• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST

    2022-08-01 11:34:36ShanluGAO高善露XiaojuLIU劉曉菊GuozhongDENG鄧國(guó)忠TingfengMING明廷鳳GuoqiangLI李國(guó)強(qiáng)XuexiZHANG張學(xué)習(xí)XiaodongWU吳曉東XiaoheWU鄔瀟河BangLI李邦HaochenFAN樊皓塵andXiangGAO高翔
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:李國(guó)強(qiáng)高翔

    Shanlu GAO(高善露),Xiaoju LIU(劉曉菊),Guozhong DENG(鄧國(guó)忠),Tingfeng MING(明廷鳳),Guoqiang LI(李國(guó)強(qiáng)),Xuexi ZHANG(張學(xué)習(xí)),Xiaodong WU(吳曉東),Xiaohe WU(鄔瀟河),Bang LI(李邦),Haochen FAN(樊皓塵) and Xiang GAO(高翔),,?

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    Abstract An investigation into tungsten(W)impurity behaviors with the update of the EAST lower W divertor for H-mode has been carried out using SOLPS-ITER.This work aims to study the effect of external neon(Ne)impurity seeding on W impurity sputtering with the bundled charge state model.As the Ne seeding rate increases,plasma parameters,W concentration(CW),and eroded W flux at both targets are compared and analyzed between the highly resolved bundled model ‘jett’ and the full W charge state model.The results indicate that ‘jett’ can produce divertor behaviors essentially in agreement with the full W charge state model.The bundled scheme with high resolution in low W charge states(<W20+)has no obvious effect on the Ne impurity distribution and thus little effect on W sputtering by Ne.Meanwhile,parametric scans of radial particle and thermal transport diffusivities(⊥D and χe,i)in the SOL are simulated using the ‘jett’ bundled model.The results indicate that the transport diffusivity variations have significant influences on the divertor parameters,especially for W impurity sputtering.

    Keywords:tungsten impurity sputtering,bundled charge state model,transport diffusivity,SOLPS-ITER

    1.Introduction

    Tungsten(W)is deemed to be the most promising plasmafacing material(PFM)in modern tokamak devices due to its unique physical properties[1],such as having a high melting point(3683 K),high thermal conductivity,a low fuel retention rate,and a high energy threshold for sputtering[2].Experimental Advanced Superconducting Tokamak(EAST),a superconducting diverted tokamak,has completed the engineering installation and commissioning phase for the new lower divertor being changed from graphite tiles to W tiles.W,as a highZimpurity,is a strong radiator in core plasma.It tends to accumulate in the core region,while exceeding a certain concentration(~10-5)could affect the core confinement and plasma performance.

    Active impurity seeding is a favorable choice to reduce the heat load and electron temperature at W targets to an acceptable level by effective power radiation[3].External impurity seeding with nitrogen(N),neon(Ne)and argon(Ar),for example,could influence the plasma behaviors and W impurity transport in tokamaks.The behaviors of W impurity sputtered from targets play critical roles in plasma performance for tokamaks[4,5].

    SOLPS-ITER is considered to be an important tool for studying the W sputtering and transport with external impurity seeding at present,however,it needs a relatively long computational time to reach steady state,especially when considering W impurity with 74 ionization states and external seeding impurity.Various W bundling schemes,including highly resolved and aggressively bundled models,are compared and analyzed in our previous work for different divertor conditions of L-mode on EAST[6].It indicates that W bundled charge state models provide a marked enhancement in computation speed by a factor of more than five.Besides,it can describe well divertor plasma parameters at targets with a discrepancy of less than 15% for various bundling schemes.It is also found that the discrepancies between net W erosion and deposition are modest among bundled charge state models and full W treatment in ASDEXUpgrade[7].However,radiative impurity seeding is not considered in either of these works.To test the reliability of the W bundled model with external impurity seeding,simulation results from the bundled model ‘jett’[7]are compared to those of the full W model.Further simulation with the bundled model ‘jett’ is carried out to study the W target sputtering and W impurity behaviors with transport diffusivity scans during Ne impurity seeding.

    The structure of the paper will be as follows.Section 2 comprises the modeling assumptions and brief descriptions of the bundling scheme in SOLPS-ITER code.We mainly focus on the simulation study of W impurity behaviors in section 3 with all W charge state and bundling charge state models respectively.The detailed comparison of W impurity sputtering based on the scan of the Ne puffing rate is also presented in the section.Analysis of the influence of radial particle and thermal diffusivities on W impurity sputtering is included as well.A summary and discussions are presented in section 4.

    2.SOLPS-ITER parameter setups

    2.1.Boundary conditions and modeling assumptions

    SOLPS-ITER[8]is applied for edge plasma simulation,which couples the B2.5 multi-fluid plasma code with EIRENE Monte Carlo neutral transport solver.W and Ne are treated as impurity species in the simulation.The electron,deuterium ion+D,seeded Ne species(N e1+,Ne2+,…,Ne10+)and each ionization state of W(W1+,W2+,…,W74+)are included in the B2.5 multi-fluid code.EIRENE code handles the transport of neutral particles and solves a series of sources and sinks of energy,particle and momentum,based on the plasma background deduced from B2.5 code.D,D2,Ne,and W are taken into account for neutral dynamics by EIRENE code[9,10].

