• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-Hermitian quasicrystal in dimerized lattices?

    2021-10-28 07:16:10LongwenZhou周龍文andWenqianHan韓雯岍
    Chinese Physics B 2021年10期
    關(guān)鍵詞:龍文

    Longwen Zhou(周龍文) and Wenqian Han(韓雯岍)

    College of Physics and Optoelectronic Engineering,Ocean University of China,Qingdao 266100,China

    Keywords: non-Hermitian system,quasicrystal,localization,topological phase

    1. Introduction

    Quasicrystals have long-range order without spatial periodicity. They form a class of system in between crystals and fully disordered lattices.[1–6]Experimentally, quasicrystals have been realized in a variety of solid state materials and quantum simulators.[7–13]Rich phenomena induced by quasiperiodicity have been revealed, such as topological phases,[14–21]quantized adiabatic pumping,[15,20,21]anomalous transport and localization transitions,[22–51]attracting attention over a broad range of research fields.

    Recently, the study of quasicrystals has been extended to non-Hermitian systems, where the interplay between quasiperiodicity and gain/loss or nonreciprocity could induce exotic dynamical, localization and topological phenomena.[52–69]In particular, in non-Hermitian variants of the Aubry–Andr′e–Harper (AAH) model, complex onsite potential or nonreciprocal hopping could induce aPT-breaking transition and a metal–insulator transition, which can be further characterized by a spectral topological winding number.[52,56]In related studies, non-Hermiticity induced mobility edges in generalized and superconducting AAH models have also been found and described by topological invariants.[54,57–59,62,67]Besides,the investigation of wavepacket spreading in non-Hermitian quasicrystals (NHQCs) has revealed their anomalous dynamical features,[55,60]such as the disordered-enhanced transport.[55]

    Meanwhile, the Su–Schrieffer–Heeger (SSH) model[70]provides another paradigm for the study of localization,[71]topological[72]and non-Hermitian[73–75]physics. Specially,the hopping dimerization allows the SSH model to possess a topological phase characterized by an integer winding number and degenerate edge modes.[72]However, in the context of non-Hermitian quasicrystals, phases and phenomena that could arise due to the interplay between spatial aperiodicity and hopping dimerization have not been revealed. In this paper, we address this issue by introducing a dimerized quasiperiodic lattice in Section 2, which forms a hybridization of the SSH and non-Hermitian AAH models. The system is found to possess rich patterns ofPT-breaking and localization transitions,together with three phases of distinct transport nature. In Section 3,we perform detailed analyses of the spectrum and localization nature of these phases, and construct a pair of topological winding numbers to characterize the transitions between them. Despite an extended and a localized phase, we also find a mobility edge phase, which is absent without the hopping dimerization. These discoveries thus uncover the richness of topological and transport phenomena in dimerized NHQCs. In Section 4, we summarize our results and discuss potential future directions. Further details about the spectrum,Lyapunov exponents and wavepacket dynamics are provided in the Appendix.

    2. Model

    In this section, we introduce the dimerized NHQC that will be investigated in this work. Our model can be viewed as an extension of the AAH model,[5,6]which is prototypical in the study of localization transitions in one-dimensional (1D) quasicrystals. In position representation, the Hamiltonian of the AAH model is ?HAAH= ∑n(J|n〉〈n+1|+H.c.+Vcos(2παn+λ)|n〉〈n|),where{|n〉}represents the eigenbasis of the lattice,Jis the hopping amplitude,Vcontrols the strength of the onsite potential, andλis a phase shift. Whenαis irrational, the potentialVn=Vcos(2παn+λ)is quasiperiodic inn,and ?HAAHdescribes a 1D quasicrystal. WhenV<2J, the spectrum of ?HAAHis continuous and all its eigenstates are extended under the periodic boundary condition(PBC).Comparatively, ?HAAHpossesses a point spectrum with localized eigenstates at all energies whenV>2J. WhenV=2J, the spectrum of ?HAAHis purely singular continuous with critical wavefunctions,and the system undergoes a localization transition whenVchanges fromV<2JtoV>2J.[4]

    Recently, a non-Hermitian variant of ?HAAHwas introduced by settingλ=β+iγ, with (β,γ)∈R.[52]Such a non-Hermitian AAH model possessesPT-breaking and localization transitions atγc=ln(2J/V), which are accompanied by the quantized jump of a spectral winding numberw.Forγ<γc(γ>γc),the spectrum is real(complex)with winding numberw=0(w=?1),and each eigenstate is extended(localized).[52]Since all states subject to the same localization transition atγ=γc, no mobility edges are found. Similar results were reported in a nonreciprocal AAH model,[56]which might be related to the model in Ref.[52]by Fourier transformations.

