• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots

    2022-12-28 09:52:32LeTianZhu朱樂天TaoTu涂濤AoLinGuo郭奧林andChuanFengLi李傳鋒
    Chinese Physics B 2022年12期

    Le-Tian Zhu(朱樂天) Tao Tu(涂濤) Ao-Lin Guo(郭奧林) and Chuan-Feng Li(李傳鋒)

    1Key Laboratory of Quantum Information,University of Science and Technology of China,Chinese Academy of Sciences,Hefei 230026,China

    2Hefei National Laboratory,University of Science and Technology of China,Chinese Academy of Sciences,Hefei 230088,China

    Keywords: quantum sensing,magnons excitations,spin qubits in quantum dots

    1. Introduction

    Magnons in ferromagnets are promising solid-state platforms for building interfaces between different quantum systems,which play an important role in various quantum information applications.[1]Using magnon mode conduction or virtual magnon exchange in spin chains, the robust transfer of quantum information between different nodes and the longrange entanglement between qubits can be achieved.[2–6]Using the coupling between magnon modes and different quantum components, quantum hybrid architectures can be realized,which is an attractive pathway to future scalable quantum processors.[7–10]

    Electron spins in semiconductor quantum dots are one of the most promising candidates for qubits.[11,12]Because they are compatible with conventional semiconductor technology, quantum dots are leading the way in terms of largescale fabrication and integration.[13,14]In purified silicon materials, electron spins exhibit long coherence times of up to 100μs because the effect of surrounding nuclear spins is suppressed. Quantum dots have excellent gate controllability,so both single-qubit and two-qubit operations can be implemented with high fidelity in an electrical manner.[15–18]Recent significant advances include demonstration of demanding and complex quantum algorithms, such as variational quantum algorithm for calculating molecular energies, on a programmable quantum dot spin processor.[18,19]

    The magnetic dipole moment of a single electron spin in quantum dots is small, so it couples weakly to the external magnetic excitations.On the one hand,this is an advantage for electron spin to maintain a long coherence time even in complex solid-state environments. On the other hand, this also makes it difficult to couple and control the magnetic excitations. Therefore, how to develop quantum dots for applications in the field of magnons has been an outstanding challenge.

    Among the various quantum dot structures,double quantum dot systems have received more attention.In double quantum dots, in addition to the spin degree of freedom, the electron also has the orbital degree of freedom, such as the delocalization of the electron across the two quantum dots. The presence of orbital degrees of freedom enables the electron to have a large electric dipole moment. The control of the detuning and tunneling between the two quantum dots allows the tunability of the electric dipole moment. In this way, strong coupling to external control fields or other qubits can be obtained when needed. Thus, the additional charge degrees of freedom in the double quantum dot provide an effective interface between the electron and other systems. Based on double quantum dots,a number of impressive progresses have been made recently,such as achieving 99.5%measurement fidelity,the highest value reported so far in any solid-state spin system.[20,21]

    In this article,we propose a scheme to combine quantum dots and magnons by using spin–charge hybridization. We focus on a single electron in a double quantum dot. In addition to having spin degree of freedom, it also has orbital degree of freedom, so it is a spin–charge hybrid system. Since the charge state has an electric dipole moment, it gives rise to a large coupling between the spin state and the external cavity field. Further, using the cavity field as an mediator, effective interaction between single electron spin and magnetic excitations can be achieved. Therefore, quantum dots can be used for entanglement with magnetic modes and for the detection of magnon excitations. Our analysis shows that the detection efficiency is as high as 0.94 even in the presence of realistic noises and imperfections. We note that the readout efficiency is only about 0.1–0.5 in the experiments using optical methods to manipulate spin-wave excitations in solids as a quantum memory due to various noise effects.[22,23]These results provide opportunities for a wide range of applications using quantum dots to manipulate magnetic excitations.

    2. The hybrid system

    2.1. Spin-charge hybridization in the quantum dots

    As shown in Fig.1(a),we first consider a single electron confined in two quantum dots.[24–27]The electron has two basic orbital states of|L〉and|R〉, and two basic spin states of|↑〉and|↓〉. The potential difference between the two dots isεand the tunnel coupling between the two dots istc. Both parameters can be adjusted by the voltage applied to the quantum dots. In addition to an overall external magnetic fieldB,a nearby micromagnet produces a magnetic field gradient ?Bbetween the two dots. This double-quantum dot system can be described by the Hamiltonian

    where ?τiand ?σiare the Pauli matrices defined in the charge and spin subspaces,respectively.

