• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST

    2024-04-06 07:15:52LetianLI李樂天ShaochengLIU劉少承NingYAN顏寧XiaojuLIU劉曉菊andXiangGAO高翔
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:顏寧高翔樂天

    Letian LI (李樂天) ,Shaocheng LIU (劉少承) ,Ning YAN (顏寧) ,Xiaoju LIU (劉曉菊) and Xiang GAO (高翔)

    1 Anhui University,Hefei 230039,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract A gas puff imaging (GPI) diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation (TDE) method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode (ELM).Consequently,a method called the spatial displacement estimation (SDE) algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.

    Keywords: gas puff imaging,spatial displacement estimation,SDE,edge turbulence velocity,TDE,EAST tokamak

    1.Introduction

    The edge turbulence can contribute to remarkable cross-field transport in magnetically confined plasmas,such as blobs or filaments [1-3].During the propagation of blobs from the plasma edge to the scrape-off layer (SOL),a large amount of heat and numerous particles across the last closed flux surface (LCFS) can reach the divertor plates in a short time and lead to heat deposition on the first plasma-facing materials.Some fast transient events,such as edge-localized mode(ELM) can cause significant energy loss in the core plasma and high heat flux at the divertor target,which is a crucial issue for large fusion devices such as ITER.Consequently,the fine dynamic evolution of the edge turbulence is important for understanding edge cross-field transport and core plasma confinement.

    Two-dimensional (2D) imaging technology is applied to the measurement of edge turbulence structure and its propagation velocity.Several 2D diagnostics for turbulence structure have been developed,including beam emission spectroscopy (BES) [4-6 ],Langmuir probe [7-9],electron cyclotron emission imaging (ECEI) [10-14] and gas puff imaging (GPI) [15-17].The Langmuir probe array inserted into the edge plasma can measure floating potentials and ion saturation current directly,providing the turbulence information with high temporal evolution [18].The BES and ECEI can measure the edge 2D turbulence structure via the light emission and microwave,respectively.The GPI measures the 2D edge turbulence by injecting neutral gas (helium or deuterium) and capturing the line emission with a high-speed camera.Many tokamaks are equipped with GPI diagnostics,such as NSTX [19],Alcator C-Mod [20],TEXTOR [21],HL-2A [17] and J-TEXT [22].

    Since the turbulence flow velocity is an essential parameter for the understanding of turbulence instability and radial transport,various methods are used in velocity estimation,such as the time-delay method (TDE) [23],optical flow [24],orthogonal dynamics programming (ODP) [25] and spatial displacement estimation (SDE) [26].For example,velocity analysis for the BES diagnostic on DIII-D is performed using the ODP method [27].Velocity calculations for the Langmuir probe on NSTX and ECEI diagnostic on KSTAR are done using TDE estimation [28,29].In the TDE process,cross-correlation is performed between a reference point and the surrounding points in a series of time sequences,and the displacement is given by the distance between the two points with the maximum cross-correlation coefficient.Finally,the speed is estimated by the ratio of displacement and delay time.The velocity calculated by the TDE method has high precision,and its spatial resolution can reach optical resolution.However,time series data are required for TDE analysis,and it is difficult for this analysis to provide precise velocity in a situation with large-scale motion during a short time period.The optical flow method estimates the speed by detecting the light change on a target object.This method requires constant brightness on the target object,which is a challenge for the GPI image.In addition,if the movement is too fast and the specific structure exceeds the observation window,the optical flow method will fail to attain the correct speed,which is called the aperture problem.The SDE method calculates the spatial displacement from the spatial lag of the 2D spatial cross-correlation coefficient function.Since the SDE can be operated for two adjacent images,it has much higher temporal resolution than the TDE method,which is an advantage for the velocity estimation of fast structures.Due to the SDE method needing enough large image pixels,its spatial resolution is limited.

    Some improvements are added to the SDE algorithm that is applied to the GPI data analysis on EAST.First,we introduce an adaptive median filter [30],which can effectively solve the filtering problem when the noise is relatively high.The window size of the median filter can be dynamically modified according to the preset conditions,aiming to denoise and simultaneously preserve the detailed information of the signal.Second,the super-resolution reconstruction by bicubic upsampling [31] is used to acquire high spatial resolution image data and easily extract the detailed structure.Third,the location of a specific structure is captured automatically using an appropriate window size according to the structure's peak.When we finish the development of the SDE algorithm,it is tested by two given motion trajectories,exhibiting accurate moving speed.Finally,the SDE method is applied to the GPI data analysis,and the calculated velocity agrees well with that from the TDE method.The imaged frame can be split into 20×30 pixel2sub-frames.Therefore,the velocity distribution in the poloidal-radial plane is obtained.The rest of this paper is organized as follows.Section 2 is the development of the SDE algorithm,and the corresponding test and application on GPI data are presented in section 3 .Section 4 is a summary.