    Fig.1. Schematic illustration of the dimerized NHQC. Solid balls denote lattice sites with index n ∈Z. Hopping amplitudes are alternated between J ?Δ (solid lines)and J+Δ (dashed lines). Vn represents the strength of the onsite potential,with irrational modulation parameter α and phase shift iγ.

    In this work, we consider another extension of the AAH quasicrystal by introducing hopping dimerizations. We setJ →Jn=J+(?1)nΔas the hopping amplitude between then’s and the(n+1)’s lattice sites,and letλ=iγbe the imaginary phase shift in the onsite potentialVn. Our model Hamiltonian thus takes the form

    A schematic illustration of the model is shown in Fig.1.WhenV=0,Eq.(1)reduces to the SSH model with hopping dimerizationΔ. WithV,γ/= 0, ?Hdescribes an SSH chain with quasiperiodically correlated non-Hermitian disorder. Therefore, our system realizes a hybridization between the AAH and SSH models. Since the realizations of SSH and non-Hermitian AAH models have both been discussed,[52,76]we expect our model to be within reach under current or near term experimental conditions. Furthermore, our construction allows us to explore the interplay between hopping dimerizations and quasiperiodic non-Hermitian potential,which could lead to rich phase diagrams and transport phenomena,as will be shown in the following section.

    3. Results

    3.1. Spectrum and level statistics

    The spectrum of the dimerized NHQC is obtained by solving the eigenvalue equation ?H|ψ〉=E|ψ〉. Projecting the equation to the lattice representation,we find

    Fig.2. (a)Density of states with complex eigenvalues and(b)averaged AGRs of ?H versus the dimerization amplitude Δ and the imaginary part of phase shift γ. System parameters are set as J =1, V =0.5, and. PBC is taken in the calculation and the length of the lattice is L=2584.

    To have a comprehensive view of the spectrum and its connection with localization properties of states, we present the density of states with nonzero imaginary parts of energies and the mean of AGRs versusγandΔin Figs.2(a)and 2(b),respectively. The density of states with complex energies is defined as

    3.2. Inverse participation ratio

    When max(IPR)diverges from zero but min(IPR)remains at zero, localized states start to appear and the system switches from the extended to the mobility edge phase.When min(IPR)also deviates from zero, the last extended state vanishes and the system enters a phase in which all states are localized. The maximal and minimal values of IPR can thus be used to distinguish phases with different localization nature and locate the corresponding phase boundaries.

    Fig.3. (a)The maximum and(b)minimum of IPRs versus the imaginary part of phase shift γ and hopping dimerization Δ. System parameters are set as J=1,V =0.5,and α =. The length of the lattice is L=610. PBC is taken in the diagonalization ?H.

    To summarize, we find that the IPR can be viewed as an“order parameter”to describe the localization transitions in the dimerized NHQC. The behaviors of IPRs in distinct parameter domains could be employed to characterize the three different phases in the system. For completeness, we study the Lyapunov exponents of the system in Appendix B, and find consistent results as predicted by IPRs. We have also checked the spectrum and IPRs of the system under the open boundary condition (OBC), and find consistent results with those obtained under the PBC, excluding possible impact of non-Hermitian skin effects. In the following,we demonstrate that the localization transitions in our system are of topological origin,and can be depicted by a pair of spectral winding numbers.

