• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios

    2021-04-22 05:34:14WenjunYANG楊文軍GuoqiangLI李國強XueyuGONG龔學余XiangGAO高翔andXiaoeLI李小娥
    Plasma Science and Technology 2021年4期
    關鍵詞:李國強高翔

    Wenjun YANG(楊文軍),Guoqiang LI(李國強),Xueyu GONG(龔學余),Xiang GAO(高翔) and Xiaoe LI(李小娥)

    1 University of South China,Hengyang 421001,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract In this paper,NOVA/NOVA-K codes are used to investigate the stability of Alfvén eigenmodes(AEs)in the China Fusion Engineering Test Reactor(CFETR).Firstly,the stability of AEs excited by energetic alpha particles is investigated.For the fully non-inductive scenario,it is found that all AEs are stable,and the least stable toroidal mode number is n=8.However,for the hybrid mode scenario,it is found that many AEs are unstable,and the least stable toroidal mode numbers are n=7,8.Secondly,the effect of energetic alpha-particle parameters and beam ions on AE stability is also presented.The threshold of the least stable AE is about,less than the value of alpha-particle beta(βα=1.34%).The result demonstrates that the AEs excited by alpha particles are weakly unstable.The effect of the beam ions on AE stability is found to be very weak in CFETR.

    Keywords:energetic particle,Alfvén eigenmode,NOVA/NOVA-K,CFETR

    1.Introduction

    The China Fusion Engineering Test Reactor(CFETR)is the next device in the roadmap for the realization of fusion energy in China[1,2],aiming to fill the gap between ITER[3]and DEMO[4].Significant success has been achieved in the engineering and physics design of CFETR during the past few years[5-7].In the meantime,for CFETR fusion plasma,many vital physical issues still have not been studied or understood.The stability of Alfvén eigenmodes(AEs),such as toroidal Alfvén eigenmodes(TAEs)[8],is one such issue.In the future of burning plasmas,both auxiliary heating and fusion reaction could generate energetic particles(EPs).On one hand,these EPs could heat the plasma via collisions with background ions and electrons.On the other hand,they also could excite various instabilities,such as energetic particle modes(EPMs)[9,10]and AEs[11-14].These instabilities could cause great alphaparticle loss,potentially destroying the first wall[15].Therefore,it is vital to investigate the characteristics of EPs and illuminate the effect of AE instabilities in CFETR.

    In tokamak plasmas,the instabilities of AEs excited by EPs are very common[16-18].In the past several decades,both experimental and theoretical studies of AEs have been carried out[19-21].The linear stability of AEs driven by EPs has been investigated in ITER[22-26]and CFETR[8,18].Based on small-size parameters with minor radiusa=1.6 m,major radiusR=5.7 m andBT=5.0 T,the work shows that TAEs are almost all stable[8].Based on larger ones witha=1.8 m,R=7.0 m andBT=5.7 T,GEM code[27]was used to investigate the AE stability in CFETR,showing that AEs excited by energetic alpha particles are strongly unstable[18].There are obvious differences between the two works;thus,the stability of AEs needs to be widely investigated based on the latest CFETR parameters.

    In this paper,the NOVA/NOVA-K codes[28,29]are used to investigate AE instabilities excited by EPs in CFETR.The linear characteristics of AEs have been investigated in tokamaks such as TFTR[30],JET[31]and DIII-D[32].Both the energetic alpha particles originated from fusion reaction and the beam ions generated from neutral beam injection(NBI)are considered in our study.Widespread linear simulations of AE instabilities have been carried out based on the latest CFETR parameters.First,it has been found that all AEs are stable and the least stable toroidal mode number is aboutn=8 for the CFETR fully non-inductive scenario(SCN).However,for the CFETR hybrid mode scenario(SCH)it is found that many AEs are unstable,and the most unstable toroidal mode numbers are aboutn=7,8.The excitation threshold of the least stable AE(n=8)is aboutβα0=1.12%,little less than the central alphaparticle beta(βα=1.34%).Second,the effect of the alphaparticle parameters and beam ions on AE instabilities is also presented in this paper.

    Table 1.Plasma parameters for the CFETR SCN and SCH scenarios.

    The paper is organized as follows:section 2 introduces the two different CFETR scenarios obtained through the integrated simulation.The stability analysis of the AEs for the CFETR SCN and SCH scenarios is shown in section 3.Section 4 gives the effect of the alpha-particle parameters and beam ions on AE instabilities.A brief discussion and summary are presented in section 5.