    2.Development of SDE algorithm

    In this section,we introduce the SDE algorithm in detail.The algorithm includes the following steps: data pre-processing,image enhancement,speed estimation.The purpose of data pre-processing is to remove background noise and the motion trend.Image enhancement can improve the quality and visibility of images that are easy to analyze and understand.Adaptive median filtering can help us to reasonably process the signal noise under different noise levels,preserve image details and make the subsequent calculations more accurate.Super-resolution processing can increase the image’s resolution,thereby improving the details and clarity of the picture.Using super-resolution processing technology,we can convert a low-resolution image into a high-resolution image,consequently enhance the quality of the image.The third step is to convert the time-domain signal into a frequency-domain signal through fast Fourier transform(FFT) [32],perform cross-correlation operations,and obtain the displacement from the polynomial fitting.Finally,the velocity is calculated by the relative displacement and the delay time.

    2.1.Pre-processing

    In this part,we preprocess the GPI data.First,since the background radiation will disturb the turbulence motion in GPI images,the background emission should be removed in the pre-processing stage.The background emission is given by the average of a series of frames before the helium gas reaches the edge plasma,and then every frame subtracts the background emission to remove the background [15].The original GPI image is shown in figure 1(a),and the background light radiation intensity before gas puffing is presented in figure 1(b).When we remove the background emission intensity from the original 2D signal,we obtain figure 1(c).Finally the fluctuations of the GPI emission intensity are derived by subtracting the averaged emission intensity of the interested GPI frames (t=3.466925-3.467121s) from figure 1(c),as shown in figure 1(d).

    Detrending refers to removing some information in the image sequence that affects the speed estimation [33],such as signal offset.Detrending is an essential part of speed estimation because it can further improve the velocity estimation accuracy.After the background removal step,we detrend the data usingnth-order polynomial fitting,as presented in reference [26].The images before and after the polynomial detrending are shown in figures 2(a) and (b) for discharge #102993,respectively.The trend is much lower than the signal level,as illustrated in figure 2(c).

    Figure 1.(a) Original GPI image measured in discharge #102993,(b) background emission intensity before gas puffing,(c) the same image after removing the background emission,(d) the image with the averaged emission intensity subtracted.

    Figure 2.(a) The image before detrending,(b) the image after detrending,(c) the trend of image calculated by the nth-order polynomial fitting.

    2.2.Image enhancement

    2.2.1.Adaptive median filteringThe median filter is widely used in image processing [34].The median filter works by calculating the median value of the pixels in the neighborhood of each pixel and assigning this value to the central pixel.Compared to other filtering methods,the median filter is an effective way to remove noise from images and simultaneously preserve edge information without remarkable blurring.This makes it a widely-used tool in the field of image processing.

    If a larger filter window is used for the median filter,it can effectively remove noise,but it also leads to a fuzzy image that is unfavorable in the subsequent calculations.Conversely,using a smaller filter window can help preserve more details and enhance the clarity of the image,but it is not an effective way to remove noise.Therefore,an adaptive median filter is adopted to dynamically modify the window size based on the noise level [30].

    Figure 3.Workflow diagram of the adaptive median filter.

    The adaptive median filter can dynamically change the window size of the filter according to the preset conditions.The filtering is performed on a point (x,y) of the image and inside a rectangular windowWx,y,with an allowed maximum window size ofWmax.Gx,yrepresents the gray value of point (x,y) .Gmed,GminandGmaxare the median,minimum gray value and maximum gray value in the window (excluding point (x,y)),respectively.The working principle of the adaptive median filter is illustrated in figure 3.In the first diamond,we use the intensity ofG1andG2to determine whether the gray median value in the window is too large or too small.IfGmedis betweenGminandGmax,the window size is appropriate.Next,we determine whether the valueGx,yis noise;ifGx,yis beyond the range fromGmintoGmax,the window size should be expanded.As shown in the second diamond,if the gray valueGx,yis also within a reasonable range,we consider that this point is not noise,and outputGx,y;if the point is not within a reasonable range,we consider it to be noise,and outputGmed.If the window size needs to be enlarged after the first diamond,we will increase the window sizeWx,y,then determine whether the new window size exceeds the maximum valueWmax.If not,we return to “Start”,otherwise we outputGmed.