    3.3. Topological winding number

    In previous studies,spectral winding numbers have been employed to characterize non-Hermitian topological matter in 1D clean and disordered systems.[52,73]For the dimerized NHQC, we can introduce a pair of winding numbers to describe the topological nature of its localization transitions.These numbers can be defined as

    HeteNis the number of dimerized cells of the lattice and?=1,2. The phase shiftβ/Nis introduced into the Hamiltonian ?Hvia settingVn →Vcos(2παn+β/N+iγ). (?1,?2)are two real-valued base energies,and(w1,w2)count the number of times that the spectrum ofH(β/N)winds around these energies whenβsweeps over a cycle from zero to 2π. It is clear thatw1(w2) can be nonzero only if the spectrum of ?Haround?1(?2)takes complex values. These winding numbers are thus closely related to the complex spectrum structure of the system. When the spectrum does not possess a mobility edge,there is only a single base energy that can in principle be chosen arbitrarily,[52]and we would always havew1=w2. In our model this is the case whenΔ=0(uniform hopping). If mobility edges exist in the spectrum,the choice of base energies(?1,?2)should be related to its boundaries.[54]More precisely,in a given range of imaginary phase shift iγor hopping dimerizationΔ,we choose?1to be the real part of energy of the first eigenstate of ?Hwhose IPR starts to deviate from zero,i.e., the first eigenstate that becomes localized. Similarly, we set?2as the real part of energy of the last eigenstate whose profile changes from extended to localized.?1and?2thus decide the lower and upper bounds of the mobility edge on the ReE–γor ReE–Δplane. The winding numbersw1andw2defined with respect to?1and?2are expected to have quantized jumps when the mobility edge appears and vanishes in the spectrum.[54]

    Fig. 4. The winding numbers (w1,w2) versus the imaginary part of phase shift γ. System parameters are set as J =1,V =0.5, Δ =0.4,α =. The size of the lattice is L=610 with PBC. The vertical dotted lines highlight the critical values γc1 and γc2, where transitions between different phases happen.

    In Fig. 5, we present the topological phase diagrams of the dimerized NHQC versus the imaginary part of phase shift and hopping dimerization for two typical sets of system parameters. In the region ofρ ?0 [real spectrum, see also Fig.2(a)]and max(IPR)?0[all bulk states are extended,see also Fig. 3(a)], we findw1=w2=0, implying that thePTinvariant extended phase is topologically trivial according to the spectral winding numbers. Whenρa(bǔ)nd max(IPR) start to deviate from zero, the system undergoes aPT-breaking transition and enters a mobility edge phase. In the meantime,w1takes a quantized jump from 0 to?1, whereasw2remains at zero in Fig. 5(a). The transition from extended to mobility edge phases is thus topological and captured by the quantized change of winding numberw1. The mobility edge phase can also be viewed as a topological phase characterized by (w1,w2)=(?1,0). Whenρ ?1 and min(IPR) starts to deviate from zero,the system enters a localized phase and all bulk states take complex eigenvalues.Meanwhile,the winding numberw2jumps from 0 to?1 whereasw1remains at?1,as shown in Fig.5(a). Therefore,the transition from the mobility edge to localized phases is also topological and accompanied by the quantized change of winding numberw2by?1.The localized phase can then be viewed as a topological phase with(w1,w2)=(?1,?1). These observations are all demonstrated in the phase diagram Fig.5(a). We also considered other possible amplitudes of onsite potentialV[with one example given in Fig.5(b)],and obtain similar kinds of diagrams,which verifies the generality of our approach to the characterization of localization transitions and topological phases in dimerized NHQCs. We summarize the key results of this section in Table 1.

    Fig. 5. Topological phase diagrams of the dimerized NHQC. System parameters are set as J=1,α =,and V =0.5(V =1)for panel(a)[panel(b)]. The length of the lattice is L=610,containing N=305 dimerized cells. In panels(a)and(b),each region with a uniform color corresponds to a topological phase, whose winding numbers are denoted therein. The extended, mobility edge and localized phases have(w1,w2)=(0,0),(?1,0)and(?1,?1). w1 or w2 jumps at a boundary between different phases. PBC is taken in the calculation.

    Table 1. Summary of the results for the dimerized NHQC.

    4. Discussion

    In experiments, the dimerized NHQC might be engineered in photonic systems. The uniform part of hopping amplitude and non-Hermitian quasiperiodic potential could be realized by a frequency-modulated mode-locked laser with gain medium, phase modulator and low-finesse intracavity etalon,as proposed in Ref. [52]. The dimerized hopping amplitude could be realized by engineering the profile of refractive index in the model-locked laser setup.[76]Therefore,our model should be within reach in current or near-term experimental situations. To promote the detection and characterization of different phases in the dimerized NHQC, we also investigate its wavepacket dynamics in Appendix C,and find connections between the dynamical signatures and localization properties of the system.