    Drift effects(E×Band diamagnetic)are not included in the simulation due to the massive computation.We select an EAST H-mode equilibrium provided by equilibrium fitting code(EFIT)in this work.Figure 1 shows the physical mesh for SOLPS-ITER simulation and updated lower divertor.The particle diffusivityD⊥and thermal diffusivityχe=χiprofiles along the outer midplane(OMP)are taken as that in figure 2 for H-mode discharge,following the previous simulations for H-mode[11].The input power entering into the core boundary of the computational region is set toPSOL=2.0 MW.It is divided by electrons and ions evenly.

    Figure 1.Physical mesh for SOLPS-ITER simulation.

    Figure 2.Radial particle and electron/ion thermal diffusivity profiles at OMP.

    In SOLPS-ITER code,W source is produced by the physical sputtering from D,Ne and W species at targets based on the standard Roth–Bohdansky model[12].The particle fluxes of W for each ionization state are set as zero at thecore–edge interface(CEI).We use the SOLPS-ITER version 3.0.7,in which the friction and thermal force terms of impurity transport[13]are deduced from the general Braginskii version of the momentum balance equation rather than using the trace impurity assumption in the previous version[14].Redeposition[15–17],as an important process for influencing net erosion and plasma confinement,needs to be considered when analyzing the erosion of target material.In our simulation,the redeposition coefficient of W is assumed to be 90% at both targets.Compared with the redeposition coefficient of the EAST experiment,the value selected is more conservative[18].

    2.2.Bundled charge state model

    The atomic data of the W bundled scheme are from the ADAS data(model of ‘year 89’)in SOLPS-ITER version 3.0.7.The acceleration of the simulation process after bundling is due to the decrease in the number of conservation equations to be handled.Table 1 shows the scheme of the W bundled model.The numbers shown in the third row represent the partition numbers for the bundled model ‘jett’,which is considerably reduced.The charge state for the bundled particle is not constant but based on the plasma parameters that affect the ionization balance,such as electron density and temperature.The bundled charge state model can shorten the computation time and computer memory remarkably,especially for the simulation including highZimpurity and external impurity seeding.

    Table 1.Bundling scheme of W.

    Table 2.Radiation and W concentration for different models.

    M0 is the full W treatment considering all W charge states separately,including 74 W fluids.M1 ‘jett’ is a highly resolved bundled charge state model with 23 W fluids.M1 bundles W ions partially with the better inclusion of W1+–W20+,which are typically dominant in edge plasma.There is no individual charge state above W20+in the M1 model.A highly resolved bundling scheme with more than 20 W fluids could describe the divertor parameters well to a considerable degree[6].The best approximation of net W erosion is given by the ‘jett’ scheme compared to the full W treatment[7].Therefore,we select the relatively optimal bundling model ‘jett’ in this work.

    3.Modeling results and discussion

    3.1.Divertor behaviors during Ne impurity seeding

    In order to check the discrepancy of plasma behaviors between bundled model ‘jett’ and the all charge states model to the greatest extent,we introduce external impurity seeding.The simulation results are discussed,which emphasize electron temperature,electron density,particle flux,heat flux,radiation and W sputtering at both divertor targets.For the simulation setups,the deuterium ion density at the CEI is set asnD+,CEI=2.0 × 1019m-3.The atom rate of seeded Ne impurity is fixed at ΓNe=1.0 ×1019atoms /s.The low density and seeding rate cause the divertor to operate in the low recycling regime and with high W sputtering,enabling us to better check the accuracy of the‘jett’bundling model.The simulated profiles of electron densityand electron temperaturealong the OMP are shown in figure 3.Thegiven by ‘jett’ is virtually consistent with that of the full W treatment shown in figure 3(a).Considering the underestimation of radiation power loss inside the separatrix[6],for ‘jett’ is a little higher than that of the full W treatment in the core region,but almost the same outside the separatrix.

    Figure 4 shows the simulated plasma parameters at both targets,including electron temperature(Te),heat flux(qdep)and particle flux(Γdep).Parametric values around the strike point(SP)are higher for‘jett’than for the all W charge states model,which could be explained by the underestimation of radiated power loss,as illustrated in table 2.Compared with the all W charge states model,the peak discrepancies ofqdepandTein ‘jett’ are less than 18.5% at the targets.Γdepdiffers slightly in figures 4(c)and(f).This indicates that the bundled model ‘jett’ can describe the divertor parameters well,even for the plasmas under a low recycling regime,when considering the Ne impurity seeding.The discrepancy could be expected to be even smaller in the high recycling regime,according to our previous results[6].

    Figure 3.Profiles of (a)and (b)along the OMP in ‘jett’ and all charge states models,respectively.

    Figure 4.Profiles of Te((a)and(d)), qdep((b)and(e))andΓdep((c)and(f))along inner target and outer target,respectively.