    2.2.2.Super-resolutionThe upgrade of the GPI system on EAST was completed in 2021 [35].In the upgraded optical system,the high-speed camera has a speed of up to 531645 frames/s and the captured image has a resolution of 128×64 pixel2.When estimating the velocity of the turbulence structure,we extract the image matrix of the structure and its surroundings (approximately twice the structure length in total) and minimize the influence of movement from the outside area.To achieve both high accuracy and smoothness of the image detail,bicubic upsampling super-resolution processing is adopted to extract image data [31].In the bicubic interpolation algorithm,we assume that the interpolation at a certain pointp(x,y) is obtained by weighting the four points around it,which can be written as follows:

    The interpolation kernel function is:

    The interpolation result ofp(x,y) is:

    Assume that pointp(x,y) is located in the original image at the position shown in figure A1,where Q is the matrix of pixel values of the 16 nearest points top. Wxand Wyare calculated by the interpolation kernel function in thexdirection andydirection ofp:

    Rpis the interpolation value of pointpand calculated by multiplying the three matrices of Wx,Q and.In equation (2),ais set as a constant and the default value is -0.5 [31].The specific derivation process is shown in the Appendix.

    For example,we extract the turbulence structure of one GPI frame for super-resolution testing,as shown in figure 4.The reconstructed image with bicubic upsampling exhibits smoother shape edge and a clearer structure compared to the original image.

    Figure 4.(a) The original image,(b) the reconstructed image enlarged ten times with bicubic upsampling.

    2.3.Speed estimation

    2.3.1.Fast Fourier transformFourier transform has been used in various fields of engineering and science.Fourier transform converts images from the spatial domain to the frequency domain,enabling efficient and accurate image analysis.Fast Fourier transform (FFT) [32] is an efficient algorithm of discrete Fourier transform (DFT) [36] and is more suitable for handling large-scale signals or images than DFT.Compared to DFT,FFT incorporates a recursive algorithm based on the divide-and-conquer strategy,which enhances the speed of Fourier transform calculations.The FFT algorithm reduces the computational complexity of DFT fromO(n2) toO(nlogn),and this reduction in complexity allows for faster computation of Fourier transforms.In image processing,FFT plays a significant role in transforming an image from the spatial to the frequency domain.For the discrete 2D Fourier transform of an image with sizeM×N,the equation is as follows:

    whereF(u,v) is the value in the frequency domain,Mis the width of the image,Nis the height of the image,f(x,y) is the value in the spatial domain,iis the imaginary unit,xandyare pixel coordinates,uandvrepresent the horizontal and vertical coordinates in the frequency domain,the value range ofuis 0 ≤u≤M-1,and the value range ofvis 0 ≤v≤N-1.

    2.3.2.2D cross-correlationCross-correlation has many applications in signal and image processing.2D cross-correlation,which computes the correlation coefficient between two images in the spatial domain,is commonly used in searching for similar structures among images,image alignment and image registration.In the SDE method,2D crosscorrelation is used to estimate the relative shift [26],as defined by:

    whereA,B*are 2D signals in frequency-domain obtained using the FFT process,B*is the complex conjugate ofBandF-1denotes the inverse Fourier transform operation.φ(x,y)is the circular 2D cross-correlation function.Since convolution in the time or spatial domain can be expressed by frequency domain multiplication,and correlation is a form of convolution,we express correlation by frequency-domain multiplication [37].The location of the largest correlation can be found at the maximums of φ(x,y) [38].

    Taking two consecutive frames as an example,first,the cross-correlation operation is carried out between the original frame and itself,in order to obtain the relative initial position of the target structure,namedPori.Next,the crosscorrelation between the two frames is calculated to find the point with the maximum coherence value,namedPc.Finally,the relative displacement is given by the Euclidean distance betweenPoriandPc[39].

    The EAST GPI images of discharge #102993 after the pre-processing and adaptive median filtering are shown in figure 5.A bright eddy structure is in the middle of the images,and clear propagation is observed in the time sequence of the images.In order to illustrate the 2D crosscorrelation method,two images from figures 5(i) and (p) are selected to perform the FFT and 2D cross-correlation analysis.The 2D cross-correlation spectrum is converted back to the spatial domain by inverse FFT,and the results are shown in figure 6.Comparing the self-correlation of the first frame with the cross-correlation between frames (i) and (p) in figure 5,the coordinates of the pointsPoriandPccan be fixed,and a clear relative displacement between them is observed,which is consistent with the direction of movement in figure 5.

    2.3.3.Sub-pixel precision processingThe accuracy of the relative displacement derived fromPoriandPcin the previous section is at pixel level.The image recorded by the GPI high-speed camera is 64×128 pixel2on EAST,and the pixel area occupied by the turbulence structure is small.In order to improve the calculation accuracy,a second-order polynomial fitting is used to fit the location with the maximum correlation coefficient and its surrounding area.Consequently,the maximum correlation position can be obtained with sub-pixel accuracy [26].The fitting equation is:

    Figure 5.Time sequences of GPI image after the pre-processing and adaptive median filtering.The corresponding time slices are annotated in panels (a) to (p).