    In conclusion, we find localization and topological transitions in a dimerized NHQC, which are originated from the cooperation between hopping dimerizations and complex onsite quasiperiodic potential.In the region of weak dimerization and non-Hermiticity, the system is in an extended phase with real spectrum and delocalized eigenstates. With the increase of hopping dimerization and complex potential, the system transforms into a mobility edge phase. When the strength of hopping dimerization and non-Hermitian modulation become stronger,the system enters a third phase in which the spectrum is complex and all eigenstates are localized. Moreover, the transitions between the extended,mobility edge and localized phases are of topological nature. They can be characterized by the quantized jumps of two spectral winding numbers. Our results thus uncover the unique spectrum,topological and transport features of quasicrystals due to the interplay between hopping dimerizations and non-Hermitian onsite potential. The different phases and transitions found in our system further reveal the richness of localization and topological phenomena in non-Hermitian quasicrystals. In future work, it would be interesting to consider the impact of hopping dimerizations in other types of nonreciprocal and non-Hermitian quasicrystals,and explore the effect of nonlinearity,many-body interactions and skin effects on the localization and topological physics in dimerized non-Hermitian systems.

    Appendix A:Details of the spectrum

    In this appendix,we provide more details about the spectrum of the dimerized NHQC.In Fig.A1,we present the spectrum for a typical set of system parameters. When the imaginary part of phase shiftγis small, we observe real spectrum in Figs. A1(a) and A1(d), implying that the system is in thePT-invariant region.

    Fig. A1. The spectrum of the dimerized NHQC model under PBC on the complex plane. System parameters are set as J =1, V =0.5,α =,and Δ =0.2(Δ =0.4)for panels(a)–(c)[(d)–(f)]. The values of the imaginary part of phase shift are shown in the panel captions.The length of the lattice is L=2584.

    With the increase ofγ, the spectrum starts to become complex and develop loops on the complexEplane, which means that the system has undergone aPT-transition and roamed into aPT-broken region. However,parts of the spectrum are still pinned to the real axis in Figs.A1(b)and A1(e),indicating that the eigenstates with real and complex eigenvalues coexist in these cases. Whenγfurther increases, the number of eigenstates with real eigenvalues tends to decrease,and finally almost all states have complex energies,as shown in Figs.A1(c)and A1(f). Besides,the range and shape of the spectrum also depend on the dimerization strengthΔ, which reveals that both the hopping dimerization and complex onsite potential could affect the properties of the spectrum.

    Appendix B:Lypunov exponent

    Fig.B1. IPRs and LEs versus the imaginary part of phase shift γ. System parameters are J =1,V =0.5, and α = The length of the lattice is L=610, and PBC (OBC) is taken in the calculation of IPRs(LEs). In panels (a)–(d), the solid (dashed) lines represent the maximum (minimum) of IPRs and the dotted (dash-dotted) lines show the derivative of the averaged(minimum of)LE.

    Fig. B2. The minimum and derivative of LEs, as defined in Eqs.(B2)and(B3),versus the imaginary part of phase shift γ and hopping dimerization Δ. System parameters are set as J=1,V =0.5,and α=The length of the lattice is L=610 and the OBC is taken in the diagonalization ?H.

    Appendix C:Wavepacket dynamics

    In this appendix, we investigate the dynamical properties of the dimerized NHQC, and suggest to characterize the different phases by the spreading velocity and return probability of wavepackets. The evolution of a state in our sys-

