• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron density measurement by the three boundary channels of HCOOH laser interferometer on the HL-3 tokamak

    2024-04-06 07:16:06JunrenMOU牟俊任YonggaoLI李永高YuanLI李遠ZaihongWANG王再宏BaogangDING丁寶鋼HaoxiWANG王浩西JiangYI易江andZhongbingSHI石中兵
    Plasma Science and Technology 2024年3期
    關(guān)鍵詞:寶鋼

    Junren MOU (牟俊任) ,Yonggao LI (李永高) ,Yuan LI (李遠) ,Zaihong WANG (王再宏) ,Baogang DING (丁寶鋼) ,Haoxi WANG (王浩西) ,Jiang YI (易江) and Zhongbing SHI (石中兵)

    1 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    2 East China Normal University,Shanghai 200241,People’s Republic of China

    Abstract Far-infrared (FIR) interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels (8 horizontal channels and 5 oblique channels) is under development on the HL-3 tokamak by using the formic-acid laser (HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of < 1.0 μs and lineintegrated electron density resolution of~ 7.0 × 1016 m-2.This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.

    Keywords: electron density,interferometer,HL-3

    1.Introduction

    Electron density is one of the most important parameters in the magnetically confined fusion plasmas.Measurement of the refractive index (N) of plasma by using the electromagnetic wave is a well-established tool for measuring the electron density for many decades [1-6].Far-infrared (FIR) laser interferometer detects the line-integrated electron density through launching a beam of FIR laser into the plasma.Because the refractive index of plasma is different from that in the vacuum condition (N=1),some phase difference(corresponding to optical path difference) will generate between the probing beam and the reference beam without passing through the plasma.Based on the interferometry technique,we can achieve the line-integrated electron density by: φ(rad)=k·here,λis the wavelength of electromagnetic wave,neis the local electron density,dlis the line element of integral operation,the coefficientk=(e2/4πc2ε0me)=2.82×10-15,whereeis the elementary charge,cis the light speed,ε0is the dielectric constant of vacuum,meis the mass of electron.

    HL-3 is a newly constructed tokamak with major radius of 1.78 m and minor radius of 0.65 m [7,8].HL-3 will focus on high parameter plasma operation and physics research,such as high confinement mode (H-mode),energetic particles driven instabilities,advanced divertor physics,and so on.Aiming to measure the electron density and perform realtime electron density feedback control,a multi-channel formic-acid laser (HCOOH,λ=432.5μm) Michelson-type interferometer was proposed on HL-3,including eight horizontal channels and five oblique channels.Five horizontal channels distributed in the central region (corresponding to the geometry locationZ=-20,-10,0,10,20 cm) had been successfully developed in the early 2023.Subsequently,in order to investigate the boundary electron density activity during the divertor discharge with elongation,other three horizontal interferometry channels located atZ=-97,-76,76.5 cm were recently developed on HL-3.

    This paper focuses on the development of the boundary three-channel FIR laser interferometer on HL-3.Section 2 describes the optical design and layout.Section 3 introduces the main components of the interferometry system.Section 4 represents the recent experimental result on HL-3.

    2.Optical design and layout

    The boundary interferometry system shares the same laser source,front light path,support tower and inner space with the existing five-channel HCOOH laser interferometer,and achieves the electron density measurement through beam splitter.Optical design of the three boundary interferometry channels is based on the Gaussian beam propagation and lens transformation techniques [9-12].

    In principle,as a Gaussian beam with wavelength ofλpropagates through the space,its light spot will expand and the diameter (d) can be determined by:

    here,Lindicates the distance from the beam waist (d0).

    Due to long distance propagation in the interferometry system,it is necessary to employ concave mirror with proper focal length (f) for beam transformation,as shown in figure 1.The beam waist parameter (d2,L2) after beam transformation can be determined from original beam waist (d1,L1) as follows:

    Figure 2 shows the optical layout of the HCOOH laser interferometer on HL-3.For the convenience of description,the light paths of central five horizontal channels are also provided in figure 2 by the light color.As the probing wave and local oscillation (LO) wave come out of the long waveguide pipes (~ 19 m),they get into the main optical path.In order to isolate possible vibration from the ground and HL-3 device,all the optical components are assembled on the big optic board which is firmly installed on the large stainlesssteel support tower (7.0 m in height,~ 8 tons in weight) next to the No.5# diagnostic window of HL-3 tokamak.