    Figure 6.(a) The cross-correlation operation between the first frame (panel (i) of figure 5) and itself,(b) the cross-correlation calculation between the second frame (panel (p) of figure 5) and the first frame.

    whereai(i=0,1,2,3,4,5) is the fitting coefficient andx,yare coordinates in the cross-correlation spectrum.The position with the maximum correlation coefficient is calculated by the partial differentiation ofxandywith polynomial fitting in equation (9),and the calculated position is given by:

    2.3.4.Velocity calculationFrom the obtainedxmaxandymax,a more accurate relative displacement betweenPoriandPccan be calculated.The coordinates of pointsPoriandPcare(xmax1,ymax1) and (xmax2,ymax2) respectively,and the Euclidean distance between these two points can be expressed as:

    Finally,the speed of movement can be estimated from the relative displacementdand the delay time τ.

    3.Application of SDE algorithm

    3.1.Algorithm test

    In this section,the validity and accuracy of the SDE algorithm are tested.Two types of motion trajectories are used in the test,with a linear motion and a curvilinear motion,as illustrated in figure 7.The frames are set at 137×159 pixel2,which is similar to the GPI rotated image of EAST.The time period of these two movements is set at 5 s,with an interval of 0.1 s between two adjacent frames.For the linear motion,the elliptical structure moves along the diagonal straight line,with a constant shape and direction.For the curvilinear motion,the trajectory is a curve,and the shape and tilted angle of the red structure change gradually frame by frame.The moving velocity calculated by the SDE algorithm is presented in figure 8.For both movements,the calculated velocities agree well with the preset velocities.The velocity of the linear motion has symmetrical distribution,i.e.the red structure accelerates first and then decelerates with the same accelerated speed.The results of both cases demonstrate that the SDE algorithm is valid and its accuracy is very high.

    Figure 7.Motion trajectories.(a) A linear motion,(b) a curvilinear motion.The speed in both cases is first accelerated and then decelerated.

    Figure 8.The structure velocity for the straight and curvilinear motions was calculated by the SDE method.(a) Two-dimensional velocity,(b) velocity in the x-direction,(c) velocity in the y-direction.

    3.2.GPI data analysis

    The SDE algorithm is applied to the GPI data analysis in EAST for discharge #103882.The GPI diagnostic is operated with a frame rate of 531645 Hz and an interval of 1.88μs between two adjacent frames.As a reference,the turbulence propagation velocities in the radial and poloidal directions are calculated using the TDE method,with a velocity point derived from 50 continuous frames,as shown in figure 9.Around the LCFS,the turbulence radial velocityVris mainly directed outwards with a maximum value of about 2 km/s.The turbulence poloidal velocityVθis directed in the ion-diamagnetic drift direction in the SOL and in the electro-diamagnetic drift direction inside the LCFS,with a maximum value of over 3 km/s.During the L-H transition on NSTX,turbulence poloidal velocity was also observed to propagate towards the electron diamagnetic drift direction inside the LCFS [40,41].Note that the event at 8.6256 s is the eruption of an ELM burst.The turbulence velocities are also calculated using the SDE algorithm in the same time period as the TDE method,as illustrated in figure 10.The GPI image is divided into 6×6 sub-frames,with 20×30 pixel2for each sub-frame.In contrast with the TDE method,the radial velocityVrin figure 10(a) exhibits clear outward propagation around the LCFS,which is similar to that in figure 9(a).Note that theVrfrom the SDE method reveals more details of the variation due to its high temporal resolution.The poloidal velocityVθin figure 10(b) reveals the same radial distribution as the TDE method in figure 9(b).Due to the high temporal resolution of the SDE algorithm,the dynamic evolution ofVθis observed within the 550μs period,and the significant changes inVθare consistent with the peaks of the divertor Dαsignal,indicating the correlation between upstream turbulence and downstream particle deposition.During the ELM burst,a significant increase is detected in the Dαsignal,with numerous particles moving outwards across the magnetic field lines.At the same time,high turbulence propagation velocity is observed onVrandVθin figures 9 and 10.In summary,the SDE algorithm reveals similar velocity estimation results to the TDE method,but has much higher temporal resolution.

    4.Summary

    The SDE algorithm is developed and applied to the GPI diagnostic on EAST tokamak.The SDE algorithm includes pre-processing,adaptive median filtering,super-resolution,2D cross-correlation via FFT,and displacement estimation.In these procedures,we remove the background and noise from the image data and preserve the detailed information of the structure.The computation efficiency is high because FFT is introduced into the 2D spatial cross-correlation technology.The temporal resolution of the SDE algorithm is as high as the temporal resolution of the GPI diagnostic,which is a significant advantage for the velocity analysis of fast events.The developed SDE algorithm is tested with a linear motion and a curvilinear motion,and the derived velocities agree with the preset velocities with high accuracy.The new SDE algorithm is applied to the GPI data analysis on EAST,and the calculated propagation velocity of turbulence is consistent with that from the TDE method,but has much higher temporal resolution.Due to its precision and high temporal resolution,the SDE method can estimate the propagation velocity of turbulence in fast transient cases,such as the eruption of ELM and other instabilities.Consequently,the SDE method provides an effective way to analyze the 2D image data with fast variations,which is important for the understanding of edge turbulence in fusion devices.