    In Fig.C1, we show the profiles of a wavepacket during the evolution and the averaged spreading velocity for a typical set of system parameters. In Fig. C1(a), the system is set in the extended phase (see also Fig. 4). We observe that the wavepacket indeed performs a ballistic spreading and presents a light cone pattern. In Fig. C1(b), the system is set in the mobility edge phase(see also Fig.4). The wavepacket is initially found to undergo a slow spreading over a finite range of sites. At a later stage,the spreading tends to terminate and the wavepacket retains a finite width around its original site. The initial spreading process may be assisted by the remaining extended states of the mobility edge phase.But during the evolution,the wavepacket develops more overlap with the localized states, which finally help to shut off its transport in the lattice. In Fig.C1(c),the parameters of ?Hare set in the localized phase(see also Fig.4). As expected,the wavepacket could not spread and remains exponentially localized around its original location. The distinctive signatures of wavepacket spreading in these three phases could then provide us with a dynamical way of distinguishing them. In Fig. C1(d), the spreading velocity of a wavepacket is found to decrease with the increase ofγwhen the system is set in the extended phase. At largeγ, the system enters the localized phase and the velocity approaches zero. Whenγgoes across the boundary between the extended and mobility edge phases, the velocity shows a quick drop in a small range ofγ, implying the appearance of a dynamical transition between these two phases. Notably,the critical pointγc1of the transition is different for different hopping dimerizations, and the velocity could also show an anomalous growth with the increase ofγin the mobility edge phase [e.g., see the solid line in Fig. C1(d)]. These observations suggest that the interplay between hopping dimerizations and complex onsite potential could not only create new types of dynamical phases in non-Hermitian quasicrystals, but also cause non-Hermiticity enhanced transport observed previously in systems with nonreciprocal hopping.[55]

    Fig.C1. Profiles [in panels (a)–(c)]and spreading velocities [in panel(d)] of wavepackets initially localized at the central site of the lattice.The imaginary phase shift is set as(a)γ=0.4,(b)γ=1 and(c)γ=1.6.System parameters are J=1,V =0.5, Δ =0.4 in panels(a)–(c). The length of the lattice is L=1000 with PBC.The spreading velocity v is obtained in panel(d)after averaging v(t)over a time span of t=250.

    Fig.C2. Spreading velocities of an initially localized wavepacket versus the imaginary part of phase shift γ and hopping dimerization Δ.v(t)is averaged over a time duration t=250. The strength of the onsite potential is V =0.5 in panel(a)and V =1 in panel(b).System parameters are set as J =1 and α =. The length of the lattice is L=1000 with PBC,and the initial state satisfies〈n|ψ(0)〉=δn0.

    In Fig. C3, we show the return probabilities of the initial states prepared in and quenched to different phases of the dimerized NHQC. In Fig. C3(a), the system is initialized in the extended phase with state profile|ψi|. When the postquench system is in the same phase,P(t) undergoes oscillations without a global decay, as shown by the blue solid line in Fig. C3(d). If the postquench Hamiltonian is in the mobility edge phase,P(t) first subjects to oscillations with a global decay profile,and approaches zero in the long-time domain, as demonstrated by the red dashed line in Fig. C3(d).The initial oscillations ofP(t)can be traced back to the presence of extended states in the mobility edge phase. With the progress of time, the state is trapped by localized states in the mobility edge phase, leading to the decay ofP(t)at larget. If ?Hfis in the localized phase,P(t) decays very fast and quickly approaches zero,as depicted by the yellow dotted line in Fig.C3(d). Since all states are localized in the postquench system, the evolving state can never go back. The distinctive features ofP(t)in three phases can thus help us to discriminate them following the postquench dynamics if the initial state is prepared in the extended phase.

    In Figs. C3(b) and C3(c), we prepare the system into a localized state in the mobility edge and insulator phases. The results in Figs. C3(e) and C3(f) suggest that the return probabilities also behave distinctly when ?Hfis set in phases with different transport nature. Putting together, we conclude that wherever the initial state is prepared,its return probability following quenches to different phases could help us to distinguish them dynamically. In experiments,the averaged spreading velocity and return probability of the wavepackets can thus be employed to detect phases with different localization nature in the dimerized NHQC.

    Fig. C3. Profiles of the initial states [in panels (a)–(c)] and their return probabilities following quenches [in panels (d)–(f)] in the dimerized NHQC.The states in panels(a)–(c)are chosen to be the ones with the largest imaginary parts of energy at the corresponding phase shift γi.System parameters for panels(a)–(c)are set as J=1,V =0.5,Δ =0.4,α =,and the length of the lattice is L=610 with PBC.In panels(d)–(f),the curves correspond to return probabilities of the initial states in panels(a)–(c)following quenches of γ from the corresponding γi to different values of γf applied at t=0.