    2.CFETR scenarios

    Two different CFETR scenarios have been considered:SCN and SCH scenarios[33].The latest CFETR’s size is larger than ITER’s[3].The device isR=7.2 m anda=2.2 m in size,κ=2,δ=0.8 andBT(0)=6.5 T with a lower single null.Here we just consider the cases with the total fusion powerPf≈1000 MW.Table 1 shows the main plasma parameters for the two different CFETR scenarios.Pcdis the current drive power,andnbar/nGRis the ratio to Greenwald limit.SCN is a reversed shearqscenario,and auxiliary heating and current drive(H&CD)method is electron cyclotron wave(ECW)and NBI[34,35].SCH is a hybrid scenario,and the H&CD method is the combination of NBI,ECW,fast wave(FTW)[33]and/or low hybrid wave(LHW).Figure 1 shows the plasma equilibrium profiles of the relevant quantities.

    The energetic alpha-particle distribution in velocity space is an isotropic slowing-down distribution,and can be written as follows[36]

    whereS0andτsare the alpha-particle source intensity and slowing-down time,vcandαvare the slowing-down critical velocity and the maximum of the EP velocity respectively.Both alpha-particle betaβαand beam-ion betaβNBwere calculated using ONETWO code[37].The alpha-particle beta profiles for the CFETR SCN and SCH scenarios are shown in figure 2.

    3.Simulation results

    The NOVA/NOVA-K codes are used to investigate AE stability in CFETR.The kinetic effect of EPs is dealt with based on the drift-kinetic equation.The codes could deal with various damping mechanisms,including electron and ion Landau damping,electron collisional damping,radiative damping and continuum damping,and the codes also include the effect of finite Larmor radius(FLR)and finite orbit width(FOW)[38].AEs instabilities excited by the alpha particles will be presented in this section.

    3.1.Fully non-inductive scenario

    We will first consider the case of SCN.Based on the equilibria and profiles shown in section 2,the calculation results for all AEs found in the TAE gaps are shown in figure 3 for the SCN scenario.The range of toroidal mode number is 1≤n≤12.Our calculations show that the middle-n modes are the least stable case,and the drive of the high-n modes decrease withnincreasing,thus it is reasonable that the range is limited ton≤12.γα/γdampmeans the ratio of EPs’drive to total damping.If the ratioγα/γdamp>1,then AE is unstable.n=8 withthe driveγα/ω≈0.51%.The calculation result canbe explained asfollows.Theoretically,the drive is peaked atk⊥·Δorb~1[39-41],wherek⊥≈nq/rand Δorb≈m υ‖/eB.Because the minor radius and toroidal From figure 3(a)we can see that withnincreasing,the drive first increases and then decreases,and the peak drive occurs inn=8 TAE withγα/γdamp≈0.1is the least stable mode.The magnetic field in CFETR are relatively larger than those in present tokamaks,the least stable mode number tends to be more big.

    From figure 3(b)it is found that all AEs are stable,and corresponding mode structure is presented in figure 4(c),which demonstrates that the dominant poloidal harmonics arem=32 andm=33.Figure 4 shows the mode structures for the least stable eigenmodes withn=6,7,8.In order to better understand the calculated mode structures,the shear Alfvén continuous spectra withn=6,7,8 are shown in figure 5.It can be seen that the dominant poloidal harmonics are pairs of two neighboring harmonics for these modes.Furthermore,the calculation results show that the mode locations and frequencies are located within TAE gaps.Thus,they are all TAEs.

    Figure 1.Equilibrium profiles of(a)electron and ion temperatures,electron density and(c)safety factor for the CFETR SCN,(b)electron and ion temperatures,electron density and(d)safety factor for the CFETR SCH.The sqrt(Ψ)means the square root of normalized poloidal flux.

    Figure 2.The alpha-particle beta profiles for the CFETR(a)SCN and(b)SCH.

    The damping calculations mainly include the collisional damping,Landau damping and radiative damping.In order to illustrate the relative contributions of the three damping mechanisms,figure 6 shows the ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number.From the figure,we can see that both the collisional damping and the radiative damping are the main damping mechanisms.