    The impurity radiations by both seeded Ne and sputtered W in various subregions,as well as W concentration at the separatrix,are estimated and shown in table 2.The radiation power loss is dominant in the core region,with only a small proportion in the divertor and the SOL region.For radiation power loss by Ne,there is no significant difference between full W treatment and the ‘jett’ model,elucidating that the bundling scheme ‘jett’ has little influence on the ionization balance and transport of Ne impurity.It mainly depends on the ionization mean free path and the screening effect from background plasma,which are determined by the parametersin the divertor and the SOL region.For radiation power loss of W,there is an obvious discrepancy between the radiation of the‘jett’model and that of the all charge states model.It is affected by the bundling scheme especially for the relatively high charge states.The W concentration of the OMP at the separatrix(Csep,W)is as high as 10-3.Csep,Wof‘jett’is higher than full W treatment,which is no more than 24.5%.

    Figure 5 shows W ion density of different charge states for‘jett’and all charge states models at OMP.The density of low charge states W1+–W20+is lower in the‘jett’model than in the all charge states model.The estimation of radiation power loss in the‘jett’model is lower than that in the full W treatment illustrated in table 2.Considering the higherTeOMPinside the separatrix of ‘jett’,the density of the high charge state W21+–W74+is higher than that of the full W treatment,which also results in largerCsep,W,as shown in table 2.

    Figure 5.Profiles of W ion density for W1+–W20+(a),W21+–W74+(b)and W1+–W74+(c)along the OMP.

    The eroded fluxes of W species at the targets are contributed by D,Ne and W species due to their higher incident energy than the sputtering energy threshold of W material.The formula of eroded W flux,,is expressed as follows.W physical sputtering yieldYW,phyis calculated by using semi-empirical formula[19–24],which is influenced by incident energy and incident particle species.

    3.2.W sputtering with varied Ne seeding rate

    We also scan the Ne puffing rate by varying the values of ΓNe=5.0 ×1018,1.0 ×1019,2.0 ×1019,3.0 ×1019and 4.0 ×1019atoms /s with deuterium densitynD+,CEI=3.0 × 1019m-3.As the atom rate of seeding increases from 5.0 ×1018to 4.0 ×1019atoms /s,the SP values ofTe,qdepandΓdepat both targets are shown in figure 7.Γdepincreases,whileTedecreases,as the Ne puffing rate increases.The value ofqdepdepends not only onΓdepandTe,but also on the power entering into the divertor region and divertor radiation[26].ΓdepandTeplay important roles since the net power in the divertor region is very similar.When the impurity seeding rate is small,Teis still high,and increasedΓdepplays the main role.qdepat inner SP increases as the seeding rate increases from5.0 ×1018to 1.0 ×1019atoms /s.When the seeding rate increases further,the reduction ofTebecomes the important role,thus,qdepgradually reduces when the seeding rate is higher than 1.0 ×1019atoms /s,as shown in 3.0 ×1019atoms /s,the detachment of the outer SP is figure 7(b).Butqdepat the outer SP shows a different trend,which declines gradually,as shown in figure 7(e)for the entire range of Ne seeding rates.The divertor operational regime ranges from high recycling regime to detachment as the Ne puffing rate increases.When the plasma temperature is very low(≤5 eV)at the divertor targets,the divertor is defined as a detachment.It can be observed that the particle flux rolls over near the SP.When the seeding rate exceeds 4.0 ×1019atoms /s at both targets are presented in figures 8 and 9,respectively.Impurity seeding could affect the sputtering and distribution of W impurity.Total W impurity sputtering around SP reduces gradually due to the lowerTeat the targets as the Ne puffing rate increases.W sputtering from deuterium ions is much less in the high recycling regime,therefore,induced by deuterium ions is not shown here.When the Ne seeding rate is not sufficient to suppress W erosion,W self-sputtering plays an important role for total,as indicated in figures 6 and 8.W sputtering is gradually dominated by Ne species,with the increase in Ne seeding rate(ΓNe≥2.0 ×1019atoms/s)shown in figure 9.The disachieved,firstly withTelower than 5 eV,due to more closed geometry for the outer divertor.The peak error of SP values is less than 11.0% at both targets between the two models,which reduces greatly with the increase in Ne seeding rate.

    Ne 18 and ΓNe=4.0 ×1019atoms /s.Low-lying states mainly concrepancy indistributions,with different puffing rates shown in figures 8 and 9 between full W charge state mode and ‘jett’ bundled model,is negligible around SP.

    Figure 10 demonstrates the distribution of W density from different divided ranges,andCWfor high seeding rate centrate in the plasma edge.Good consistency is obtained for the distribution of W density between the bundled model‘jett’and full W treatment in the high seeding rate,especially for W ions with low charge states dominantly concentrated in the divertor and the SOL region,as shown in figures 10(a)and(b).The main differences in the ions above W20+are found in the core region due to the low resolution for high charge states of the bundled model,which would not result in a significant influence on the divertor plasma behaviors.Besides,it can be seen thatCWis generally as low as 10-5inside the separatrix shown in figures 10(g)and(h).The sputtered W impurity at the far SOL region of targets is dominant,while it is relatively lower around SP in the high seeding rate due to lowT.e

    Figure 6.Profiles of by D ion((a)and(d)), by Ne ions((b)and(e))andby W ions((c)and(f))along inner target and outer target,respectively.