    Figure 1.Principle of the lens transformation for Gaussian beam.

    Figure 2.Optical layout of the three boundary interferometry channels (red color),together with the central five horizontal channels (light color).

    At the bottom of support tower,two plane mirrors (M1-1,M2-1) are accurately assembled to reflect the probing wave and LO wave into the main optical layout.In order to derive the reference beat signal (R),firstly,small parts of probing beam and LO beam are individually separated out by the mesh-grid splitters,and then combined at the second meshgrid.Finally,the combined waves are received by the high responsivity Schottky diode detector (DR),generating the beat signal (R).

    For the probing beam of the three boundary interferometry channels,the design of light path is based on existing central five interferometry channels through adding meshgrid splitters with proper transmission/reflection ratio.For the two lower boundary channels,their probing waves are obtained through separating some light-intensity from previous central channel 1# and channel 3#,respectively.For the upper boundary channel,its probing wave is obtained through separating some light-intensity from central channel 5#.Similarly,the LO waves of the three boundary interferometry channels are achieved through separating wave from central channels 1#,3#,5#,respectively.The probing waves are orderly launched into HL-3 plasma alongZ=-97,-76,76.5 cm,and reflected by the metal retro-reflector.Because the boundary interferometry channels are close to the plasma edge,where the electron density is very low,the refraction effect caused by the density gradient is weak.Meanwhile,the size of reflectors is big enough to receive the probing beams from plasma.Finally,the probing wave carrying the information of electron density combined with the outside LO waves,and received by the Schottky diode detectors (D1,D2,D3),generating the probing beat signals (P1,P2,P3).Finally,the line-integrated electron density can be achieved by computing the phase difference between P and R.

    3.Main components of the diagnostic

    3.1.Terahertz formic-acid laser source

    The FIR laser interferometer on the HL-3 tokamak shares the terahertz formic acid (HCOOH) laser source with HL-2A tokamak [13,14].In practical operation,two FIR laser diagnostics can be freely switched by a removable plane mirror which is mounted close to the lasers.HCOOH laser is optically pumped by a high-power CO2laser (~ 50 W).A Fabry-Perot (FP) cavity is employed to stabilize the CO2pump laser’s frequency for optimal FIR pumping.The process involves sending the laser through the FP,detecting the transmitted signal with a phase-sensitive detector (PSD),and then the length of the FP is dithered about the nominal point.The PSD output reflects the frequency difference between the FP and CO2pump laser.

    The HCOOH laser emits linearly polarized Gaussian radiation with a wavelength of 432.5μm,beam waist of 11.0 mm and output power level of 15-25 mW in operation.Two HCOOH lasers are utilized here for heterodyne detection,and beat intermediate frequency (IF) in several megahertz can be obtained by slightly tuning the cavity length of HCOOH laser,so that the time resolution of (< 1.0μs) can be achieved for the interferometry system.

    3.2.Diagnostic window

    The newly developed three boundary interferometry channels are mainly used to analyze the electron density activity close to plasma boundary region during the divertor discharge with large elongation.Limited by the spatial structure of HL-3 tokamak around No.5# section,only three probing channels are considered,in which one channel is located at the upper windows (?300 mm) and two channel are located at the lower window (?300 mm),respectively.

    Figure 3 shows the lower diagnostic window as an example.To ensure the minimum loss of light intensity at the diagnostic window,the aperture size (?65 mm) is chosen to satisfy the design requirement.Aiming to withstand the high temperature baking on HL-3 (up to 300 °C),the FIR diagnostic windows in the boundary region are specially designed with an extended neck of 150 mm long.As a result,the temperature can fast drop at the position of crystal quartz plate and fluor rubber ring can be used for vacuum seal.In addition,to avoid the disturbance of reflected wave from the crystal quartz plate,three diagnostic windows are specially designed with 3.0° slant angle.Figure 3 gives the designed structure and picture of two lower diagnostic windows (?65 mm).