    Figure 9.The turbulence propagation velocities calculated using the TDE method for discharge #103882.(a) Radial velocity,with positive value directed outside,(b) poloidal velocity,with positive value directed upwards (electron-diamagnetic drift direction).The purple dashed line represents LCFS.

    Figure 10.Turbulence propagation velocities calculated using the SDE algorithm.(a) Radial velocity,(b) poloidal velocity.The temporal variations of a Dα signal are shown in panel (b).The time traces of GPI signal and Dα signal are aligned by some fast events.The purple dashed line represents LCFS.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003),National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271),the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-01),the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences (No.2021HSC-CIP019) and the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences (Nos.2021HSC-UE014 and 2021HSCUE012).

    Appendix.Bicubic upsampling

    We developed a coordinate system to demonstrate the calculation process by the kernel function in equation (2).

    Figure A1.Interpolation process in super-resolution processing.

    The coordinates of pointpare (xp,yp),and the interpolation result isRpand the distance from the point to nearby pixels is Δxand Δy.If 0<Δx<1,then 1<Δx+1<2,-1<Δx-1<0,-2<Δx-2<-1.Therefore,from equation (2) we obtain:

    Equation (5) can be derived from the equations listed above.

    猜你喜歡
    顏寧高翔樂天
    清 高翔 錄書七言詩軸
    中國書法(2023年4期)2023-08-28 06:02:08
    High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
    Scaled Preconditioned Splitting Iterative Methods for Solving a Class of Complex Symmetric Linear Systems
    《樂天》
    “清華學(xué)術(shù)女神”在線打假
    東西南北(2019年19期)2019-12-12 06:10:24
    陽關(guān)故人
    飛魔幻A(2019年11期)2019-02-06 03:58:09
    一段苦澀又奇特的成長經(jīng)歷
    花山我的故鄉(xiāng)
    歌海(2016年5期)2016-11-15 09:29:30
    Research survey and review of the effect of Compound Danshen Dripping Pills on the uric acid metabolism of patients with coronary heart disease
    最美科學(xué)家的最美事業(yè)
    做人與處世(2013年6期)2013-06-24 09:38:20
    国产欧美日韩一区二区三| 天天影视国产精品| 欧美中文日本在线观看视频| 欧美精品亚洲一区二区| 在线观看午夜福利视频| 国产黄a三级三级三级人| 嫩草影视91久久| 久久久久久人人人人人| 精品一区二区三区视频在线观看免费 | 天堂中文最新版在线下载| 1024香蕉在线观看| 久久影院123| 国产国语露脸激情在线看| 香蕉国产在线看| 12—13女人毛片做爰片一| av福利片在线| 18禁观看日本| av国产精品久久久久影院| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 夜夜看夜夜爽夜夜摸 | 黄色毛片三级朝国网站| 久久 成人 亚洲| 国产99久久九九免费精品| 最近最新中文字幕大全电影3 | 欧美成人免费av一区二区三区| 精品国产国语对白av| 老司机靠b影院| 国产91精品成人一区二区三区| 久久久久久久久久久久大奶| 在线播放国产精品三级| 亚洲午夜精品一区,二区,三区| 新久久久久国产一级毛片| 99国产精品免费福利视频| 成在线人永久免费视频| 女人爽到高潮嗷嗷叫在线视频| 香蕉久久夜色| 一本大道久久a久久精品| 黄色成人免费大全| 