    Figure 7.SP values of Te((a)and(d)),qdep((b)and(e))andΓdep((c)and(f))along inner target and outer target,respectively,as functions of Ne puffing rate.

    Figure 8.Profiles of by Ne ions((a)and(d)),by W ions((b)and(e))and total((c)and(f))along inner target and outer target,respectively,for ΓN e=5.0 ×1018atoms /s.

    Figure 9.Profiles of by Ne ions((a)and(d)),by W ions((b)and(e))and total((c)and(f))along inner target and outer target,respectively,for ΓN e=4.0 ×1019atoms /s.

    Figure 10.Density of W1+–W9+((a)and(b)),W10+–W20+((c)and(d)),W21+–W74+((e)and(f))andCW((g)and(h))in all charge states and ‘jett’ models,respectively,for ΓN e=4.0 ×1019atoms /s.

    Figure 11.Radial particle and thermal diffusivity setting and scan in SOL.

    3.3.Influence of transport diffusivity on W sputtering

    Generally,radial particle and thermal transport diffusivities are inverted by the plasma profiles,mostly because it is difficult to measure the transport diffusivities in many present tokamak experiments.BOUT++ transport code is widely used to predict the impact of radial transport diffusivities on SOL particle and heat flux widths under different mechanisms[27,28].The magnitude of decay width of plasma characteristic parameters at targets mainly depends on the radial anomalous transport diffusivities in SOLPS-ITER[29],which could affect the divertor plasma behaviors to a large extent.Therefore,we evaluate the influence of transport diffusivities varied within a certain range on divertor parameters and W impurity sputtering behaviors in this subsection.

    We assume diffusivities to be the same inside the separatrix and conduct a scan of diffusivities in the SOL withnD+,CEI=3.0 × 1019m-3and a Ne seeding rate of1.0 ×1019atoms /s.Particle and thermal diffusivities in the SOL vary over the range 1.0 to 5.0,which is shown in figure 11.Ion thermal diffusivityχiis set to be the same value as electron thermal diffusivityχe.Whenχi,eremains fixed at 1.0 in the SOL,⊥Dis scanned from 1.0 to 5.0.Thenχi,etakes the same scanning when⊥Dkeeps fixed to 1.0 in the SOL.We keep other input parameters the same.The simulations are only conducted by the ‘jett’ model in this subsection,based on the reasonable agreement results achieved by the model as described above.

    Plasma parametersTe,qdepandΓdepat divertor targets by scanning⊥Dare shown in figure 12.For simulation with fixed density and particle transport diffusivity at the inner boundary,the number of particles in the simulation domain is fixed at a certain level,and more particles and energy loss at the outer boundary mean less particles and energy to the divertor region.The radial particle transport is enhanced with the increase of⊥Din the SOL,resulting in an enhanced particle loss at the SOL boundary.One can see that as⊥Dincreases in the SOL,Γdepdecreases significantly at the divertor targets,and thus the reduction ofqdep.Meanwhile,Teincreases which results in the increase in incident energy.

    Figure 13 shows the profiles of totalΓWEroat divertor targets.ΓWErois determined byΓionandYW,phy,as indicated in equation(1).As⊥Dincreases,YW,phyincreases due to the increment in incident energy butΓiondecreases,as shown in figure 12.Therefore,the competition betweenΓionandYW,phydetermines the final value of total.It can be seen that totalincreases with the increase in⊥D.Besides,the erosion of the outer target is more severe than that of the inner target due to the relatively high incident particle flux.The divertor regime for diffusivityD⊥=1 is in the high recycling regime,which is different from other scans in the low recycling regime.It shows relatively smallcompared with other scans shown in figure 13.The peak erosion rate increases to 0.161 nm s-1with=⊥D5.0 at the outer target,which means particle diffusivity has a large impact on the W impurity sputtering at the targets.

    Figure 14 shows the profiles ofTe,qdepandΓdepat the divertor targets for which onlyχe,iis varied from 1.0 to 5.0 in the SOL.Asχe,iincreases in the SOL,the thermal transport is increased,resulting in an enhanced energy loss at the SOL boundary.Asχe,iincreases,Tedecreases gradually,resulting in the decrease in incident energy.Whenχe,iexceeds 4.0,the detachment occurs withTe≤5 eV at the SP of the outer target.The slight influence onΓdepby variedχe,ican be seen in figures 14(c)and(f).Therebyqdepalso decreases.

    Figure 12.Profiles of Te((a)and(d)), qdep((b)and(e))andΓdep((c)and(f))along inner target and outer target,respectively.

    Figure 13.Profiles of along(a)inner target and(b)outer target.

    Figure 14.Profiles of Te((a)and(d)), qdep((b)and(e))andΓdep((c)and(f))along inner target and outer target,respectively.

    Figure 15.Profiles of along(a)inner target and(b)outer target.