    Figure 3.Design and picture of the lower diagnostic window (?300 mm) for the HCOOH laser interferometer on HL-3.

    3.3.In-vacuum retro-reflector

    In the Michelson-type interferometry configuration,the probing wave doubly passes through HL-3 plasma,so that the in-vacuum retro-reflector is required for beam reflection.On HL-3,three corner-cube-reflectors (CCR) which are made of copper with gold-plating are used for the boundary interferometry channels.CCR consists of three mutually perpendicular plane mirrors [15,16].Due to optic characteristic of the CCR,the reflected wave can propagate along the same path of incident wave by controlling the beam waist at the central area of CCR.These CCRs have an effective aperture of 50 mm,and all dihedral angle tolerances are less than 20".Figure 4shows the picture of CCR on HL-3 and primary test by using the visible laser (λ=635nm).In the desktop test,visible laser orderly passes through the splitter and diaphragm,and then launches to the center of CCR which is~ 3.0 m away from the diaphragm.The experimental result indicates that the reflected laser beam centrally crosses the diaphragm and can be observed below the splitter,which proves that the incident laser is perfectly reflected by the CCR along the same path.

    Figure 4.Desktop test of the CCR by using the visible laser.

    3.4.Data processing system

    The data processing system completes the phase difference computation and fast data acquisition.Figure 5 briefly displays the workflow of the data processing system,which starts to work as soon as receiving the trigger signal from HL-3 master control system.Firstly,the probing beat signal(P) and reference beat signal (R) output from detectors pass through band-pass filter and then are treated by 16-bit analogto-digital converter (ADC) with sampling frequency of 10 MHz.Here,Field Programmable Gate Array (FPGA) is the key module used to compute the phase difference between P and R,based on the digital phase comparator technique [17-19].The raw beat signals and phase data are temporarily saved in the DDR-III and then uploaded to HL-3 database through fast PXIe bus for offline data analysis.Besides,the computed phase data is transmitted to a digitalto-analog converter (DAC) and delivered to HL-3 master control system for real-time density feedback control with a time delay < 1.0 ms.

    Figure 5.Workflow of data processing system of the FIR laser interferometer.

    4.Experimental result on the HL-3 tokamak

    In the 2023 experimental campaign on the HL-3 tokamak,the newly developed three boundary interferometry channels were firstly put into operation and successfully measured effective electron density data.During the divertor discharge,the boundary interferometry channels are effective for investigating the electron density activity near the edge of plasma.

    Figures 6(a)-(c) give an example of experimental measurement on HL-3.In this shot No.2164#,the plasma current is~ 300 kA and the line-integrated electron density is~ 1.5 × 1019m-2during the plasma flat-top phase.From the line-integrated electron densities shown in the figures 6(a)-(d),we can see that both boundary and central interferometry channels are sensitive to the supplementary gas puffing.In comparison,the evolution processes of electron density in figures 6(a)-(c) show more details due to the change of plasma configuration.The value of line-integrated electron density is generally smaller than 0.3 × 1019m-2,which is about one order smaller than that in the plasma central region.For the upper channel shown in figure 6(a),the electron density shows bigger and faster change before 500 ms and then decreases.In the following phase,it gradually increases induced by gas puffing.On the contrary,the electron density measured by the lower two channels shows smaller before 400 ms and then increases in figures 6(b) and(c).In particular,figure 6(c) clearly reflects the density modulation process,and keeps steady level during the time of 400-1500 ms.For the three boundary channels,the channel (Z=-76 cm) shows higher electron density than other two channels (Z=-97,76.5 cm),due to themselves detected positions and plasma vertical displacement which is shown in figure 6(e) during the divertor discharge.Figure 6(f)represents the plasma current (Ip),Dαemission (DVS-Dα) of the divertor region,and the gas puffing whose position is at the mid-plane.