    In Fig. 1(b), we show the energy levels of the quantum dots as a function of the bias parameterε. This is a fourlevel system with energy eigenvaluesEnand energy eigenstates|nqd〉. When|ε| is large, the electron is localized in one quantum dot, whose energy eigenstates can be described as|L,↓〉,|L,↑〉,|R,↓〉,|R,↑〉. In contrast, whenεis near the avoided crossing pointε ≈0, the electron is delocalized across the two quantum dots, forming the bonding and antibonding states|?〉,|+〉. Further,due to the presence of spin–orbit interactions (i.e., the last term in Eq. (1)), the bonding and anti-bonding states with opposite spins|?,↑〉,|+,↓〉are hybridized, forming the energy eigenstates|1qd〉and|2qd〉.While, the ground state is approximately unperturbed, leading to|1qd〉≈|?,↓〉. Thus,the spin states of the quantum dots depend on the charge states. The effective two-level Hamiltonian of the quantum dots can be written as

    whereσirepresents the Pauli matrices defined in the basis of spin–charge hybridized states of|0qd〉and|1qd〉.

    Fig.1. (a)In the system we consider, there are three components: a single electron spin in the double quantum dot, a microwave mode in the cavity,and a magnon excitation in the magnet. The single spin and the cavity mode are coupled by an electric dipole interaction,labeled as gqd,p. The magnon mode and the cavity mode are coupled by a magnetic dipole interaction,labeled as gm,p. In this way the cavity mode acts as an intermediator,allowing an effective coupling gqd,m between the single spin and the magnon mode. Here the double quantum dot is a double potential well structure. On the one hand,adjusting the voltage of the side gate can change the shape of the confinement potential,so that the electron is confined to either the left quantum dot or the right quantum dot,labeled as|L〉and|R〉. On the other hand,adjusting the voltage of the middle gate can change the barrier height between the two quantum dots,so that the electron can tunnel between the two quantum dots. (b)Energy levels of quantum dots vs bias ε. (c)Effective coupling strength between quantum dots and magnons vs bias ε. Here we use the parameters as tc =20 μeV, B=33 μeV, ?B=2 μeV, ωm/2π =7.92 GHz,ωp/2π =8.45 GHz,and gm,p/2π =22.9 MHz.

    2.2. Spin–photon coupling between the quantum dots and the cavity

    Then we consider a microwave cavity with the Hamiltonian

    wherea+pandapare the cavity photon operators. In the original basis of|L〉and|R〉,the interaction between the quantum dots and the cavity can be described by

    where the coupling strength isgqd,p=〈0qd|?τz|1qd〉gc,p. In this way, the combination of electric dipole moment and spin–charge hybridization can lead to a large spin–cavity couplinggqd,p.

    2.3. Spin–magnon effective coupling between the quantum dots and the magnons

    We now consider a hybrid system that consists of a yttrium iron garnet (YIG) ferromagnetic crystal and a double quantum dot, both coupled to the same microwave cavity, as illustrated in Fig. 1. Our system hosts three subsystems: the magnon modes in the magnetically ordered crystal can be depicted as

    On the other hand,the quantum dots are coupled to the cavity through the spin–charge hybridization with a coupling strengthgqd,p,as described in Eq.(5). Thus,using the cavity as a mediator,these interactions lead to an effective coupling between the magnetic modes and the quantum dots. When the frequency of the cavity is far detuned from those of the quantum dots and the magnetic modes,the effective interaction between the quantum dots and the magnetic modes can be described as

    As shown in Fig.1(c),the value of the coupling strengthgqd,mcan increase by a factor of 5 when the bias of the quantum dotsεis changed from the large detuning regime to the near avoided crossing regime. This result is due to the fact that changing the bias voltage can change the electron from being localized in one quantum dot to being delocalized across the two quantum dots. This increases the charge distribution length of the electron and thus enhances its electric dipole moment,leading to a large electric dipole interactiongqd,p.In this way, adjusting the biasεchanges the coupling strengthgqd,pof the quantum dots to the cavity, which further changes the coupling strengthgqd,mof the quantum dots to the magnons.