    4.Summary

    In this work,the behaviors of W impurity are performed for an H-mode discharge with the EAST updated lower W divertor using SOLPS-ITER code with the bundled charge state model.The highly resolved bundled model ‘jett’ is selected and evaluated in terms of divertor behaviors and W impurity sputtering with external Ne seeding.The results indicate that the bundled model with high resolution can describe divertor plasma parameters and W impurity behaviors well to a reasonable degree for different divertor operation regimes.It suggests that the W bundling scheme with high resolution in low W charge states(<W20+)has little influence on the ionization balance and transport of Ne impurity.There is no significant discrepancy in radiation power loss andproduced by Ne species between the bundled model ‘jett’ and the all charge states model.Compared to the full W treatment,the peak differences in plasma parameters at targets are less than 18.5%,estimated by the‘jett’ model at both divertor targets.There is no obvious difference in totalat either target,between ‘jett’ and the all charge states model,during Ne impurity seeding.

    In addition,simulation of particle and thermal transport diffusivities,⊥Dandχe,iscanning from 1.0 to 5.0 only in the SOL,with fixed density at the inner boundary,is conducted by the model ‘jett’.As⊥Dincreases,Γdepdecreases due to more particle loss from the wall and induces the increase inTeat the divertor targets,which leads to the increase in.However,Teat the targets decreases gradually with increasingχe,iin the SOL due to more heat flowing to wall,which results in the decrease ofThe change in transport diffusivity has a significant influence on the divertor parameters.Particle diffusivity tends to have a more pronounced effect on the target sputtering than thermal diffusivity.

    Drift terms are not taken into consideration because of the numerical difficulty and computational limitation.Attention should be paid to understand the underlying mechanisms of drifts based on the bundled charge state model.The influence of drift terms on the distribution of plasma flow and W impurity transport[32,33]will be investigated in our future work.

    Acknowledgments

    The authors would like to thank Yilin Wang for her comments and suggestions.This work is supported by National Natural Science Foundation of China(Nos.12075283 and 11975271).