    3.2.Hybrid mode scenario

    For the case of SCH,the calculation results for all AEs found in the TAE gaps are shown in figure 7.The range of toroidal mode number is also 1≤n≤12.As shown in figure 7(a),withnincreasing,the drive from the energetic alpha particles first increases and then decreases,and the peak drive occurs inn=8.The calculation result shows that the peak drive isThe result isconsistent with the previous theoreticalanalysis.From fgiure7(b)it can beseenthatmanyAEs are unstable,and the most unstable modes are ann=7 reversed shear Alfvén eigenmode(RSAE)withγα/γdamp≈1.19and ann=8 TAE withγα/γdamp≈1.20.The corresponding mode structure withn=7 is shown in figure 8(a),which demonstrates that the poloidal harmonic withm=9 is dominant.The mode,shown in fgiure 9(a),is located inside the TAE gap and near theqminposition,which confirms that it is a RSAE[42].The corresponding mode structure with then=8 is presented in figure 8(b),which demonstrates that the dominant poloidal harmonics arem=11 andm=12.The mode location and mode frequency are located within TAE gap.Thus it is a TAE.

    Figure 3.AE stability analysis for the CFETR SCN scenario.(a)Energetic alpha-particle drive(γα / ω)for all modes found in TAE gaps to toroidal mode number.(b)The ratio of energetic alpha-particle drive to total damping(γα /γdamp)for the modes in(a).For a given n,we have found many AEs in the TAE gaps and the different colors are used to differentiate these AEs.

    Figure 4.Mode structures for the least stable eigenmodes with toroidal mode numbers n=6,7,8.ξψ=ξ·?ψ/∣?ψ∣means the component of the perturbed displacement in the direction.

    Figure 5.Alfvén continuum spectra of SCN with n=6,7,8.

    Figure 6.Relative contributions of various dampings in SCN.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number. γi is the respective damping and is normalized to the sum of all dampings.

    For the case of SCH,the damping calculations also include the collisional damping,Landau damping and radiative damping.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number is shown in figure 10.From the figure,we can see that the collisional damping is the main damping mechanism forn=1 to 12.

    4.Effect of plasma parameters on AE stability

    4.1.Effect of alpha-particle beta on AE stability

    To see the sensibility effect of our profiles selection,we have investigated their effect on the AE stability for then=8 most unstable case for the CFETR SCH scenario.The plasma profiles shown in figure 1 are unchanged in our calculations,and the other plasma parameters are kept fixed when rescaling the alpha-particle beta.Based on the alpha-particle beta profile presented in figure 2(b),here it is just multiplied by a constant.Because the EP effects on the mode structure and frequency are neglected in NOVA-K code,the growth rate is linearly proportional to the energetic alpha-particle beta.We can obtain that the threshold for then=8 TAE is aboutβα0=1.12%,little less than the central alpha-particle betaβα=1.34%.

    In order to study the effect of alpha-particle pressure gradient on the AE stability,the alpha-particle profile distribution has been changed but the central alpha-particle beta is fixed,which is shown in figure 11.The gradients are obviously different near the axis.The corresponding calculation results are presented in table 2.The total dampings are unchanged and there is little effect on the drive of energetic alpha particles for the three cases.The linear growth rate(γ)of TAE induced by alpha particles is written by[43].

    whereωTAEandω* are the TAE eigenfrequency and the diamagnetic drift frequency of EPs respectively,fris the fraction of resonant particles,γdandqare the total damping and the safety factor respectively.Based on the drive term expression in equation(2),with the pressure gradient increasing,the valueω*(∝?βα/ ?r)will increase,thus the drive(γα/ω)will increase.However the decrease of the alpha-particle beta will make the drive decrease.The competition between the increase of the pressure gradient and the decrease of the alpha-particle beta makes the drive almost unchanged.On the contrary,with the gradient decreasing,the drive will decrease; however,the increase of the alpha-particle beta will make the drive increase.The competition between the decrease of the pressure gradient and the increase of the alpha-particle beta also makes the drive almost unchanged.Thus the growth rate is almost kept unchanged for the three cases.

    Figure 7.AE stability analysis for the CFETR SCH scenario.(a)Energetic alpha-particle drive(γα / ω)for all modes found in TAE gaps to toroidal mode number.(b)The ratio of energetic alpha-particle drive to total damping(γα /γdamp)for the modes in(a).For a given n,different colors are used to differentiate the AEs.

    Figure 8.Mode structures of dominant poloidal harmonics in direction for the most unstable eigenmodes.(a)n=7 RSAE with the dominant poloidal harmonic m=9.(b)n=8 TAE with the dominant poloidal harmonics m=11 and m=12.