    Furthermore, when the frequency of the quantum dots is detuning from the frequency of the magnetic modes,the interaction Hamiltonian can be reduced as

    Hereχqd,m=g2qd,m/(ωqd?ωm) characterizes the shift of the energy levels of quantum dots due to the presence of magnetic modes.

    3. Quantum sensing scheme of the magnons

    As shown in Fig.2(a),the scheme for controlling and detecting magnetic modes using quantum dots is designed as follows:

    (i)First,the state of the magnetic excitations is prepared,which is a superposition state of magnon Fock states

    Meanwhile,the quantum dots are prepared in the ground state.

    Fig.2. (a)Schematic diagram of the scheme for detecting the magnon states. (b) Dynamics of the protocol for detecting the magnon states.Here the red dashed line shows the expectation value of the magnons〈nm〉, and the blue solid line shows the probability of the quantum dots in the ground state P|0qd〉. Here we use the pulse parameter of magnons ?m/2π = 0.8 MHz, the pulse parameter of quantum dots?qd/2π =1.25 MHz,and the other parameters as in Fig.1.

    (ii) As described in Eq. (10), the frequency of the quantum dots is shifted by the magnetic modes and therefore depends on the state of the magnetic modes. This magnon-statedependent frequency shift is the key to the present scheme.Aπ-pulse is applied to the quantum dots, whose operating frequency corresponds to the frequency of the quantum dots,when the magnetic modes are in the vacuum state|0m〉.By applying such a conditionalπ-pulse, the state of the composite system becomes

    (iii) The above equation suggests that the state of the quantum dots and the state of the magnetic modes are entangled after the application of theπ-pulse. The probability that the quantum dots are in the excited state indicates that the magnetic modes are in the vacuum state|0m〉,while the probability that the quantum dots are in the ground state indicates that the magnetic modes are in the magnon number state|nm〉. Therefore, using standard techniques to measure the quantum dots provides information about the magnetic modes.

    4. The models and simulations of the hybrid system

    To demonstrate this manipulation and detection scheme,we perform numerical simulation of dynamics of the whole system. In the rotating frame of the quantum dot and the magnon frequencies,the Hamiltonian of the composite system can be written as

    Here?qd=ωqd?ωdand?m=ωm?ωdare the detuning of the quantum dot frequency and magnon frequency from the control pulse frequency, respectively. The last two terms in the Hamiltonian represent the control pulse fields applied to the quantum dots and the magnons,respectively. The dynamics of the system is determined by the master equation

    The calculation of the master equation requires long time resources because of the large state space of the hybrid system.Therefore,we derive the equations of motion for the expectation values of the operators of the hybrid system. From the master equation, we can obtain a series of coupled equations involved high order moments. Then, we factor the higher order terms into the first order terms,e.g.,〈cσz〉?〈c〉〈σz〉. This is a good approximation because the dynamics of the magnons in the hybrid system is dominated by the expectation value and the fluctuation is small. In this way, we obtain the following equation of motion for the hybrid system:

    In the simulations, we numerically solve this set of coupled differential equations. Moreover, we find that the results of the equation of motion are consistent with those of the master equation,which indicates that our factorization approximation captures the underlying dynamical structure of the hybrid system.

    5. Quantum sensing results

    5.1. Detection process

    We use the scheme to detect the coherent state of magnons. First, we apply a driving pulse to the ferromagnet to prepare the coherent state of magnons|Ψm〉=|α〉. Second,after a delay time oftd=200 ns,we apply a Gaussian-shapedπpulse to the quantum dots to generate an entangled state of the quantum dots and the magnons. Finally, we measure the probability of the quantum dots in the ground stateP|0qd〉.