    猜你喜歡
    李國(guó)強(qiáng)高翔
    清 高翔 錄書(shū)七言詩(shī)軸
    Rotor performance enhancement by alternating current dielectric barrier discharge plasma actuation
    高職院校“技術(shù)差序”育人體系研究
    高級(jí)駕駛輔助系統(tǒng)課程教學(xué)探索
    Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
    Recent results of fusion triple product on EAST tokamak
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios
    我家是個(gè)動(dòng)物園
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    99香蕉大伊视频| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| a级毛片黄视频| 天天躁日日躁夜夜躁夜夜| 亚洲在线自拍视频| 很黄的视频免费| 交换朋友夫妻互换小说| 国产欧美亚洲国产| a级片在线免费高清观看视频| 免费少妇av软件| 老熟妇仑乱视频hdxx| 午夜两性在线视频| 精品福利观看| 欧美乱色亚洲激情| 国产精品 欧美亚洲| 极品人妻少妇av视频| 午夜福利在线观看吧| 国产亚洲欧美在线一区二区| 亚洲成人免费av在线播放| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区在线臀色熟女 | 三级毛片av免费| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 久久性视频一级片| 日韩欧美一区视频在线观看| 色综合婷婷激情| bbb黄色大片| 国产精品.久久久| 成人av一区二区三区在线看| xxx96com| 国产黄色免费在线视频| 成人亚洲精品一区在线观看| 我的亚洲天堂| 国产精品98久久久久久宅男小说| 午夜日韩欧美国产| 又黄又粗又硬又大视频| 成年人黄色毛片网站| 人人妻人人爽人人添夜夜欢视频| 日韩欧美三级三区| 十八禁网站免费在线| 亚洲精品粉嫩美女一区| 丝袜美腿诱惑在线| 精品人妻熟女毛片av久久网站| 人人妻人人爽人人添夜夜欢视频| 少妇被粗大的猛进出69影院| 99re6热这里在线精品视频| 日本精品一区二区三区蜜桃| 人妻一区二区av| 99精品欧美一区二区三区四区| av视频免费观看在线观看| 热99久久久久精品小说推荐| 深夜精品福利| 一个人免费在线观看的高清视频| 久久中文字幕人妻熟女| 国产精品av久久久久免费| 99在线人妻在线中文字幕 | 欧洲精品卡2卡3卡4卡5卡区| 午夜成年电影在线免费观看| 久久久国产一区二区| 欧美中文综合在线视频| 欧美另类亚洲清纯唯美| www.熟女人妻精品国产| 欧美另类亚洲清纯唯美| 精品午夜福利视频在线观看一区| 国产男女内射视频| 午夜精品久久久久久毛片777| 亚洲精品粉嫩美女一区| 日本五十路高清| 两性午夜刺激爽爽歪歪视频在线观看 | 日本五十路高清| 成人18禁高潮啪啪吃奶动态图| 成人手机av| 日韩欧美一区视频在线观看| 变态另类成人亚洲欧美熟女 | 王馨瑶露胸无遮挡在线观看| 一级作爱视频免费观看| 久久久国产精品麻豆| 成人三级做爰电影| 国产精品免费一区二区三区在线 | 国产在线观看jvid| 涩涩av久久男人的天堂| 午夜福利视频在线观看免费| 女人高潮潮喷娇喘18禁视频| 久久婷婷成人综合色麻豆| 亚洲av成人不卡在线观看播放网| 少妇粗大呻吟视频| 免费在线观看影片大全网站| 大型黄色视频在线免费观看| 婷婷精品国产亚洲av在线 | 波多野结衣一区麻豆| 一级作爱视频免费观看| 日本撒尿小便嘘嘘汇集6| 美女扒开内裤让男人捅视频| 男女高潮啪啪啪动态图| 国产精品一区二区在线不卡| 国产激情欧美一区二区| 搡老熟女国产l中国老女人| 女性被躁到高潮视频| 在线观看www视频免费| 日韩中文字幕欧美一区二区| 男人舔女人的私密视频| 午夜精品国产一区二区电影| 99国产极品粉嫩在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产xxxxx性猛交| 久久天堂一区二区三区四区| 黄色女人牲交| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 日本精品一区二区三区蜜桃| 19禁男女啪啪无遮挡网站| 久久精品人人爽人人爽视色| 99国产综合亚洲精品| 久久中文字幕一级| 母亲3免费完整高清在线观看| 这个男人来自地球电影免费观看| 中亚洲国语对白在线视频| 久久九九热精品免费| 免费观看a级毛片全部| 精品国产一区二区久久| 亚洲人成伊人成综合网2020| 成人三级做爰电影| 国产在线精品亚洲第一网站| 国产精品电影一区二区三区 | 日本精品一区二区三区蜜桃| 少妇被粗大的猛进出69影院| 亚洲,欧美精品.| 国产一区二区三区综合在线观看| 久久久久久久午夜电影 | 色94色欧美一区二区| 欧美在线一区亚洲| 久久亚洲真实| av网站免费在线观看视频| 青草久久国产| 日本wwww免费看| 成年女人毛片免费观看观看9 | x7x7x7水蜜桃| 亚洲av熟女| 天堂√8在线中文| 精品久久久久久,| 亚洲精品成人av观看孕妇| 黄色毛片三级朝国网站| 狂野欧美激情性xxxx| 久久精品亚洲av国产电影网| 欧美日韩亚洲综合一区二区三区_| 久久国产精品男人的天堂亚洲| 亚洲熟女毛片儿| 亚洲色图综合在线观看| 中出人妻视频一区二区| bbb黄色大片| 国产精品偷伦视频观看了| 久久精品国产亚洲av高清一级| 欧美亚洲 丝袜 人妻 在线| 一区在线观看完整版| 两人在一起打扑克的视频| 欧美中文综合在线视频| 国产成+人综合+亚洲专区| 黄网站色视频无遮挡免费观看| 国产在线一区二区三区精| 欧美午夜高清在线| 色94色欧美一区二区| 免费看十八禁软件| 国产亚洲欧美98| 人妻久久中文字幕网| 丁香六月欧美| av免费在线观看网站| 老熟妇仑乱视频hdxx| 天天影视国产精品| 捣出白浆h1v1| 色精品久久人妻99蜜桃| 亚洲熟女精品中文字幕| 国产片内射在线| 99国产精品99久久久久| 国产精品国产高清国产av | 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 久久国产精品人妻蜜桃| av不卡在线播放| 12—13女人毛片做爰片一| 欧美黑人精品巨大| 亚洲九九香蕉| 国产色视频综合| 在线av久久热| 久久热在线av| 免费一级毛片在线播放高清视频 | 日本a在线网址| 日本wwww免费看| 国产成人啪精品午夜网站| 