    Figure 6.(a)-(c) Temporal evolution of the line-integrated electron density measured by the boundary interferometry channels (Z=76.5,-97,-76 cm),(d) line-integrated electron density measured by the central channel (Z=0 cm),(e) plasma vertical displacement,(f) plasma current,gas puffing signal and Dα emission in the divertor region.

    5.Summary

    Measurement of the electron density is very crucial for the plasma discharge operation and understanding of plasma physics.In order to investigate the boundary electron density activity during the divertor discharge on HL-3,three boundary interferometry channels located atZ=-97,-76,76.5 cm have been firstly developed in 2023,based on the existing central five-channel HCOOH laser interferometer.

    In recent HL-3 experimental campaign,the line-integrated electron density of three channels is able to steadily operate with a time resolution of < 1.0μs,line-integrated electron density resolution of~ 7.0×1016m-2.From the experimental result,we can observe that the line-integrated electron density in the plasma boundary region is one order smaller than that in the central region.Meanwhile,detailed variation activity of electron density can be investigated by the boundary channel.The newly developed boundary interferometry system will be helpful for the research of plasma physics of divertor discharge.

    In the near future,some other oblique channels will be developed to improve the constraint of the electron density profile reconstruction,and the interferometry system also will be upgraded into the three-wave based polarimeter/interferometer which can simultaneously detect the electron density and Faraday rotation angle.

    Acknowledgments

    The corresponding author (Yonggao Li) would like to express sincere thanks to Dr.Yan Zhou,Zhongchao Deng,and Bihe Deng for their helpful suggestion on the diagnostic development,to the engineers Jin Wang,Wei Zhang,Ruijun Li,Linze Wu,Guohui Fu and Hong Xu for their help in the assembly work of the interferometry system.This work was supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2019YFE03020004,2018YFE0304102 and 2019YFE03020002) and the Department of Science and Technology of Sichuan Province (No.2020YJ0463).