    In Fig. 2(b), we plot the time evolution of the expectation value of magnons〈nm〉=〈Ψm|c+c|Ψm〉as well as the ground state population of the quantum dotsP|0qd〉. In the first stage, the expectation value of magnons increases with time and reaches a peak,indicating the preparation of the coherent state of magnons. Here,the magnon excitation is prepared by microwave pulses with a peak value of〈nm〉=0.18. In this stage the quantum dots remain in the initial ground state and do not change. In the second stage, the state of the quantum dots starts to respond to the magnons due to the application of the conditionalπpulse, which allows the quantum dots to be entangled with the magnons. The ground state population of the quantum dots continues to decrease and reaches a steady value. In this case, the population of quantum dotsP|0qd〉significantly changes from the initial value of 1 to the final value of 0.14 due to the entanglement of quantum dot spins and magnons. This final ground state population corresponds to the probability of the magnon state|nm〉.

    5.2. Detection efficiency for the magnon coherent states

    Fig.3. Probability of the quantum dots in the ground state as a function of the amplitude|α|2 of the magnon coherent state. The circles are simulation results and the solid line is the fit to extract the efficiency. Here we use the same parameters as in Fig.2.

    We further demonstrate the detection of various coherent states of magnons. First, we prepare the coherent states of result,i.e.,the dark count rated>0 of the detection process.Using the fit in Fig.3,we can obtain two performance metrics for the detection process in a realistic environment asη=0.94 andd=0.06,when the magnons are in the state|nm〉.

    5.3. Detection efficiency with respect to various system parameters

    To explore the limitation factors of the present scheme,we investigate the effect of decoherence parameters on the detection efficiency. In Fig.4(a),we find that the detection efficiencyηincreases with the increase of the relaxation timeT1and the dephasing timeTφof the quantum dots. For example,for a fixed relaxation timeT1=25 μs, when the dephasing timeTφis varied from 100 ns to 4μs,the detection efficiency increases rapidly from the lower value of 0.1 to close to the ideal value of 1.This result is expected because in this scheme,the quantum dots serve as sensors whose quantum coherence time determines the detection efficiency. Further,we find that the detection efficiencyηincreases more significantly with the dephasing timeTφthan with the relaxation timeT1. Because the key of this quantum sensing scheme is to generate the entangled states between the quantum dots and the magnons, it is more significantly affected by the dephasing process.

    We also investigate the detection efficiency by varying the operation time of the conditionalπpulse. In Fig.4(b),we find that the detection efficiencyηgradually decreases with the increase of the durationtpof theπpulse.For example,when the operation time increases to 400 ns,which is comparable to the dephasing timeTφof quantum dots, the detection efficiency drops to a lower value of 0.76. This result is also anticipated because the total measurement time increases as theπpulse duration increases,the decoherence effect starts to play a significant role,leading to a decrease in detection efficiency. Ideally,if the pulse duration is very short,the detection efficiency can be close to 1. However,under practical experimental conditions, it is difficult to implement fast pulse or short pulse duration. Therefore, this result motivates the design of optimized pulse sequences to achieve higher detection efficiency in future work.

    Fig.4. (a)Detection efficiency as a function of relaxation time T1 and dephasing time Tφ. (b)Detection efficiency as a function of π-pulse operating time tp. (c)Detection efficiency as a function of quantum dot bias ε. Here we use the same parameters as in Fig.2.

    In Fig.3,we simulate the ground state probability of the quantum dots for different magnon coherent states. The solid line in the figure is the fitted equation:P|0qd〉=η(1?e?〈nm〉)+d. Hereηandddenote the efficiency and dark-count rate of the detection process, respectively. In the ideal case, the efficiencyη=1 and the dark count rated=0,where the detection results reduce to a simple scaling law 1?e?〈nm〉.However,the state of the quantum dots is subject to the decoherence effects from the environment, which limits the efficiencyη<1 of the detection process. In addition,decoherence from the environment causes changes in the quantum dot state even in the absence of magnons,which gives rise to an incorrect detection

    In Fig.4(c),we find that the detection efficiency changes substantially as the biasεof the quantum dots changes. The detection efficiency increases significantly from a lower value of 0.3 to a higher value close to 1 when the bias voltage of the quantum dots is changed from the large detuning regime to the near avoided crossing regime. This result is consistent with the electrical tunability result of Fig. 1(c). As shown in Fig.1(c),the effective coupling strengthgqd,mbetween quantum dots and magnons can be electrically tuned over a wide range by the bias parameterε,leading to a greater strength of interaction between quantum dots and magnons, thus resulting in the higher detection efficiency shown in Fig.4(c). This result indicates that our scheme has rich electrical tunability compared to other quantum sensing schemes.