    4.2.The effect of the beam ions on AE stability

    Here we consider the case that the beam ions with energyENB=500keV are injected on-axis in the CFETR SCH scenario.The species of the beam ion is deuterium.The beam ions have a slowing-down distribution in velocity space and are distributed exponentially in pitch angle

    Figure 9.Alfvén continua for(a)n=7 and(b)n=8.The dark lines indicate the mode positions and mode frequencies.

    Figure 10.Relative contributions of various dampings in SCH.The ratio of the three damping mechanisms for average fractional contribution over all modes versus toroidal mode number γi is the respective damping.

    wherecis a normalization factor,His the step function,υ0is the beam particle injection speed,andυcis the critical velocity given by

    Figure 11.Three different alpha-particle beta profile distributions in thedirection for the origin beta,high gradient beta and low gradient beta.

    Table 2.Drive and total damping for the three cases.

    Figure 12.Alpha-particle and beam-ion beta profiles for the SCH scenario.

    Table 3.Drive from the energetic alpha particles and beam ions.

    Λ is the pitch angle parameter,Λ0=0.4,ΔΛ=0.2.The distribution of the beam ions in the radial direction is calculated using ONETWO code.The alpha-particle and beam-ion beta profiles are shown in figure 12.The other plasma parameters are fixed while investigating the effect of the beam ions on AE stability.The drive from the beam ions is aboutγNB/ω=0.02%,far less than the drive from the alpha particles for then=8 most unstable case.We also investigate the effect of beam-ion energy on the AE stability.The calculation results are shown in table 3.The selected energy range is about 200 keV to 600 keV.The drive from the alpha particles is kept unchanged in our calculations.We observe that whenENBincreases,the drive from the beam ions(γNB/ω)firstly increases,and then saturates at aboutENB=400 keV,and finally decreases.This is because the beam ions are sub-Alfvénic,the drive must mainly come from theVA/ 3resonance.

    5.Discussion and summary

    In this paper,the NOVA/NOVA-K codes are used to investigate the stability of AEs excited by EPs,based on the CFETR SCN and SCH scenarios.Firstly,the stability of AEs driven by the alpha particles is investigated.For the SCN scenario,it is found that all AEs are stable and then=8 TAE withγα/ω≈0.51%is the least stable mode.However,for the SCH scenario,it is found that many AEs are unstable,and the most unstable toroidal mode numbers are aboutn=7,8.The drive of then=8 TAE(γα/ω≈3.24%)is slightly bigger than that of then=7 mode.Because the minor radius and toroidal magnetic field in CFETR are relatively larger than those in present tokamaks,the most unstable toroidal mode number tends to be bigger.

    The effect of alpha-particle parameters on AE stability is presented.Because the growth rate is linearly proportional to the energetic alpha-particle beta in NOVA-K,the threshold is discovered to be aboutβcrit,α=1.12%,little less than the estimated value of alpha-particle beta(βα=1.34%)for then=8 most unstable case.The results demonstrate that AEs excited by the alpha particles are weakly unstable in CFETR,at least for the parameters presented in our work.However,in the work of Ren et al[18],the excitation threshold is aboutβcrit,α=0.2%,which is far less than our result.This can be explained as follows.Firstly,there is big difference in device parameters and profiles between our work and that of reference[18].Secondly,the model of reference[18]is non-perturbative and gyrokinetic whereas NOVA-K is perturbative and drift-kinetic model.Lastly,their model can not deal with the electron collisional damping,which turns out to be an important damping mechanism in our work.

    The effect of the beam ions on AE stability is also presented.The drive from the beam ions is aboutγNB/ω=0.02%,far less than the drive from the alpha particles for then=8 most unstable case.The beam ions are mainly localized close to the axis(≈0.1); however,the TAE mode structure is mainly located around≈0.4.Thus the drive from the beam ions for this TAE is very weak.On the other hand,because the beam ions are sub-Alfvénic,the drive must mainly come from the less efficientVA/3 resonance.Thus the contribution of the beam ions is found to be very weak in CFETR.

    The work aims to linearly investigate the stability of AEs excited by EPs in CFETR.The results demonstrate that all AEs found in TAE gaps are stable or weakly unstable for the two CFETR scenarios,and the effect of the beam ions is found to be very weak.These work will offer some guidance to reduce AEs instabilities for the CFETR design.However,non-linear simulations are needed to correctly evaluate effect of the EP transport on background plasma.To offer a more decisive guidance for the CFETR design,we will carry out self-consistent non-linear simulation in future work.