黄色毛片三级朝国网站| 亚洲中文字幕日韩| 黑人巨大精品欧美一区二区蜜桃| 他把我摸到了高潮在线观看| 亚洲性夜色夜夜综合| 中文欧美无线码| 多毛熟女@视频| 在线国产一区二区在线| 成人特级黄色片久久久久久久| 午夜福利欧美成人| 黑丝袜美女国产一区| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 色综合婷婷激情| 中文字幕制服av| 18禁国产床啪视频网站| 国产精品久久久久久人妻精品电影| 国产精品亚洲av一区麻豆| 啦啦啦视频在线资源免费观看| 热re99久久精品国产66热6| 一区福利在线观看| 国产精品av久久久久免费| 日本vs欧美在线观看视频| 人人澡人人妻人| 一本大道久久a久久精品| 国产精品综合久久久久久久免费 | 18禁裸乳无遮挡免费网站照片 | 中文欧美无线码| 久久久国产一区二区| 热99国产精品久久久久久7| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 久99久视频精品免费| 国产精品永久免费网站| 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 亚洲精品中文字幕一二三四区| 性少妇av在线| 丁香六月欧美| 欧美亚洲日本最大视频资源| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 日日夜夜操网爽| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 久久久国产成人精品二区 | 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 色精品久久人妻99蜜桃| 高清av免费在线| 在线观看舔阴道视频| 乱人伦中国视频| 国产精品一区二区在线观看99| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区激情视频| www.999成人在线观看| 18在线观看网站| 高清在线国产一区| 激情在线观看视频在线高清 | 三级毛片av免费| 亚洲色图综合在线观看| 亚洲欧美精品综合一区二区三区| 99re在线观看精品视频| 久久99一区二区三区| 成人三级做爰电影| 少妇 在线观看| 午夜免费观看网址| 麻豆av在线久日| 国产精品免费大片| 一级a爱视频在线免费观看| av欧美777| av超薄肉色丝袜交足视频| 大码成人一级视频| 午夜福利影视在线免费观看| 精品亚洲成国产av| 国产精品一区二区在线观看99| 国产成人av教育| 啦啦啦视频在线资源免费观看| 12—13女人毛片做爰片一| 久久久水蜜桃国产精品网| 别揉我奶头~嗯~啊~动态视频| 中文字幕最新亚洲高清| 又紧又爽又黄一区二区| 亚洲国产看品久久| 亚洲aⅴ乱码一区二区在线播放 | 99国产精品一区二区蜜桃av | av天堂在线播放| videosex国产| 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| 99国产极品粉嫩在线观看| 亚洲九九香蕉| 国产成人欧美在线观看 | 欧美激情高清一区二区三区| 一区二区三区精品91| 国产麻豆69| 亚洲一区二区三区不卡视频| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 在线av久久热| 亚洲专区字幕在线| 丁香欧美五月| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 一a级毛片在线观看| 电影成人av| 国产在线精品亚洲第一网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇熟女久久| 在线观看日韩欧美| 精品国产国语对白av| 午夜福利视频在线观看免费| 在线看a的网站| 午夜成年电影在线免费观看| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 久久久国产成人免费| 男男h啪啪无遮挡| 老熟女久久久| 国产精品自产拍在线观看55亚洲 | 午夜精品国产一区二区电影| 黑丝袜美女国产一区| aaaaa片日本免费| 亚洲专区字幕在线| av视频免费观看在线观看| 麻豆av在线久日| av天堂久久9| 不卡一级毛片| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 热re99久久精品国产66热6| 五月开心婷婷网| 性少妇av在线| 老司机亚洲免费影院| 18禁国产床啪视频网站| 免费观看a级毛片全部| 久久青草综合色| 精品亚洲成a人片在线观看| 母亲3免费完整高清在线观看| 久久人人爽av亚洲精品天堂| 中文字幕制服av| 大陆偷拍与自拍| 校园春色视频在线观看| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 免费黄频网站在线观看国产| 黄频高清免费视频| 国产精品久久电影中文字幕 | 国产av一区二区精品久久| 黄片大片在线免费观看| xxxhd国产人妻xxx| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 日韩欧美在线二视频 | 99riav亚洲国产免费| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 狠狠狠狠99中文字幕| 中文字幕最新亚洲高清| 亚洲全国av大片| 在线看a的网站| 成人18禁高潮啪啪吃奶动态图| 国产高清视频在线播放一区| 91成年电影在线观看| 可以免费在线观看a视频的电影网站| 欧美日韩av久久| 宅男免费午夜| 亚洲欧美激情综合另类| 高清欧美精品videossex| 新久久久久国产一级毛片| 亚洲av熟女| 国产精品电影一区二区三区 | 波多野结衣一区麻豆| 中文字幕高清在线视频| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 黄色a级毛片大全视频| 国产日韩欧美亚洲二区| 男女免费视频国产| 亚洲一区高清亚洲精品| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 久久午夜亚洲精品久久| 成人精品一区二区免费| 欧美成人午夜精品| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 首页视频小说图片口味搜索| 一边摸一边抽搐一进一出视频| 91精品三级在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品免费视频内射| 久久香蕉国产精品| 久久草成人影院| 久久香蕉精品热| 国产成人精品在线电影| 欧美中文综合在线视频| 少妇粗大呻吟视频| 天天添夜夜摸| 国产精品欧美亚洲77777| 