    6. Conclusions

    In summary,we propose a scheme for the control and detection of magnetic excitation modes in ferromagnets using quantum dots. In a realistic solid state environment, the detection efficiency can reach a high value of 0.94. This efficiency value is several times larger than the state-of-art spinwave readout efficiency value using optical methods.[22,23]Our analysis shows that decoherence effects limit the performance of the scheme,so detection efficiency can be further improved by designing optimal working points or using composite pulses.[28–30]Here we demonstrate the detection of magnetic coherent states, it would be interesting to design quantum non-demolition measurement protocols, which could enable richer detection methods.[31]In addition,the scheme can be used for the selective generation of magnon states, which is a crucial step toward the magnon-based quantum technologies. In the future,these schemes can be used to probe exotic magnetic excitations in various solid materials,and to develop quantum technology applications for composite quantum systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11974336) and the National Key Research and Development Program of China (Grant No.2017YFA0304100).

    国产精品久久久久久久久免 | 床上黄色一级片| 天美传媒精品一区二区| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 午夜激情福利司机影院| 在线a可以看的网站| 天天一区二区日本电影三级| 网址你懂的国产日韩在线| 午夜福利在线观看免费完整高清在 | 美女高潮的动态| 天美传媒精品一区二区| 宅男免费午夜| 成人国产一区最新在线观看| 国产成+人综合+亚洲专区| 日本三级黄在线观看| 99riav亚洲国产免费| 哪里可以看免费的av片| 12—13女人毛片做爰片一| 国内少妇人妻偷人精品xxx网站| 日韩欧美在线乱码| 成人亚洲精品av一区二区| 高清毛片免费观看视频网站| 有码 亚洲区| 午夜福利18| 久久国产精品影院| 丁香六月欧美| 中出人妻视频一区二区| 十八禁人妻一区二区| 少妇的逼好多水| 欧美在线黄色| 999久久久精品免费观看国产| 日韩欧美在线乱码| 日本成人三级电影网站| 波多野结衣高清无吗| 亚洲 国产 在线| 日本与韩国留学比较| 久久久久久久久大av| 长腿黑丝高跟| 久久6这里有精品| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 精品久久久久久久久久免费视频| 18+在线观看网站| 精品不卡国产一区二区三区| 亚洲专区中文字幕在线| 亚洲国产精品sss在线观看| 高清日韩中文字幕在线| 精品久久久久久久久av| 欧美日韩乱码在线| 久9热在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 国产 一区 欧美 日韩| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| av在线老鸭窝| 精品福利观看| 99国产极品粉嫩在线观看| 国产精品一及| 亚洲黑人精品在线| 又爽又黄无遮挡网站| 少妇的逼水好多| 国产精品亚洲一级av第二区| 欧美日本亚洲视频在线播放| 亚洲美女视频黄频| 18禁在线播放成人免费| 好男人在线观看高清免费视频| 老司机午夜福利在线观看视频| 亚洲av中文字字幕乱码综合| 中文亚洲av片在线观看爽| 午夜影院日韩av| 亚洲精品粉嫩美女一区| 日韩亚洲欧美综合| 国产欧美日韩一区二区精品| 一卡2卡三卡四卡精品乱码亚洲| 91在线观看av| 国语自产精品视频在线第100页| 亚洲av成人不卡在线观看播放网| 天堂√8在线中文| 欧美成人a在线观看| 最新在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 久久午夜福利片| 午夜亚洲福利在线播放| 噜噜噜噜噜久久久久久91| 欧美xxxx黑人xx丫x性爽| 久久草成人影院| 亚洲av不卡在线观看| 又爽又黄a免费视频| 国产在线男女| 