    Acknowledgments

    The authors would like to acknowledge Prof.G Y Fu for his suggestion and discussion.Numerical computations were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics,Chinese Academy of Sciences.This work was supported by National Natural Science Foundation of China(Nos.11947056 and 12005100),the Natural Science Foundation of Hunan Province(No.2020JJ5468),the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFY15),the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(No.2018WK4009),and the Key Scientific Research Program of Education Department of Hunan Province(No.20A417).

    猜你喜歡
    李國強高翔
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    Rotor performance enhancement by alternating current dielectric barrier discharge plasma actuation
    Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST
    高職院校“技術差序”育人體系研究
    高級駕駛輔助系統(tǒng)課程教學探索
    Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
    Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection?
    Recent results of fusion triple product on EAST tokamak
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    我家是個動物園
    91国产中文字幕| 国产乱来视频区| 美国免费a级毛片| 久久国产亚洲av麻豆专区| 日韩成人av中文字幕在线观看| 丰满乱子伦码专区| 高清av免费在线| 色哟哟·www| 一级a做视频免费观看| 制服人妻中文乱码| 国产精品女同一区二区软件| 久久综合国产亚洲精品| 久久人人爽av亚洲精品天堂| 亚洲欧洲精品一区二区精品久久久 | 国产成人一区二区在线| 在线精品无人区一区二区三| 91精品三级在线观看| 国产欧美亚洲国产| 国产免费现黄频在线看| 国产男女超爽视频在线观看| 熟女电影av网| 男女下面插进去视频免费观看 | 女性被躁到高潮视频| 51国产日韩欧美| 免费黄色在线免费观看| 日本av免费视频播放| 91国产中文字幕| 99香蕉大伊视频| 精品久久久久久电影网| av免费在线看不卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲av福利一区| 男女边吃奶边做爰视频| 久久午夜综合久久蜜桃| 日本av手机在线免费观看| 黄色怎么调成土黄色| 久久韩国三级中文字幕| 一级毛片我不卡| 女性被躁到高潮视频| 在线免费观看不下载黄p国产| 久久久精品区二区三区| 久久久久久久国产电影| 久久久久久人妻| 国产深夜福利视频在线观看| 新久久久久国产一级毛片| 久久久国产欧美日韩av| 国产高清三级在线| 精品亚洲成国产av| 国产日韩欧美亚洲二区| 国产亚洲av片在线观看秒播厂| 国产色爽女视频免费观看| 国产淫语在线视频| 一区二区日韩欧美中文字幕 | av.在线天堂| 一级毛片黄色毛片免费观看视频| 国产免费一级a男人的天堂| 亚洲精品aⅴ在线观看| 视频在线观看一区二区三区| 只有这里有精品99| 国产精品偷伦视频观看了| 日本av免费视频播放| 国产极品粉嫩免费观看在线| 美女国产视频在线观看| 成人国产av品久久久| 色网站视频免费| 亚洲第一区二区三区不卡| 纵有疾风起免费观看全集完整版| 精品福利永久在线观看| 男的添女的下面高潮视频| 蜜臀久久99精品久久宅男| 制服诱惑二区| 精品一区二区三区四区五区乱码 | 熟女电影av网| 午夜福利网站1000一区二区三区| 国产精品 国内视频| 两性夫妻黄色片 | 黄片播放在线免费| 国产av国产精品国产| 美女内射精品一级片tv| 婷婷色综合www| 9热在线视频观看99| 一级黄片播放器| 欧美 日韩 精品 国产| 精品亚洲乱码少妇综合久久| 夜夜爽夜夜爽视频| 伦精品一区二区三区| 90打野战视频偷拍视频| 成人毛片a级毛片在线播放| 91aial.com中文字幕在线观看| 草草在线视频免费看| 高清av免费在线| 亚洲色图综合在线观看| 2021少妇久久久久久久久久久| 亚洲五月色婷婷综合| 亚洲国产欧美日韩在线播放| 久久久a久久爽久久v久久| 日韩成人伦理影院| 精品国产一区二区三区久久久樱花| 亚洲一码二码三码区别大吗| 午夜日本视频在线| 