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak
    紅軍第一位飛行員龍文光
    勤上光電收購(gòu)標(biāo)的經(jīng)營(yíng)亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    精品熟女少妇八av免费久了| 日韩中文字幕欧美一区二区| 国产99久久九九免费精品| 9色porny在线观看| 熟女少妇亚洲综合色aaa.| 国产在线精品亚洲第一网站| 国产99久久九九免费精品| 91九色精品人成在线观看| 亚洲av五月六月丁香网| 国产一级毛片七仙女欲春2 | 91老司机精品| 99精品在免费线老司机午夜| 国产成人免费无遮挡视频| 欧美日本视频| 国产亚洲精品一区二区www| 久久国产精品影院| 侵犯人妻中文字幕一二三四区| 老司机靠b影院| ponron亚洲| 嫩草影视91久久| 在线观看午夜福利视频| 亚洲人成电影观看| x7x7x7水蜜桃| 亚洲欧美精品综合久久99| 午夜久久久久精精品| 欧美日本视频| 黄色成人免费大全| 国产欧美日韩一区二区三区在线| 免费看a级黄色片| 久热这里只有精品99| 久久久国产精品麻豆| 黄频高清免费视频| 色综合站精品国产| 国产欧美日韩精品亚洲av| 免费看美女性在线毛片视频| 国产精品久久久久久人妻精品电影| 真人一进一出gif抽搐免费| 极品人妻少妇av视频| 精品日产1卡2卡| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 欧美精品啪啪一区二区三区| 国产亚洲av高清不卡| 韩国精品一区二区三区| 日韩精品免费视频一区二区三区| 深夜精品福利| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站| 97超级碰碰碰精品色视频在线观看| 亚洲男人的天堂狠狠| 国产精品一区二区免费欧美| 中文字幕av电影在线播放| 国产精品免费视频内射| 999久久久国产精品视频| 一区福利在线观看| 国产三级黄色录像| 一级片免费观看大全| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区| 国产在线精品亚洲第一网站| 亚洲一区二区三区不卡视频| 欧美成人午夜精品| av中文乱码字幕在线| 亚洲伊人色综图| 国产高清激情床上av| 久久久久久大精品| 电影成人av| 国产成人av教育| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片高清免费大全| 色老头精品视频在线观看| 身体一侧抽搐| 精品国产一区二区三区四区第35| 黄色视频不卡| 亚洲黑人精品在线| 午夜老司机福利片| 欧美国产日韩亚洲一区| 国产亚洲精品综合一区在线观看 | 国产精品亚洲av一区麻豆| 日韩欧美国产在线观看| 欧美乱码精品一区二区三区| 午夜精品国产一区二区电影| av在线播放免费不卡| 亚洲精品美女久久av网站| 国产精品久久视频播放| 欧美中文日本在线观看视频| 国产aⅴ精品一区二区三区波| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费电影在线观看| av天堂在线播放| 国产91精品成人一区二区三区| 亚洲九九香蕉| 亚洲色图 男人天堂 中文字幕| 人妻久久中文字幕网| 99国产精品99久久久久| av免费在线观看网站| 精品人妻1区二区| 男女床上黄色一级片免费看| а√天堂www在线а√下载| 亚洲一卡2卡3卡4卡5卡精品中文| www.精华液| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 美女大奶头视频| 久久久久久大精品| 中文字幕另类日韩欧美亚洲嫩草| 青草久久国产| 午夜福利成人在线免费观看| 色综合婷婷激情| 黑人巨大精品欧美一区二区mp4| 国产av在哪里看| 国产精品二区激情视频| 亚洲国产精品成人综合色| 精品一区二区三区四区五区乱码| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 亚洲成人久久性| 日韩欧美一区二区三区在线观看| 色综合站精品国产| 久久九九热精品免费| 国产麻豆69| 国产精品一区二区免费欧美| 老司机在亚洲福利影院| 最好的美女福利视频网| 亚洲熟妇熟女久久| 久久人妻熟女aⅴ| 非洲黑人性xxxx精品又粗又长| 久久国产精品人妻蜜桃| www日本在线高清视频| 久久婷婷成人综合色麻豆| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 真人一进一出gif抽搐免费| 精品久久蜜臀av无| 免费一级毛片在线播放高清视频 | 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| www.精华液| 一本综合久久免费| www.