亚洲国产高清在线一区二区三| 亚洲国产精品sss在线观看| 天堂动漫精品| 两个人视频免费观看高清| bbb黄色大片| 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 亚洲专区国产一区二区| 精华霜和精华液先用哪个| 国产成人福利小说| 淫秽高清视频在线观看| 欧美日韩国产mv在线观看视频 | 午夜福利视频精品| 99热全是精品| 久久精品国产亚洲av天美| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久免费av| 日韩欧美精品v在线| 国产亚洲91精品色在线| 男男h啪啪无遮挡| 少妇熟女欧美另类| 免费在线观看成人毛片| 国产精品伦人一区二区| 中文字幕制服av| 国产免费又黄又爽又色| 国产探花极品一区二区| 在线看a的网站| 五月伊人婷婷丁香| 日韩大片免费观看网站| 欧美一区二区亚洲| 性色avwww在线观看| 51国产日韩欧美| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 亚洲av福利一区| 日韩欧美精品免费久久| 成年女人在线观看亚洲视频 | 久久久久久久久大av| 在线观看人妻少妇| 成人美女网站在线观看视频| a级一级毛片免费在线观看| 国产精品.久久久| 边亲边吃奶的免费视频| 哪个播放器可以免费观看大片| 又粗又硬又长又爽又黄的视频| 舔av片在线| 一区二区三区免费毛片| 久久人人爽人人片av| 99热这里只有精品一区| 欧美日本视频| 交换朋友夫妻互换小说| 亚洲av男天堂| 一个人观看的视频www高清免费观看| 亚洲国产精品国产精品| 制服丝袜香蕉在线| 日韩成人av中文字幕在线观看| av线在线观看网站| 日韩欧美 国产精品| 18禁在线播放成人免费| 丝袜喷水一区| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 夜夜爽夜夜爽视频| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| h日本视频在线播放| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 亚洲成人av在线免费| 麻豆国产97在线/欧美| 青春草国产在线视频| 岛国毛片在线播放| 久久久精品94久久精品| 国产精品一二三区在线看| 日本一本二区三区精品| 国产亚洲5aaaaa淫片| 中文精品一卡2卡3卡4更新| 热99国产精品久久久久久7| 中国美白少妇内射xxxbb| 99久久精品热视频| 久久精品夜色国产| 99视频精品全部免费 在线| 成人特级av手机在线观看| 欧美 日韩 精品 国产| 99视频精品全部免费 在线| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 大香蕉97超碰在线| 成人免费观看视频高清| 久久影院123| 高清在线视频一区二区三区| 亚洲精品,欧美精品| 丰满少妇做爰视频| 不卡视频在线观看欧美| 国产精品三级大全| 老女人水多毛片| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 一级毛片aaaaaa免费看小| 少妇人妻一区二区三区视频| 亚洲精品日本国产第一区| 色5月婷婷丁香| www.色视频.com| 在线免费观看不下载黄p国产| 成人免费观看视频高清| 国产精品女同一区二区软件| 精品视频人人做人人爽| 少妇被粗大猛烈的视频| 免费在线观看成人毛片| 在线看a的网站| 免费观看性生交大片5| 一级爰片在线观看| 日韩中字成人| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久久久免| 久久久午夜欧美精品| 性插视频无遮挡在线免费观看| 亚洲av免费高清在线观看| 青春草视频在线免费观看| 3wmmmm亚洲av在线观看| 三级国产精品片| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 18禁动态无遮挡网站| 永久免费av网站大全| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| av播播在线观看一区| 国产亚洲精品久久久com| 欧美人与善性xxx| 各种免费的搞黄视频| 亚洲精品456在线播放app| 午夜福利在线观看免费完整高清在| 日本av手机在线免费观看| 亚洲三级黄色毛片| 少妇人妻 视频| 国产精品99久久99久久久不卡 | 偷拍熟女少妇极品色| 男女那种视频在线观看| 草草在线视频免费看| 日韩一区二区三区影片| 久久热精品热| 亚洲国产最新在线播放| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 在线观看一区二区三区激情| 少妇人妻 视频| 久久精品国产亚洲网站| 交换朋友夫妻互换小说| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说 | 欧美97在线视频| 国产一区二区在线观看日韩| 性色av一级| 国产午夜福利久久久久久| av在线播放精品| 久久这里有精品视频免费| 国产成人91sexporn| 天堂俺去俺来也www色官网| 国产午夜福利久久久久久| 69av精品久久久久久| 欧美高清成人免费视频www| 最近最新中文字幕免费大全7| 干丝袜人妻中文字幕| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 黄色一级大片看看| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 