    猜你喜歡
    寶鋼
    《寶鋼技術(shù)》征稿簡介
    寶鋼4#連鑄機結(jié)晶器電動缸振動技術(shù)分析
    寶鋼三號厚板坯連鑄機重壓下試驗研究
    重型機械(2019年3期)2019-08-27 00:58:44
    寶鋼并購武鋼的市場價值效應(yīng)分析
    財訊(2019年15期)2019-06-18 08:39:07
    上市公司并購前后的財務(wù)效應(yīng)研究
    寶鋼武鋼吸收合并案例研究
    “不銹寶鋼”主題展空間氛圍的探索
    寶鋼與POSCO在《財富》世界500強中排名、規(guī)模能力和盈利能力比較分析
    寶鋼304 不銹鋼表面熱滑移缺陷成因的研究
    上海金屬(2014年5期)2014-12-20 07:58:32
    新型登船梯在寶鋼碼頭的運用
    河南科技(2014年19期)2014-02-27 14:15:37
    国产精品一区二区性色av| 最近最新中文字幕大全电影3| 亚洲精华国产精华精| 成人特级av手机在线观看| 婷婷色综合大香蕉| 成年女人看的毛片在线观看| 亚洲经典国产精华液单| 国产伦一二天堂av在线观看| 午夜日韩欧美国产| 日日摸夜夜添夜夜添小说| 级片在线观看| 国产视频内射| 欧美中文日本在线观看视频| 精品无人区乱码1区二区| 亚洲国产色片| 性色avwww在线观看| 性色avwww在线观看| 真人一进一出gif抽搐免费| 日本一二三区视频观看| 中国美女看黄片| 色播亚洲综合网| 亚洲七黄色美女视频| 18禁在线播放成人免费| 欧美性猛交黑人性爽| 俄罗斯特黄特色一大片| 久久久久久国产a免费观看| 深夜精品福利| 国产精品av视频在线免费观看| 少妇丰满av| 最新中文字幕久久久久| www日本黄色视频网| 国产三级在线视频| 亚洲成人精品中文字幕电影| 3wmmmm亚洲av在线观看| 美女大奶头视频| 国产精品久久久久久精品电影| 亚洲电影在线观看av| 久久亚洲真实| 日本爱情动作片www.在线观看 | 日韩欧美国产一区二区入口| 日韩欧美国产一区二区入口| 三级国产精品欧美在线观看| 999久久久精品免费观看国产| 午夜福利在线观看免费完整高清在 | 十八禁国产超污无遮挡网站| 国产色爽女视频免费观看| 赤兔流量卡办理| 日韩一区二区视频免费看| 日韩一区二区视频免费看| 国产激情偷乱视频一区二区| 午夜精品一区二区三区免费看| 啦啦啦观看免费观看视频高清| 天堂影院成人在线观看| 九色国产91popny在线| 国产综合懂色| 十八禁国产超污无遮挡网站| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 久久精品91蜜桃| 久久香蕉精品热| 国产一区二区三区视频了| 久久精品人妻少妇| 欧美日本亚洲视频在线播放| 亚洲国产精品sss在线观看| 少妇人妻一区二区三区视频| 少妇被粗大猛烈的视频| 婷婷六月久久综合丁香| 亚洲欧美日韩无卡精品| 国产黄片美女视频| 99久久精品一区二区三区| 久久精品国产亚洲av天美| 国产在线精品亚洲第一网站| 亚洲三级黄色毛片| 在线观看舔阴道视频| 亚洲性久久影院| 久久精品国产亚洲av涩爱 | 国产黄色小视频在线观看| 久久久久久久精品吃奶| www.www免费av| 亚洲四区av| 午夜精品在线福利| 欧美xxxx性猛交bbbb| 成年女人毛片免费观看观看9| 国产v大片淫在线免费观看| 蜜桃久久精品国产亚洲av| 狠狠狠狠99中文字幕| 日韩精品有码人妻一区| 亚洲自拍偷在线| 少妇高潮的动态图| 好男人在线观看高清免费视频| а√天堂www在线а√下载| 欧美日韩乱码在线| 亚洲av熟女| 桃红色精品国产亚洲av| 国产欧美日韩一区二区精品| 别揉我奶头~嗯~啊~动态视频| 午夜精品久久久久久毛片777| 在线看三级毛片| 99久国产av精品| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久电影中文字幕| 午夜久久久久精精品| 成人欧美大片| 国产在线男女| 99久久九九国产精品国产免费| 欧美不卡视频在线免费观看| 一区二区三区激情视频| 午夜免费成人在线视频| 国产一区二区在线观看日韩| 我的女老师完整版在线观看| 国产精品一区二区三区四区久久| 九色成人免费人妻av| 88av欧美| 国产亚洲91精品色在线| 我要看日韩黄色一级片| 欧美zozozo另类| a在线观看视频网站| 国产淫片久久久久久久久| 久久99热6这里只有精品| 精品久久久久久久久久久久久| 免费av观看视频| .国产精品久久| 国产乱人视频| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 噜噜噜噜噜久久久久久91| 久久久久久久精品吃奶| 一本一本综合久久| 大型黄色视频在线免费观看| 国产三级在线视频| 香蕉av资源在线| 国产精品三级大全| 免费观看人在逋| 国产精品嫩草影院av在线观看 | 久久久精品大字幕| 在线国产一区二区在线| 欧美不卡视频在线免费观看| 身体一侧抽搐| 国产 一区精品| 精品乱码久久久久久99久播| 亚洲av日韩精品久久久久久密| 69人妻影院| 成人午夜高清在线视频| 久久午夜亚洲精品久久| 成人鲁丝片一二三区免费| 又黄又爽又刺激的免费视频.