国产精品亚洲一级av第二区| 日韩熟女老妇一区二区性免费视频| 成人三级做爰电影| 国产成人欧美| 国产精品九九99| 99久久综合精品五月天人人| 亚洲中文字幕日韩| 日韩熟女老妇一区二区性免费视频| 法律面前人人平等表现在哪些方面| 黄色 视频免费看| 男女之事视频高清在线观看| xxx96com| 在线观看一区二区三区激情| 国产欧美日韩一区二区精品| 国产免费男女视频| a级片在线免费高清观看视频| 99热网站在线观看| 少妇 在线观看| 天天添夜夜摸| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 国产淫语在线视频| 欧美乱妇无乱码| 一本综合久久免费| 丰满的人妻完整版| 亚洲欧美激情综合另类| 天堂俺去俺来也www色官网| 丝袜美腿诱惑在线| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 色老头精品视频在线观看| 日日爽夜夜爽网站| 欧美 日韩 精品 国产| 亚洲aⅴ乱码一区二区在线播放 | 黑丝袜美女国产一区| 免费久久久久久久精品成人欧美视频| 中文字幕制服av| 在线看a的网站| 在线国产一区二区在线| 91麻豆精品激情在线观看国产 | 色婷婷av一区二区三区视频| 久久香蕉精品热| 黄频高清免费视频| 久久久久久久久免费视频了| 在线观看一区二区三区激情| av福利片在线| 手机成人av网站| 五月开心婷婷网| 国产高清国产精品国产三级| 午夜影院日韩av| 一区二区三区精品91| 纯流量卡能插随身wifi吗| 久久狼人影院| 在线观看免费午夜福利视频| 在线观看66精品国产| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 国产主播在线观看一区二区| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| 大型av网站在线播放| 一区二区三区国产精品乱码| 国产精品二区激情视频| 日韩欧美在线二视频 | av福利片在线| 九色亚洲精品在线播放| 狠狠婷婷综合久久久久久88av| 人妻丰满熟妇av一区二区三区 | 久久亚洲真实| 无限看片的www在线观看| 国产亚洲欧美在线一区二区| xxx96com| 国产蜜桃级精品一区二区三区 | 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 久久婷婷成人综合色麻豆| 中亚洲国语对白在线视频| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 国内久久婷婷六月综合欲色啪| 天天影视国产精品| 99热网站在线观看| 91字幕亚洲| 午夜精品久久久久久毛片777| 在线观看66精品国产| а√天堂www在线а√下载 | 久久香蕉国产精品| 欧美久久黑人一区二区| 国产高清激情床上av| 十分钟在线观看高清视频www| 婷婷精品国产亚洲av在线 | 精品国产亚洲在线| 国产黄色免费在线视频| 国产精品98久久久久久宅男小说| 19禁男女啪啪无遮挡网站| 久久ye,这里只有精品| 午夜福利乱码中文字幕| 777米奇影视久久| 涩涩av久久男人的天堂| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 青草久久国产| 亚洲熟女毛片儿| 久久精品91无色码中文字幕| 国产精品久久久久成人av| 久久久国产精品麻豆| 淫妇啪啪啪对白视频| 人妻一区二区av| 男女高潮啪啪啪动态图| 啦啦啦免费观看视频1| 精品久久蜜臀av无| www.自偷自拍.com| 日韩有码中文字幕| 12—13女人毛片做爰片一| 亚洲一区二区三区欧美精品| 看片在线看免费视频| 两个人免费观看高清视频| www.精华液| 午夜福利乱码中文字幕| 久久久国产一区二区| avwww免费| 午夜久久久在线观看| 国产一区在线观看成人免费| 国产成人欧美在线观看 | 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 视频区图区小说| 18禁观看日本| 成人黄色视频免费在线看| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 黄色成人免费大全| 1024视频免费在线观看| 又紧又爽又黄一区二区| 国产成人影院久久av| 侵犯人妻中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 欧美成人午夜精品| 国产精华一区二区三区| 动漫黄色视频在线观看| a在线观看视频网站| 亚洲一区中文字幕在线| 国产三级黄色录像| 国产高清videossex| 亚洲美女黄片视频| a级毛片在线看网站| 精品少妇久久久久久888优播| videos熟女内射| 最近最新中文字幕大全免费视频| 国产单亲对白刺激| 亚洲国产精品合色在线| 亚洲av美国av| 欧美成人免费av一区二区三区 | 国产一卡二卡三卡精品| 国产精品久久电影中文字幕 | 18在线观看网站| 侵犯人妻中文字幕一二三四区| 国产精品久久视频播放| 侵犯人妻中文字幕一二三四区| 中国美女看黄片| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 欧美日韩黄片免| 18在线观看网站| 国产亚洲av高清不卡| 青草久久国产| 欧美 日韩 精品 国产| 国产区一区二久久| 一区二区日韩欧美中文字幕| 丰满迷人的少妇在线观看| 19禁男女啪啪无遮挡网站| 亚洲一区二区三区不卡视频| 天天操日日干夜夜撸| 热re99久久精品国产66热6| 日日爽夜夜爽网站| 捣出白浆h1v1| 中文字幕高清在线视频| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 久热爱精品视频在线9| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片午夜丰满| av线在线观看网站| 色婷婷av一区二区三区视频| 欧美精品高潮呻吟av久久| 少妇的丰满在线观看| 一区福利在线观看| 最近最新中文字幕大全电影3 | 在线观看一区二区三区激情| 欧美日韩亚洲国产一区二区在线观看 | 激情视频va一区二区三区| 如日韩欧美国产精品一区二区三区| 悠悠久久av| bbb黄色大片| 色在线成人网| 午夜成年电影在线免费观看| 宅男免费午夜| 啦啦啦在线免费观看视频4| 国产免费现黄频在线看| 国产亚洲精品一区二区www | 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 久热爱精品视频在线9| 国产av又大| 成人av一区二区三区在线看| 操美女的视频在线观看| 搡老岳熟女国产| 国产精品久久电影中文字幕 | 最新的欧美精品一区二区| 悠悠久久av| 久久久久久亚洲精品国产蜜桃av| 国产精品香港三级国产av潘金莲|