亚洲精品中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 免费在线观看影片大全网站| 欧美一区二区精品小视频在线| 亚洲av成人不卡在线观看播放网| 男女午夜视频在线观看| 国产欧美日韩一区二区三区在线| 一本大道久久a久久精品| 男人舔女人的私密视频| 在线观看免费视频网站a站| 国产99久久九九免费精品| 黑人猛操日本美女一级片| 91老司机精品| 午夜福利影视在线免费观看| 一边摸一边做爽爽视频免费| av中文乱码字幕在线| 精品国产美女av久久久久小说| 国产成人精品在线电影| 在线观看午夜福利视频| www.www免费av| 亚洲男人的天堂狠狠| 国产成人av激情在线播放| 亚洲av成人一区二区三| 亚洲自偷自拍图片 自拍| 看黄色毛片网站| 不卡一级毛片| 男人舔女人的私密视频| 午夜a级毛片| 免费少妇av软件| 久久人人精品亚洲av| 国产又爽黄色视频| 久久中文看片网| www.自偷自拍.com| 最近最新免费中文字幕在线| 侵犯人妻中文字幕一二三四区| 欧美性长视频在线观看| 日韩欧美国产一区二区入口| 国产一卡二卡三卡精品| 国产一区二区三区视频了| 99国产极品粉嫩在线观看| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 亚洲熟妇中文字幕五十中出 | 国产熟女午夜一区二区三区| 成人国语在线视频| 丰满迷人的少妇在线观看| 韩国av一区二区三区四区| 午夜两性在线视频| 国产深夜福利视频在线观看| 男女做爰动态图高潮gif福利片 | 在线视频色国产色| 丰满的人妻完整版| 欧美日韩亚洲综合一区二区三区_| 欧美精品一区二区免费开放| 亚洲精品国产一区二区精华液| 黑人操中国人逼视频| 国产伦一二天堂av在线观看| 欧美日韩精品网址| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 成人亚洲精品一区在线观看| 操出白浆在线播放| 欧美丝袜亚洲另类 | 亚洲国产看品久久| 久久狼人影院| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| 99在线视频只有这里精品首页| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 成人永久免费在线观看视频| 在线观看www视频免费| 国产成人欧美| 亚洲成人免费av在线播放| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 亚洲av日韩精品久久久久久密| 宅男免费午夜| 久久中文字幕一级| 夜夜爽天天搞| 波多野结衣一区麻豆| 久久精品国产99精品国产亚洲性色 | 欧美日本亚洲视频在线播放| 亚洲激情在线av| 亚洲av电影在线进入| 91国产中文字幕| 免费看十八禁软件| 69精品国产乱码久久久| 国内久久婷婷六月综合欲色啪| 国产亚洲精品一区二区www| 悠悠久久av| 黄色女人牲交| 久久人妻熟女aⅴ| 99久久国产精品久久久| 国产精品一区二区在线不卡| 精品卡一卡二卡四卡免费| 国产av一区二区精品久久| 国产精品香港三级国产av潘金莲| 久久久久久人人人人人| 久热爱精品视频在线9| netflix在线观看网站| 亚洲 欧美一区二区三区| 久久国产精品人妻蜜桃| √禁漫天堂资源中文www| 可以免费在线观看a视频的电影网站| 麻豆国产av国片精品| 夜夜爽天天搞| 高清黄色对白视频在线免费看| 国产精品美女特级片免费视频播放器 | 999久久久精品免费观看国产| 亚洲国产精品sss在线观看 | 黄色片一级片一级黄色片| 两个人看的免费小视频| 9热在线视频观看99| 日韩欧美国产一区二区入口| 精品一品国产午夜福利视频| 精品久久久久久久毛片微露脸| 亚洲精华国产精华精| 很黄的视频免费| 精品第一国产精品| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品久久久久久毛片| 老司机靠b影院| 男女做爰动态图高潮gif福利片 | 久久婷婷成人综合色麻豆| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 首页视频小说图片口味搜索| 欧美最黄视频在线播放免费 | 久久中文看片网| 18美女黄网站色大片免费观看| e午夜精品久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 国产伦一二天堂av在线观看| 999精品在线视频| 在线观看免费视频网站a站| 久久久久久人人人人人| 夜夜躁狠狠躁天天躁| 老司机在亚洲福利影院| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 国产欧美日韩综合在线一区二区| 窝窝影院91人妻| 国产成+人综合+亚洲专区| 亚洲美女黄片视频| 免费看a级黄色片| 免费女性裸体啪啪无遮挡网站| 视频区图区小说| 一区二区三区国产精品乱码| 不卡一级毛片| 亚洲男人天堂网一区| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 在线看a的网站| 麻豆国产av国片精品| 成人亚洲精品av一区二区 | 男女下面进入的视频免费午夜 | 国产成+人综合+亚洲专区| 亚洲成人免费电影在线观看| 精品国产一区二区三区四区第35| 久久精品人人爽人人爽视色| 一级作爱视频免费观看| 亚洲精品久久午夜乱码| 激情在线观看视频在线高清| 90打野战视频偷拍视频| 国产精品一区二区免费欧美| 丁香欧美五月| 午夜精品在线福利| 黄色成人免费大全| 亚洲av第一区精品v没综合| 黄色a级毛片大全视频| 精品久久久久久,| 91国产中文字幕| 国产成+人综合+亚洲专区| 午夜福利,免费看| e午夜精品久久久久久久| 麻豆成人av在线观看| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频 | 青草久久国产| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 国产高清videossex| 