| 中国美白少妇内射xxxbb| 久久香蕉精品热| 日本与韩国留学比较| 丰满人妻一区二区三区视频av| av在线天堂中文字幕| 国模一区二区三区四区视频| 极品教师在线视频| 啦啦啦观看免费观看视频高清| 少妇高潮的动态图| 神马国产精品三级电影在线观看| 久久亚洲精品不卡| 欧美性猛交╳xxx乱大交人| 午夜老司机福利剧场| 国内精品久久久久久久电影| 九色国产91popny在线| 又黄又爽又免费观看的视频| 日韩欧美 国产精品| 一a级毛片在线观看| 综合色av麻豆| 午夜老司机福利剧场| 亚洲人成网站在线播| 啦啦啦韩国在线观看视频| 黄色配什么色好看| 亚洲av中文av极速乱 | 精品午夜福利视频在线观看一区| 人妻丰满熟妇av一区二区三区| 看免费成人av毛片| 人人妻,人人澡人人爽秒播| 精品一区二区免费观看| 极品教师在线免费播放| 一本一本综合久久| 中文字幕免费在线视频6| 啦啦啦韩国在线观看视频| 婷婷亚洲欧美| 欧美又色又爽又黄视频| 免费电影在线观看免费观看| 深爱激情五月婷婷| 亚洲四区av| 国产av一区在线观看免费| 老司机深夜福利视频在线观看| 国产一级毛片七仙女欲春2| 色噜噜av男人的天堂激情| 国产一区二区亚洲精品在线观看| 天天躁日日操中文字幕| 麻豆精品久久久久久蜜桃| 亚洲在线自拍视频| 亚洲色图av天堂| 亚洲真实伦在线观看| 97超视频在线观看视频| 极品教师在线免费播放| 精品人妻熟女av久视频| 久久精品国产亚洲av天美| 老司机深夜福利视频在线观看| 成人毛片a级毛片在线播放| 久久精品国产自在天天线| 我要看日韩黄色一级片| 美女cb高潮喷水在线观看| 亚洲欧美激情综合另类| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文日韩欧美视频| 在线观看66精品国产| 亚洲自拍偷在线| 五月玫瑰六月丁香| 日本免费a在线| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 99热精品在线国产| 在线观看66精品国产| 国产精品福利在线免费观看| 亚洲国产欧洲综合997久久,| 亚洲七黄色美女视频| 99热这里只有是精品在线观看| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 亚洲成人精品中文字幕电影| 亚洲内射少妇av| 国产麻豆成人av免费视频| 日本黄色视频三级网站网址| 免费av观看视频| 在线a可以看的网站| 亚洲欧美日韩无卡精品| 有码 亚洲区| 俺也久久电影网| 成熟少妇高潮喷水视频| 在线国产一区二区在线| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| а√天堂www在线а√下载| 国产中年淑女户外野战色| 国产在视频线在精品| 国产激情偷乱视频一区二区| 身体一侧抽搐| 日韩欧美一区二区三区在线观看| 一夜夜www| 成人二区视频| 久久精品人妻少妇| 日韩欧美 国产精品| 久久久久久久久久黄片| 欧美激情在线99| 中出人妻视频一区二区| 国产精品人妻久久久久久| 久久热精品热| 99在线人妻在线中文字幕| www.www免费av| 亚洲图色成人| 国产精品乱码一区二三区的特点| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 午夜精品在线福利| 级片在线观看| 欧美精品啪啪一区二区三区| 黄片wwwwww| 我要搜黄色片| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 国产 一区精品| 九九热线精品视视频播放| 精品一区二区三区视频在线| 又爽又黄a免费视频| 动漫黄色视频在线观看| 日韩精品有码人妻一区| 免费搜索国产男女视频| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 久久精品国产自在天天线| 日日干狠狠操夜夜爽| 久久99热6这里只有精品| 国产精品电影一区二区三区| 欧美日本视频| 成人毛片a级毛片在线播放| 国产精品一区二区三区四区久久| 久久亚洲真实| 蜜桃久久精品国产亚洲av| 天天一区二区日本电影三级| 精品人妻1区二区| 99九九线精品视频在线观看视频| 亚洲人成伊人成综合网2020| a级一级毛片免费在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久精品电影| 91久久精品国产一区二区成人| 久久久久性生活片| 老司机深夜福利视频在线观看| 日本色播在线视频| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| avwww免费| 91久久精品国产一区二区成人| 久久久久精品国产欧美久久久| 