精品久久久久久电影网| 蜜桃久久精品国产亚洲av| 汤姆久久久久久久影院中文字幕| 男人和女人高潮做爰伦理| 国产成人精品福利久久| 69人妻影院| 人妻 亚洲 视频| 我的女老师完整版在线观看| 伊人久久国产一区二区| 在线观看一区二区三区| 免费看日本二区| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 久热这里只有精品99| 精品人妻偷拍中文字幕| 精品久久久久久久久亚洲| 色视频在线一区二区三区| 亚洲av免费高清在线观看| 男女无遮挡免费网站观看| 国产午夜福利久久久久久| 精品一区在线观看国产| 干丝袜人妻中文字幕| 成人免费观看视频高清| 亚洲av.av天堂| 亚洲国产色片| 中国美白少妇内射xxxbb| 视频区图区小说| 插阴视频在线观看视频| 免费人成在线观看视频色| 欧美亚洲 丝袜 人妻 在线| 丝袜美腿在线中文| 国产色爽女视频免费观看| 在线观看av片永久免费下载| 久久99热这里只频精品6学生| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 久久午夜福利片| a级一级毛片免费在线观看| 亚洲av.av天堂| 亚洲精品国产av蜜桃| 街头女战士在线观看网站| 久久久久国产精品人妻一区二区| 成人毛片a级毛片在线播放| 久久久久九九精品影院| 全区人妻精品视频| 最后的刺客免费高清国语| 女人久久www免费人成看片| 超碰av人人做人人爽久久| 赤兔流量卡办理| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 日韩视频在线欧美| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| av免费在线看不卡| 国产大屁股一区二区在线视频| 最新中文字幕久久久久| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 少妇丰满av| 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 国产人妻一区二区三区在| 大话2 男鬼变身卡| 久久久久精品性色| 久久精品人妻少妇| 人妻系列 视频| 亚洲精品亚洲一区二区| 人妻系列 视频| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的 | 久久久久国产网址| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 18禁在线播放成人免费| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 亚洲最大成人中文| 国产成人a∨麻豆精品| 女人久久www免费人成看片| 久久97久久精品| 日韩,欧美,国产一区二区三区| 亚洲美女搞黄在线观看| 日韩不卡一区二区三区视频在线| 久久精品国产鲁丝片午夜精品| 亚洲美女视频黄频| 亚洲天堂国产精品一区在线| 日韩大片免费观看网站| 亚洲在线观看片| 黑人高潮一二区| 日本一本二区三区精品| 日韩av免费高清视频| 午夜精品一区二区三区免费看| 免费电影在线观看免费观看| 又黄又爽又刺激的免费视频.| 99久久中文字幕三级久久日本| 涩涩av久久男人的天堂| 97超视频在线观看视频| 精品视频人人做人人爽| 狂野欧美激情性xxxx在线观看| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 日韩成人伦理影院| 久久久久久久精品精品| 免费大片黄手机在线观看| 欧美zozozo另类| 白带黄色成豆腐渣| 午夜老司机福利剧场| 精品国产一区二区三区久久久樱花 | 亚洲av电影在线观看一区二区三区 | 爱豆传媒免费全集在线观看| 日韩电影二区| 激情 狠狠 欧美| 欧美高清成人免费视频www| 在线观看国产h片| 国产毛片在线视频| 欧美激情在线99| 网址你懂的国产日韩在线| 美女内射精品一级片tv| 国产精品久久久久久久电影| 欧美xxxx黑人xx丫x性爽| 欧美人与善性xxx| 成人漫画全彩无遮挡| 国产欧美日韩精品一区二区| 我的女老师完整版在线观看| 日本三级黄在线观看| 交换朋友夫妻互换小说| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 国产视频内射| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 午夜视频国产福利| 亚洲自偷自拍三级| videos熟女内射| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| 欧美三级亚洲精品| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 久久精品国产亚洲av天美| 日本色播在线视频| 少妇人妻精品综合一区二区| 精品国产一区二区三区久久久樱花 | 国产探花在线观看一区二区| 99久久中文字幕三级久久日本| 欧美极品一区二区三区四区| 一区二区三区精品91| 国产精品久久久久久精品电影小说 | 日本欧美国产在线视频| 人妻制服诱惑在线中文字幕| 偷拍熟女少妇极品色| 国产在线男女| 大码成人一级视频| 亚洲精品国产av蜜桃| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 18+在线观看网站| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 精品久久久久久电影网| 女人被狂操c到高潮| 国产永久视频网站| 日韩亚洲欧美综合| 