成人av一区二区三区在线看| 日本精品一区二区三区蜜桃| 高清黄色对白视频在线免费看| 亚洲熟妇熟女久久| 女警被强在线播放| av电影中文网址| 日韩欧美国产一区二区入口| 亚洲精品国产精品久久久不卡| 别揉我奶头~嗯~啊~动态视频| 国产成人免费无遮挡视频| 精品电影一区二区在线| 天堂中文最新版在线下载| 久久久国产一区二区| 久久精品国产综合久久久| 日韩精品青青久久久久久| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 日韩大尺度精品在线看网址 | 手机成人av网站| 国产91精品成人一区二区三区| 久久99一区二区三区| 高潮久久久久久久久久久不卡| 国产xxxxx性猛交| 欧美日韩一级在线毛片| 久久香蕉国产精品| 91大片在线观看| 欧美日本亚洲视频在线播放| 久久午夜亚洲精品久久| 侵犯人妻中文字幕一二三四区| 亚洲九九香蕉| 色播在线永久视频| 老汉色av国产亚洲站长工具| 色综合欧美亚洲国产小说| 成人av一区二区三区在线看| 青草久久国产| 国产精品免费视频内射| 69av精品久久久久久| 真人做人爱边吃奶动态| 一二三四社区在线视频社区8| av网站在线播放免费| 韩国精品一区二区三区| 69精品国产乱码久久久| 久热爱精品视频在线9| 极品教师在线免费播放| 国产精品98久久久久久宅男小说| 久久久久久免费高清国产稀缺| 日本五十路高清| 成人永久免费在线观看视频| 国产成人欧美| 天堂√8在线中文| av网站免费在线观看视频| 精品午夜福利视频在线观看一区| 欧美日韩国产mv在线观看视频| 久久人人精品亚洲av| 麻豆av在线久日| 黄色a级毛片大全视频| 女人高潮潮喷娇喘18禁视频| 99热国产这里只有精品6| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 看黄色毛片网站| 88av欧美| 久久久久久久久免费视频了| 国产91精品成人一区二区三区| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 日本wwww免费看| 999精品在线视频| 视频在线观看一区二区三区| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 国产精品亚洲av一区麻豆| 丝袜在线中文字幕| 制服诱惑二区| 天堂俺去俺来也www色官网| 国产av精品麻豆| 亚洲第一欧美日韩一区二区三区| www.自偷自拍.com| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频 | 成人三级黄色视频| 成人国语在线视频| 亚洲自拍偷在线| 日本wwww免费看| 99久久久亚洲精品蜜臀av| www.www免费av| 又黄又粗又硬又大视频| 午夜免费观看网址| 露出奶头的视频| 在线观看一区二区三区激情| av欧美777| 午夜免费激情av| 淫妇啪啪啪对白视频| 丝袜在线中文字幕| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 亚洲欧美激情在线| 亚洲狠狠婷婷综合久久图片| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 老司机亚洲免费影院| 激情视频va一区二区三区| 两个人免费观看高清视频| 久久中文字幕一级| 少妇的丰满在线观看| 欧美国产精品va在线观看不卡| 在线免费观看的www视频| 超色免费av| 一本综合久久免费| 18禁国产床啪视频网站| 在线观看免费午夜福利视频| 精品久久久精品久久久| 久久精品国产亚洲av香蕉五月| 99热国产这里只有精品6| 曰老女人黄片| 国产精品二区激情视频| 国产区一区二久久| 日韩免费高清中文字幕av| 国产精品二区激情视频| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 亚洲熟妇中文字幕五十中出 | 国内久久婷婷六月综合欲色啪| 欧美人与性动交α欧美软件| 国产成人系列免费观看| 亚洲七黄色美女视频| 久久草成人影院| 欧美日韩av久久| avwww免费| 在线看a的网站| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 两个人免费观看高清视频| 国产黄色免费在线视频| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区| а√天堂www在线а√下载| 久久久国产一区二区| 曰老女人黄片| 1024香蕉在线观看| 午夜免费激情av| 免费av中文字幕在线| 变态另类成人亚洲欧美熟女 | 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 欧美黑人精品巨大| 大香蕉久久成人网| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 黄色视频不卡| 精品无人区乱码1区二区| 欧美日韩国产mv在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av熟女| svipshipincom国产片| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 无人区码免费观看不卡| 丝袜美足系列| 纯流量卡能插随身wifi吗| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 欧美性长视频在线观看| 另类亚洲欧美激情| 成人手机av| 色综合婷婷激情| 亚洲欧美日韩无卡精品| 母亲3免费完整高清在线观看| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 亚洲av美国av| 国产av又大| 看片在线看免费视频| 久久久久亚洲av毛片大全| 天天添夜夜摸| 成人国语在线视频| 悠悠久久av| 日韩视频一区二区在线观看| 成人亚洲精品av一区二区 | 久久99一区二区三区| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 