啦啦啦韩国在线观看视频| 两个人的视频大全免费| 有码 亚洲区| x7x7x7水蜜桃| 国产欧美日韩精品一区二区| 精品一区二区三区人妻视频| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院入口| 校园春色视频在线观看| 一个人看的www免费观看视频| 亚洲成人中文字幕在线播放| 最近视频中文字幕2019在线8| 韩国av在线不卡| 久久久久免费精品人妻一区二区| 国产精品福利在线免费观看| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久 | 精品免费久久久久久久清纯| 女的被弄到高潮叫床怎么办 | 久久久久久久午夜电影| bbb黄色大片| 网址你懂的国产日韩在线| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 久久久久久久久久成人| 成人三级黄色视频| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费| 美女黄网站色视频| 一本一本综合久久| 国产伦精品一区二区三区四那| 免费在线观看影片大全网站| 亚洲av成人av| 99精品久久久久人妻精品| 午夜免费男女啪啪视频观看 | 亚洲精品在线观看二区| а√天堂www在线а√下载| 国产色婷婷99| 亚洲真实伦在线观看| 色播亚洲综合网| 老女人水多毛片| 动漫黄色视频在线观看| 亚洲无线在线观看| 女的被弄到高潮叫床怎么办 | 最近在线观看免费完整版| 别揉我奶头 嗯啊视频| 不卡一级毛片| 九九热线精品视视频播放| 最新在线观看一区二区三区| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 色精品久久人妻99蜜桃| 天堂网av新在线| av在线观看视频网站免费| 一级毛片久久久久久久久女| 高清在线国产一区| 国产女主播在线喷水免费视频网站 | 午夜爱爱视频在线播放| 中文字幕av在线有码专区| 国产不卡一卡二| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 国产精品无大码| 一区二区三区四区激情视频 | 精品国产三级普通话版| 最近最新免费中文字幕在线| 久久人妻av系列| 午夜福利在线在线| 国内毛片毛片毛片毛片毛片| 精品99又大又爽又粗少妇毛片 | 神马国产精品三级电影在线观看| 国产蜜桃级精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 婷婷精品国产亚洲av| 免费黄网站久久成人精品| 色综合婷婷激情| ponron亚洲| 久久久久久大精品| 国产中年淑女户外野战色| 国产精品一区二区免费欧美| 少妇高潮的动态图| 欧美+亚洲+日韩+国产| 亚洲最大成人av| 99在线视频只有这里精品首页| 男女那种视频在线观看| 麻豆成人av在线观看| 一区福利在线观看| 成人午夜高清在线视频| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区 | 一级a爱片免费观看的视频| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办 | 亚洲狠狠婷婷综合久久图片| 国产成人影院久久av| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 在线观看午夜福利视频| 国产高清三级在线| 国内精品美女久久久久久| 亚洲自偷自拍三级| 春色校园在线视频观看| 又爽又黄a免费视频| .国产精品久久| 丰满的人妻完整版| 99久久精品国产国产毛片| 内地一区二区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 成人性生交大片免费视频hd| 日韩在线高清观看一区二区三区 | 噜噜噜噜噜久久久久久91| 性欧美人与动物交配| 特级一级黄色大片| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| 亚洲最大成人av| 亚洲av电影不卡..在线观看| 麻豆成人av在线观看| 国产黄a三级三级三级人| 久99久视频精品免费| 欧美人与善性xxx| 久久久成人免费电影| 99久久精品国产国产毛片| 搡老熟女国产l中国老女人| 欧美日韩精品成人综合77777| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 日日啪夜夜撸| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av天美| 永久网站在线| 欧美一区二区亚洲| 成熟少妇高潮喷水视频| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 99久久成人亚洲精品观看| 99久久精品热视频| 亚洲欧美清纯卡通| 国产激情偷乱视频一区二区| 深夜a级毛片| 在现免费观看毛片| 中国美白少妇内射xxxbb| 