在线老鸭窝| 亚洲精品乱久久久久久| 日本一本二区三区精品| 各种免费的搞黄视频| 日日啪夜夜爽| 亚洲一区二区三区欧美精品 | 插逼视频在线观看| 久久人人爽av亚洲精品天堂 | 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| 看黄色毛片网站| av在线播放精品| 国产熟女欧美一区二区| 亚洲精品第二区| 欧美日韩视频精品一区| 国产亚洲av片在线观看秒播厂| 少妇的逼好多水| 久久久欧美国产精品| 嫩草影院新地址| 熟女电影av网| 久久精品国产亚洲网站| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 久久人人爽av亚洲精品天堂 | 少妇人妻久久综合中文| 男女无遮挡免费网站观看| 我要看日韩黄色一级片| 夫妻性生交免费视频一级片| 乱系列少妇在线播放| 日本午夜av视频| 国产综合懂色| 青春草亚洲视频在线观看| 国产成人精品福利久久| 男人和女人高潮做爰伦理| 婷婷色麻豆天堂久久| 中文字幕免费在线视频6| 在线观看三级黄色| 在线精品无人区一区二区三 | 亚洲人成网站高清观看| 欧美一区二区亚洲| 在线天堂最新版资源| 秋霞在线观看毛片| 久久99热这里只有精品18| 国产淫语在线视频| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费观看性视频| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区黑人 | 亚洲精品成人av观看孕妇| 免费播放大片免费观看视频在线观看| 久久精品熟女亚洲av麻豆精品| 精品少妇久久久久久888优播| 夜夜看夜夜爽夜夜摸| 日韩一区二区三区影片| 日日撸夜夜添| 好男人在线观看高清免费视频| 2021天堂中文幕一二区在线观| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 女人久久www免费人成看片| 国产片特级美女逼逼视频| 哪个播放器可以免费观看大片| 久久久久久久亚洲中文字幕| 亚洲av一区综合| 美女脱内裤让男人舔精品视频| 免费在线观看成人毛片| 国产精品一及| 日日摸夜夜添夜夜添av毛片| 一区二区三区乱码不卡18| 蜜臀久久99精品久久宅男| av黄色大香蕉| 中国国产av一级| 国产有黄有色有爽视频| 欧美3d第一页| 日韩三级伦理在线观看| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 久久久久久九九精品二区国产| 狠狠精品人妻久久久久久综合| 国产黄a三级三级三级人| 精品酒店卫生间| 国产老妇伦熟女老妇高清| 国产 一区精品| 男女那种视频在线观看| 精品少妇久久久久久888优播| 亚洲av日韩在线播放| 特大巨黑吊av在线直播| 有码 亚洲区| 一个人看的www免费观看视频| 午夜激情福利司机影院| 七月丁香在线播放| 亚洲,欧美,日韩| 18禁在线无遮挡免费观看视频| 天天躁夜夜躁狠狠久久av| 久久精品国产a三级三级三级| 国产亚洲最大av| 美女脱内裤让男人舔精品视频| 韩国高清视频一区二区三区| 亚洲自偷自拍三级| 黄色配什么色好看| 国产黄色视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人精品一区二区| 午夜福利视频1000在线观看| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| 一个人观看的视频www高清免费观看| 亚洲激情五月婷婷啪啪| 老师上课跳d突然被开到最大视频| 一级二级三级毛片免费看| 免费观看在线日韩| 一级av片app| 国产男女内射视频| 波野结衣二区三区在线| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 欧美激情久久久久久爽电影| 久久精品夜色国产| 中国三级夫妇交换| 久久鲁丝午夜福利片| 国产美女午夜福利| 亚洲av男天堂| 十八禁网站网址无遮挡 | 日韩免费高清中文字幕av| 亚洲熟女精品中文字幕| 久久这里有精品视频免费| 国产免费一区二区三区四区乱码| 日本与韩国留学比较| 成人综合一区亚洲| 嫩草影院入口| 国产精品福利在线免费观看| 天堂网av新在线| 亚洲aⅴ乱码一区二区在线播放| 日韩av不卡免费在线播放| 老女人水多毛片| 一区二区三区四区激情视频| 午夜福利高清视频| 久久精品国产鲁丝片午夜精品| 青青草视频在线视频观看| 欧美精品一区二区大全| 又爽又黄a免费视频| 日本av手机在线免费观看| 久久久久久九九精品二区国产| 新久久久久国产一级毛片| 69人妻影院| 国产爱豆传媒在线观看| 国产大屁股一区二区在线视频| 亚洲,一卡二卡三卡| 午夜福利在线在线| 日韩视频在线欧美| 久久午夜福利片| 成人黄色视频免费在线看| 赤兔流量卡办理| 亚洲av免费高清在线观看| 日本wwww免费看|