一区二区日韩欧美中文字幕| 久久午夜亚洲精品久久| 亚洲av片天天在线观看| 天天影视国产精品| 在线观看免费日韩欧美大片| 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 黄片播放在线免费| 嫩草影视91久久| 免费人成视频x8x8入口观看| 精品国产乱子伦一区二区三区| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线| 日韩av在线大香蕉| 色综合婷婷激情| 91麻豆精品激情在线观看国产 | 国产精品综合久久久久久久免费 | 亚洲成人国产一区在线观看| 两人在一起打扑克的视频| 天堂俺去俺来也www色官网| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 国产成人一区二区三区免费视频网站| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 美女大奶头视频| 欧美黄色淫秽网站| 精品人妻1区二区| 成人黄色视频免费在线看| 黄网站色视频无遮挡免费观看| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐动态| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 日本欧美视频一区| 欧美一级毛片孕妇| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 一级片'在线观看视频| 久久狼人影院| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费 | 黑人操中国人逼视频| 露出奶头的视频| 亚洲中文日韩欧美视频| 黄片小视频在线播放| 欧美日韩乱码在线| 国产人伦9x9x在线观看| 国产不卡一卡二| 免费不卡黄色视频| 免费看a级黄色片| 国产成人av教育| 好男人电影高清在线观看| 午夜老司机福利片| 免费在线观看影片大全网站| 欧美日韩视频精品一区| 少妇 在线观看| 国产有黄有色有爽视频| 黑人操中国人逼视频| 国产精品自产拍在线观看55亚洲| 久久国产亚洲av麻豆专区| 女生性感内裤真人,穿戴方法视频| 午夜免费鲁丝| 88av欧美| 看免费av毛片| 国产精品国产av在线观看| 日韩一卡2卡3卡4卡2021年| 纯流量卡能插随身wifi吗| 99香蕉大伊视频| 人人妻,人人澡人人爽秒播| 日本wwww免费看| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 婷婷精品国产亚洲av在线| 极品人妻少妇av视频| 91字幕亚洲| 亚洲人成电影观看| 变态另类成人亚洲欧美熟女 | 国产精品免费一区二区三区在线| av网站在线播放免费| 国产av一区二区精品久久| 国产高清国产精品国产三级| 亚洲av美国av| 黄色a级毛片大全视频| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 长腿黑丝高跟| 色播在线永久视频| 日韩视频一区二区在线观看| 91在线观看av| 99国产综合亚洲精品| 免费日韩欧美在线观看| а√天堂www在线а√下载| 精品久久久精品久久久| 99国产综合亚洲精品| 在线国产一区二区在线| 久久香蕉国产精品| 丁香六月欧美| 日日夜夜操网爽| 人人澡人人妻人| 亚洲第一青青草原| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成国产人片在线观看| 亚洲全国av大片| 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 亚洲人成电影观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多| 中文字幕人妻丝袜一区二区| 精品日产1卡2卡| 久久亚洲精品不卡| 伦理电影免费视频| 欧美黄色片欧美黄色片| xxxhd国产人妻xxx| 在线天堂中文资源库| 日日夜夜操网爽| 日本黄色日本黄色录像| 成人影院久久| 国产一区在线观看成人免费| 国产精品久久电影中文字幕| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 巨乳人妻的诱惑在线观看| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 久久香蕉精品热| 国产成人精品无人区| 在线观看免费视频日本深夜| 成年版毛片免费区| 免费女性裸体啪啪无遮挡网站| 9色porny在线观看| 亚洲成av片中文字幕在线观看| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 免费日韩欧美在线观看| 亚洲人成电影观看| 18禁观看日本| 欧美成人免费av一区二区三区| 少妇被粗大的猛进出69影院| 欧美大码av| 在线永久观看黄色视频| 亚洲精品久久午夜乱码| 久久中文字幕一级| 国产乱人伦免费视频| 国产色视频综合| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 丰满的人妻完整版| 可以在线观看毛片的网站| 大陆偷拍与自拍| 日韩精品中文字幕看吧| 亚洲人成电影观看| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 国产精品九九99| 欧美 亚洲 国产 日韩一| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 午夜免费鲁丝| 国产精品av久久久久免费| 国产精品99久久99久久久不卡| 真人一进一出gif抽搐免费| 国产亚洲精品久久久久久毛片| 丝袜美足系列| 久久精品国产亚洲av高清一级| 又紧又爽又黄一区二区| 麻豆国产av国片精品| 午夜影院日韩av| 国产av一区在线观看免费| 欧美激情极品国产一区二区三区| 欧美乱色亚洲激情| 99riav亚洲国产免费| 亚洲av成人不卡在线观看播放网|