热99在线观看视频| 久久久色成人| 国产探花极品一区二区| 亚洲中文字幕日韩| 最好的美女福利视频网| 欧美xxxx黑人xx丫x性爽| 免费在线观看日本一区| 欧美日本亚洲视频在线播放| 亚洲熟妇熟女久久| 亚洲欧美日韩高清专用| 成人一区二区视频在线观看| www日本黄色视频网| 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 国产精品亚洲一级av第二区| 哪里可以看免费的av片| 亚洲欧美激情综合另类| 婷婷亚洲欧美| 88av欧美| 极品教师在线视频| 亚洲av五月六月丁香网| 久久久久久久久大av| 久久久国产成人免费| 91在线观看av| 国产精品免费一区二区三区在线| 无人区码免费观看不卡| 一个人看的www免费观看视频| 久久久久久伊人网av| 国产淫片久久久久久久久| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 1024手机看黄色片| 赤兔流量卡办理| 国产精品无大码| 欧美成人一区二区免费高清观看| 国产精品电影一区二区三区| 国产三级在线视频| 久久国内精品自在自线图片| 欧美人与善性xxx| 免费电影在线观看免费观看| 日本黄色片子视频| 黄色日韩在线| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 欧美日韩乱码在线| 直男gayav资源| 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| av在线老鸭窝| 亚洲精品一区av在线观看| 69人妻影院| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 99精品久久久久人妻精品| 日韩国内少妇激情av| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 人妻制服诱惑在线中文字幕| 天堂√8在线中文| 国产v大片淫在线免费观看| 精品一区二区三区人妻视频| 亚洲狠狠婷婷综合久久图片| 在线播放国产精品三级| 日韩人妻高清精品专区| 久久久久国内视频| 日韩在线高清观看一区二区三区 | 亚洲国产欧洲综合997久久,| 免费黄网站久久成人精品| 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲熟妇熟女久久| 欧洲精品卡2卡3卡4卡5卡区| 91午夜精品亚洲一区二区三区 | 99久久九九国产精品国产免费| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 国产精品无大码| 亚洲av免费高清在线观看| 色综合色国产| 国产一区二区激情短视频| 真实男女啪啪啪动态图| 热99在线观看视频| 成年女人毛片免费观看观看9| 日韩人妻高清精品专区| 俺也久久电影网| 一个人看的www免费观看视频| 久久6这里有精品| 不卡视频在线观看欧美| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 神马国产精品三级电影在线观看| 一本一本综合久久| 国产毛片a区久久久久| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 丰满乱子伦码专区| 日本一本二区三区精品| 亚州av有码| 久久久久精品国产欧美久久久| 国产精华一区二区三区| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 亚洲性久久影院| 免费看美女性在线毛片视频| 国产成人一区二区在线| 一夜夜www| 久久久久国产精品人妻aⅴ院| 性插视频无遮挡在线免费观看| 国语自产精品视频在线第100页| 午夜老司机福利剧场| 亚洲电影在线观看av| 久9热在线精品视频| 日韩一本色道免费dvd| 亚洲欧美激情综合另类| 久久国产乱子免费精品| 欧美丝袜亚洲另类 | 国产精品久久久久久av不卡| 国产视频一区二区在线看| 国产精品嫩草影院av在线观看 | 国国产精品蜜臀av免费| 麻豆一二三区av精品| 露出奶头的视频| 国产午夜精品论理片| 99国产精品一区二区蜜桃av| 国产老妇女一区| 一本一本综合久久| 国产三级中文精品| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 日本一本二区三区精品| 国产一区二区激情短视频| 尾随美女入室| 欧美zozozo另类| 在线天堂最新版资源| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 午夜激情欧美在线| 国产av在哪里看| 精品99又大又爽又粗少妇毛片 | 日本在线视频免费播放| 深夜精品福利| 亚洲av中文字字幕乱码综合| 超碰av人人做人人爽久久| 99久久九九国产精品国产免费| 俺也久久电影网| 亚洲专区中文字幕在线| 一级av片app| 欧美bdsm另类| 一本精品99久久精品77| 哪里可以看免费的av片|