国产麻豆69| 狂野欧美激情性xxxx在线观看| 美女福利国产在线| 人妻少妇偷人精品九色| 18禁动态无遮挡网站| 青春草视频在线免费观看| 久久久久精品人妻al黑| 久久99一区二区三区| 男人操女人黄网站| 各种免费的搞黄视频| 日本午夜av视频| 七月丁香在线播放| 欧美少妇被猛烈插入视频| 中文精品一卡2卡3卡4更新| 亚洲国产欧美在线一区| av福利片在线| 精品久久久久久电影网| 伦理电影免费视频| 99九九在线精品视频| 欧美成人午夜精品| 亚洲av在线观看美女高潮| 成人午夜精彩视频在线观看| 国产成人精品福利久久| 99久久中文字幕三级久久日本| 精品午夜福利在线看| 黑人欧美特级aaaaaa片| 91久久精品国产一区二区三区| 国产精品秋霞免费鲁丝片| 多毛熟女@视频| 18禁在线无遮挡免费观看视频| 欧美精品亚洲一区二区| 欧美成人午夜免费资源| 午夜视频国产福利| 亚洲人成77777在线视频| 亚洲人成77777在线视频| 国产极品天堂在线| 亚洲精品乱久久久久久| 美女xxoo啪啪120秒动态图| 亚洲高清免费不卡视频| 一二三四在线观看免费中文在 | 少妇高潮的动态图| 天天操日日干夜夜撸| 26uuu在线亚洲综合色| 欧美另类一区| 大片免费播放器 马上看| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 人人妻人人爽人人添夜夜欢视频| 免费女性裸体啪啪无遮挡网站| 香蕉国产在线看| 高清av免费在线| 18禁在线无遮挡免费观看视频| 人妻系列 视频| 久热久热在线精品观看| videos熟女内射| 国产毛片在线视频| 亚洲一码二码三码区别大吗| 最新中文字幕久久久久| 激情五月婷婷亚洲| av卡一久久| 国产在视频线精品| 久热久热在线精品观看| 成人午夜精彩视频在线观看| 99视频精品全部免费 在线| 久久久亚洲精品成人影院| 国产成人91sexporn| 观看美女的网站| 黄色视频在线播放观看不卡| 亚洲精品国产av蜜桃| 久热这里只有精品99| 国产精品.久久久| av网站免费在线观看视频| 精品久久久久久电影网| 日韩成人av中文字幕在线观看| 9热在线视频观看99| 涩涩av久久男人的天堂| 午夜视频国产福利| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久小说| 在线观看国产h片| 在现免费观看毛片| 精品人妻一区二区三区麻豆| 日本黄色日本黄色录像| 精品人妻偷拍中文字幕| 亚洲综合色惰| 看免费av毛片| 99热全是精品| 成年动漫av网址| 一级毛片黄色毛片免费观看视频| 久久精品国产自在天天线| 国产高清国产精品国产三级| 曰老女人黄片| 一个人免费看片子| 亚洲成色77777| 美女主播在线视频| 欧美性感艳星| 九色亚洲精品在线播放| 日本欧美视频一区| 美女脱内裤让男人舔精品视频| 中文字幕人妻熟女乱码| 青春草亚洲视频在线观看| 下体分泌物呈黄色| 亚洲欧美色中文字幕在线| 国产高清不卡午夜福利| 精品国产乱码久久久久久小说| 精品第一国产精品| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 女性生殖器流出的白浆| 久久99精品国语久久久| 黄片无遮挡物在线观看| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 日本91视频免费播放| 国产高清不卡午夜福利| 视频区图区小说| 天堂8中文在线网| 国产日韩欧美视频二区| 久久狼人影院| 寂寞人妻少妇视频99o| 成人国语在线视频| 最后的刺客免费高清国语| 在线亚洲精品国产二区图片欧美| 日韩在线高清观看一区二区三区| 日韩人妻精品一区2区三区| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 亚洲精品国产av蜜桃| 热99久久久久精品小说推荐| 中文天堂在线官网| 高清av免费在线| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 国产极品粉嫩免费观看在线| av在线播放精品| 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 最黄视频免费看| 热re99久久国产66热| 三上悠亚av全集在线观看| 日韩熟女老妇一区二区性免费视频| 极品人妻少妇av视频| 国产精品久久久久久精品电影小说| 另类亚洲欧美激情| 男人操女人黄网站| 欧美日韩视频高清一区二区三区二| 黄网站色视频无遮挡免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 中国三级夫妇交换| av电影中文网址| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线| 国产精品秋霞免费鲁丝片| 丝袜美足系列| 亚洲美女搞黄在线观看| 久久久国产精品麻豆| 成人国产麻豆网| 久久97久久精品| 丝瓜视频免费看黄片| 免费av不卡在线播放| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| 丁香六月天网| av网站免费在线观看视频| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 捣出白浆h1v1| 欧美人与性动交α欧美精品济南到 | 国产精品久久久av美女十八| 亚洲av日韩在线播放| 久久久久视频综合| 女性被躁到高潮视频| 