自偷自拍.com| 亚洲精品美女久久久久99蜜臀| 欧美成人一区二区免费高清观看 | 精品久久久久久久久久免费视频| 又黄又爽又免费观看的视频| 国产精品影院久久| 国产欧美日韩精品亚洲av| 这个男人来自地球电影免费观看| 国产精品 欧美亚洲| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影| 中文字幕色久视频| 久久久久久久久中文| 国产一区二区三区视频了| 91麻豆精品激情在线观看国产| 亚洲av熟女| 亚洲成国产人片在线观看| 一区二区三区国产精品乱码| 亚洲中文字幕一区二区三区有码在线看 | 亚洲免费av在线视频| 看片在线看免费视频| 999久久久精品免费观看国产| 精品人妻在线不人妻| 黄频高清免费视频| 亚洲免费av在线视频| 99久久99久久久精品蜜桃| 亚洲全国av大片| 亚洲av成人av| 欧美人与性动交α欧美精品济南到| 久久久久久久久免费视频了| 亚洲精品一卡2卡三卡4卡5卡| 一级a爱片免费观看的视频| 久久中文字幕一级| aaaaa片日本免费| 91精品国产国语对白视频| 每晚都被弄得嗷嗷叫到高潮| 午夜免费观看网址| 久久精品成人免费网站| 亚洲国产中文字幕在线视频| 亚洲自偷自拍图片 自拍| 亚洲少妇的诱惑av| 一个人免费在线观看的高清视频| 国产精华一区二区三区| www.999成人在线观看| 国产亚洲精品久久久久5区| av福利片在线| 99精品在免费线老司机午夜| 亚洲 欧美 日韩 在线 免费| 欧美午夜高清在线| a级毛片在线看网站| 欧美中文综合在线视频| 又黄又爽又免费观看的视频| 欧美在线黄色| 免费女性裸体啪啪无遮挡网站| 女人精品久久久久毛片| 一区二区三区国产精品乱码| 亚洲全国av大片| 亚洲av日韩精品久久久久久密| av福利片在线| 成人精品一区二区免费| 欧美亚洲日本最大视频资源| 十八禁网站免费在线| 久久久国产成人免费| 国产蜜桃级精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 90打野战视频偷拍视频| 人成视频在线观看免费观看| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 亚洲国产看品久久| 大型av网站在线播放| 可以免费在线观看a视频的电影网站| 欧美乱色亚洲激情| 精品国内亚洲2022精品成人| 国产乱人伦免费视频| 国产不卡一卡二| cao死你这个sao货| 校园春色视频在线观看| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 国产成人精品无人区| 午夜福利成人在线免费观看| 在线观看66精品国产| 在线永久观看黄色视频| 麻豆av在线久日| 亚洲精品国产色婷婷电影| 中文亚洲av片在线观看爽| 国产成年人精品一区二区| 一区在线观看完整版| 亚洲色图综合在线观看| 自线自在国产av| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 亚洲国产精品999在线| 久久久久久久精品吃奶| 色尼玛亚洲综合影院| 精品国产亚洲在线| 亚洲精品美女久久久久99蜜臀| 一级作爱视频免费观看| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 免费在线观看视频国产中文字幕亚洲| 国产不卡一卡二| 在线观看午夜福利视频| 黄片播放在线免费| 国产成人欧美| 久久久国产精品麻豆| 亚洲免费av在线视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩 欧美 亚洲 中文字幕| 老鸭窝网址在线观看| xxx96com| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 久久精品国产99精品国产亚洲性色 | 无限看片的www在线观看| 男女下面进入的视频免费午夜 | 久久久国产精品麻豆| 国产单亲对白刺激| 97人妻天天添夜夜摸| 久久天堂一区二区三区四区| 在线观看免费午夜福利视频| 亚洲av片天天在线观看| 国产三级在线视频| 两个人视频免费观看高清| 高清在线国产一区| 激情视频va一区二区三区| 一个人免费在线观看的高清视频| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品熟女少妇八av免费久了| 男男h啪啪无遮挡| 久久久久亚洲av毛片大全| 日韩欧美免费精品| 欧美日韩亚洲国产一区二区在线观看| 一级黄色大片毛片| 91精品三级在线观看| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| 精品一品国产午夜福利视频| 男人的好看免费观看在线视频 | 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| 亚洲 国产 在线| 一夜夜www| 久久久久精品国产欧美久久久| 丝袜在线中文字幕| 国产精品精品国产色婷婷| 老司机福利观看| 亚洲 欧美 日韩 在线 免费| 成人免费观看视频高清| 精品欧美一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产精品久久久不卡| 91麻豆av在线| 国产精品免费视频内射| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 又黄又粗又硬又大视频| 国产蜜桃级精品一区二区三区| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 久久精品国产综合久久久| avwww免费| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 男人的好看免费观看在线视频 | 欧美成人一区二区免费高清观看 | 亚洲少妇的诱惑av| 一级片免费观看大全| 黄片播放在线免费| 人人妻人人澡欧美一区二区 | 侵犯人妻中文字幕一二三四区| 国产一区二区激情短视频| 1024香蕉在线观看| 大香蕉久久成人网| 亚洲色图综合在线观看| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 久久精品国产亚洲av香蕉五月| 99精品久久久久人妻精品| 搞女人的毛片| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区| 精品乱码久久久久久99久播| 国产国语露脸激情在线看| 国产精品乱码一区二三区的特点 | 正在播放国产对白刺激| www.