老司机影院毛片| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 激情 狠狠 欧美| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 丝袜脚勾引网站| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看| 一级毛片电影观看| 建设人人有责人人尽责人人享有的 | 国产亚洲最大av| 国产色婷婷99| 亚洲av成人精品一二三区| 女的被弄到高潮叫床怎么办| 亚洲av国产av综合av卡| 三级国产精品片| freevideosex欧美| 亚洲精品第二区| 只有这里有精品99| 99热6这里只有精品| 1000部很黄的大片| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 精品久久久久久久久av| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 国产高清三级在线| 精品人妻偷拍中文字幕| 婷婷色综合www| 伊人久久精品亚洲午夜| 免费大片18禁| 国产成人一区二区在线| 亚洲欧美日韩另类电影网站 | 久久久久久久国产电影| 只有这里有精品99| 成年免费大片在线观看| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 美女被艹到高潮喷水动态| 免费av毛片视频| 美女高潮的动态| 国产高潮美女av| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 亚洲精品成人久久久久久| 人妻系列 视频| 国产乱人视频| 成年人午夜在线观看视频| 日本免费在线观看一区| 春色校园在线视频观看| 国产av码专区亚洲av| 午夜老司机福利剧场| 免费看光身美女| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 日韩电影二区| 噜噜噜噜噜久久久久久91| 亚洲国产精品999| 舔av片在线| 欧美日本视频| 国产精品精品国产色婷婷| 亚洲无线观看免费| 舔av片在线| 久久亚洲国产成人精品v| 久久久精品94久久精品| 国产精品人妻久久久久久| 久久久久久国产a免费观看| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 亚洲精品一二三| 一级二级三级毛片免费看| 91狼人影院| 国产视频首页在线观看| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| av国产精品久久久久影院| 国产精品.久久久| 欧美zozozo另类| 久久女婷五月综合色啪小说 | 欧美成人午夜免费资源| 亚洲天堂av无毛| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 免费黄色在线免费观看| videos熟女内射| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 日日撸夜夜添| 国产淫语在线视频| 在线观看国产h片| 另类亚洲欧美激情| 夫妻午夜视频| 小蜜桃在线观看免费完整版高清| 久久人人爽av亚洲精品天堂 | 内射极品少妇av片p| 天美传媒精品一区二区| 国产在线男女| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 超碰97精品在线观看| 欧美变态另类bdsm刘玥| 国产精品三级大全| 日韩欧美一区视频在线观看 | 内射极品少妇av片p| 大片免费播放器 马上看| 美女脱内裤让男人舔精品视频| 亚洲va在线va天堂va国产| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 亚洲精品乱码久久久久久按摩| 性色av一级| 精华霜和精华液先用哪个| 99热这里只有精品一区| 纵有疾风起免费观看全集完整版| 久久久久精品性色| 国产极品天堂在线| 超碰97精品在线观看| 少妇丰满av| 97在线人人人人妻| 五月玫瑰六月丁香| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 一级爰片在线观看| 久久久久久伊人网av| 一级爰片在线观看| av一本久久久久| 伊人久久精品亚洲午夜| 国产免费视频播放在线视频| 在线a可以看的网站| 男人爽女人下面视频在线观看| av播播在线观看一区| 中文字幕亚洲精品专区| 亚洲av.av天堂| 免费少妇av软件| 欧美另类一区| 欧美高清成人免费视频www| 我要看日韩黄色一级片| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 国产精品99久久99久久久不卡 | 高清毛片免费看| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有是精品50| 久久人人爽人人爽人人片va| 国产又色又爽无遮挡免| 深爱激情五月婷婷| 免费看光身美女| 国产精品久久久久久av不卡| av天堂中文字幕网| 国产在视频线精品| 日本黄大片高清| 亚洲成人久久爱视频| 91午夜精品亚洲一区二区三区| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 伊人久久国产一区二区| av又黄又爽大尺度在线免费看| 乱码一卡2卡4卡精品| 久久精品综合一区二区三区| 久久亚洲国产成人精品v| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 久久久久久伊人网av| 亚洲精华国产精华液的使用体验|