免费人成在线观看视频色| 22中文网久久字幕| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 久久久久久久久久成人| 欧美精品一区二区免费开放| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 久久久久久久久久久免费av| 极品人妻少妇av视频| 婷婷色综合www| 精品国产一区二区三区四区第35| 亚洲av欧美aⅴ国产| 欧美国产精品一级二级三级| 在线免费观看不下载黄p国产| 国产不卡av网站在线观看| 两性夫妻黄色片 | 国产在线一区二区三区精| 在线天堂最新版资源| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡 | 国产精品久久久久成人av| 一级爰片在线观看| a级毛片在线看网站| 黄片播放在线免费| 中文字幕制服av| 大陆偷拍与自拍| 亚洲综合色网址| 秋霞在线观看毛片| 捣出白浆h1v1| 亚洲综合色惰| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 女性生殖器流出的白浆| 最近最新中文字幕免费大全7| 91精品国产国语对白视频| 久久久国产欧美日韩av| 亚洲av日韩在线播放| av天堂久久9| 三上悠亚av全集在线观看| 国产熟女欧美一区二区| 啦啦啦在线观看免费高清www| 在线免费观看不下载黄p国产| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 免费日韩欧美在线观看| 免费人成在线观看视频色| 国产一区二区三区av在线| 美女内射精品一级片tv| 欧美97在线视频| 欧美亚洲 丝袜 人妻 在线| 日日摸夜夜添夜夜爱| tube8黄色片| 全区人妻精品视频| 免费av中文字幕在线| 国产精品久久久久久精品古装| 成人亚洲精品一区在线观看| av又黄又爽大尺度在线免费看| 少妇 在线观看| 日本黄色日本黄色录像| 色婷婷av一区二区三区视频| 9热在线视频观看99| 91精品三级在线观看| 女人精品久久久久毛片| 国产 精品1| 久久久久精品人妻al黑| 成人国语在线视频| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 桃花免费在线播放| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 亚洲一级一片aⅴ在线观看| 一二三四在线观看免费中文在 | 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 国产成人一区二区在线| 美女国产视频在线观看| 水蜜桃什么品种好| 五月开心婷婷网| 国产片内射在线| 伊人久久国产一区二区| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 精品亚洲成a人片在线观看| 美女大奶头黄色视频| 亚洲色图综合在线观看| 国产又爽黄色视频| 欧美精品一区二区免费开放| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 国产 精品1| 女性生殖器流出的白浆| 日本猛色少妇xxxxx猛交久久| 国产成人欧美| 国产成人精品久久久久久| 国产片内射在线| 免费黄网站久久成人精品| 男女下面插进去视频免费观看 | 91精品三级在线观看| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| 欧美最新免费一区二区三区| 一级a做视频免费观看| 黄色 视频免费看| 日本-黄色视频高清免费观看| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 日产精品乱码卡一卡2卡三| videossex国产| 久久这里有精品视频免费| 最新中文字幕久久久久| 曰老女人黄片| 成人免费观看视频高清| 一级毛片电影观看| 亚洲av在线观看美女高潮| 超色免费av| 高清欧美精品videossex| 精品人妻熟女毛片av久久网站| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品蜜桃在线观看| 在线看a的网站| 日日摸夜夜添夜夜爱| 考比视频在线观看| 国产精品秋霞免费鲁丝片| 99热6这里只有精品| 国产av码专区亚洲av| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 一区在线观看完整版| 久久久久精品性色| 看十八女毛片水多多多| 一级毛片电影观看| 男女午夜视频在线观看 | 久久久精品区二区三区| 亚洲av日韩在线播放| 国产1区2区3区精品| 国产成人午夜福利电影在线观看| 十分钟在线观看高清视频www| 亚洲精品中文字幕在线视频| 永久免费av网站大全| 精品少妇内射三级| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频 | xxxhd国产人妻xxx| 一区二区日韩欧美中文字幕 | 国产精品熟女久久久久浪| av有码第一页| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 日韩精品有码人妻一区| 亚洲精品第二区| 亚洲av日韩在线播放| 国产免费一区二区三区四区乱码| 蜜桃在线观看..| xxx大片免费视频| 老熟女久久久| 成人黄色视频免费在线看| 最近的中文字幕免费完整| 插逼视频在线观看| 久久久久久久精品精品| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 蜜臀久久99精品久久宅男| av女优亚洲男人天堂| 人体艺术视频欧美日本| 久久99热6这里只有精品| 亚洲av电影在线进入| 看免费av毛片| 少妇的逼水好多| 黑人高潮一二区| 乱人伦中国视频| 国产熟女午夜一区二区三区| 少妇熟女欧美另类| 中文天堂在线官网| 我要看黄色一级片免费的| 国产在线免费精品| 国产精品女同一区二区软件| 国产av一区二区精品久久| 在线观看三级黄色| 亚洲图色成人| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 亚洲精品aⅴ在线观看| 一本大道久久a久久精品| 久久久久久久久久久免费av| 国产成人av激情在线播放| 国产午夜精品一二区理论片| 又粗又硬又长又爽又黄的视频| 男女午夜视频在线观看 | 亚洲美女搞黄在线观看| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 亚洲成人手机| 少妇被粗大的猛进出69影院 | 一二三四在线观看免费中文在 | 国产亚洲最大av| 国产又爽黄色视频| 99久久中文字幕三级久久日本| 乱人伦中国视频| 国产国语露脸激情在线看| 啦啦啦啦在线视频资源| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 成人毛片60女人毛片免费| 亚洲四区av| 亚洲第一区二区三区不卡| 午夜91福利影院| 人人妻人人澡人人爽人人夜夜| 黄色毛片三级朝国网站| 亚洲成av片中文字幕在线观看 | 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 成人手机av| 国产乱来视频区| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 男人爽女人下面视频在线观看| 日本黄大片高清| 高清欧美精品videossex| 熟女电影av网| 性色avwww在线观看| 色网站视频免费| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 伦理电影大哥的女人| 黄色毛片三级朝国网站| 岛国毛片在线播放| 高清不卡的av网站| 黄色一级大片看看| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 国产精品久久久久久av不卡| 久久久国产精品麻豆| 嫩草影院入口| 成人毛片60女人毛片免费| 久久久久久久精品精品| 亚洲在久久综合| 天美传媒精品一区二区| 国产在线视频一区二区| 中国国产av一级| 国产又色又爽无遮挡免| 伦理电影免费视频| 蜜桃在线观看..| av天堂久久9| 人妻一区二区av| 观看美女的网站| 不卡视频在线观看欧美| 观看美女的网站| 国产探花极品一区二区| 黄色怎么调成土黄色| 久久久久国产网址| av在线播放精品| 亚洲中文av在线| 大片免费播放器 马上看| 国产高清不卡午夜福利| 一级毛片我不卡| 久久人妻熟女aⅴ| 五月天丁香电影| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 国产极品天堂在线| 天堂俺去俺来也www色官网| 亚洲色图 男人天堂 中文字幕 | 国产白丝娇喘喷水9色精品| 嫩草影院入口| 日本免费在线观看一区| 五月天丁香电影| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 男人操女人黄网站| 高清毛片免费看| 免费不卡的大黄色大毛片视频在线观看| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| 国产精品国产av在线观看| 9色porny在线观看| 国产成人精品福利久久| av国产久精品久网站免费入址| 美女脱内裤让男人舔精品视频| 一本大道久久a久久精品| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 欧美丝袜亚洲另类| 成人国产麻豆网| 久久久国产欧美日韩av| 一边亲一边摸免费视频| 国产xxxxx性猛交| 久久久久人妻精品一区果冻| 十八禁网站网址无遮挡| 国产免费一区二区三区四区乱码| 亚洲第一区二区三区不卡| 国产成人aa在线观看| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 七月丁香在线播放| 成年女人在线观看亚洲视频| 成人影院久久| 国产成人精品福利久久| 欧美人与性动交α欧美软件 | 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 成年av动漫网址| 久久久久视频综合| 另类亚洲欧美激情| 亚洲欧美日韩卡通动漫| 久久久久久久久久久免费av| 亚洲四区av| 蜜臀久久99精品久久宅男| 成年av动漫网址| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 国产免费视频播放在线视频| 插逼视频在线观看| 久久精品久久精品一区二区三区| 插逼视频在线观看| 九色亚洲精品在线播放| 哪个播放器可以免费观看大片| 精品人妻一区二区三区麻豆| 国产精品三级大全| 久久婷婷青草| 久久99热这里只频精品6学生| 99国产综合亚洲精品| 日韩 亚洲 欧美在线| 国产一区二区在线观看日韩|