自偷自拍.com| 国产精品 国内视频| 成人精品一区二区免费| 久热这里只有精品99| 女警被强在线播放| 亚洲色图av天堂| 国产精品日韩av在线免费观看 | 一a级毛片在线观看| 精品熟女少妇八av免费久了| 亚洲一区中文字幕在线| 99国产精品免费福利视频| 久久草成人影院| 亚洲一区二区三区色噜噜| 黄频高清免费视频| 欧美一级a爱片免费观看看 | 久久 成人 亚洲| 久久亚洲精品不卡| 99久久国产精品久久久| 97人妻天天添夜夜摸| 久久精品人人爽人人爽视色| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 久久久久久大精品| 级片在线观看| 最好的美女福利视频网| 久久亚洲真实| 啦啦啦韩国在线观看视频| 99re在线观看精品视频| 精品高清国产在线一区| 精品一区二区三区四区五区乱码| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 亚洲全国av大片| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 久久久国产成人精品二区| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 脱女人内裤的视频| 男女下面进入的视频免费午夜 | 丝袜美腿诱惑在线| 黄片播放在线免费| 欧美在线黄色| 99久久国产精品久久久| 最近最新中文字幕大全电影3 | 国产视频一区二区在线看| 琪琪午夜伦伦电影理论片6080| 高清在线国产一区| 久久人人97超碰香蕉20202| 电影成人av| 咕卡用的链子| 欧美黄色片欧美黄色片| 久久久国产成人精品二区| 国产高清视频在线播放一区| av网站免费在线观看视频| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 国产精品久久视频播放| 免费在线观看视频国产中文字幕亚洲| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 久久欧美精品欧美久久欧美| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 亚洲av成人av| 午夜久久久久精精品| 美女大奶头视频| 日本一区二区免费在线视频| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 欧美日本视频| 日韩三级视频一区二区三区| 高清在线国产一区| 日韩精品青青久久久久久| 国产熟女午夜一区二区三区| 成人国产综合亚洲| 精品久久久久久久毛片微露脸| 国内精品久久久久精免费| av视频免费观看在线观看| 国产成人欧美在线观看| 午夜福利高清视频| 一本久久中文字幕| 9热在线视频观看99| 久久久久久大精品| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av香蕉五月| 少妇的丰满在线观看| 动漫黄色视频在线观看| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 一区福利在线观看| 久久久国产成人精品二区| 黑人巨大精品欧美一区二区蜜桃| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 亚洲人成伊人成综合网2020| 99国产精品一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲成人精品中文字幕电影| 久9热在线精品视频| 一区二区三区激情视频| a级毛片在线看网站| 女性被躁到高潮视频| av有码第一页| 久久热在线av| 婷婷精品国产亚洲av在线| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 丁香六月欧美| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| av在线播放免费不卡| 极品人妻少妇av视频| 亚洲 国产 在线| 99香蕉大伊视频| 亚洲精品国产区一区二| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影 | 精品卡一卡二卡四卡免费| 国产黄a三级三级三级人| av天堂久久9| av天堂在线播放| 三级毛片av免费| 老熟妇仑乱视频hdxx| 亚洲人成电影观看| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久久5区| 国产熟女xx| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 久久久久久大精品| 国产成人免费无遮挡视频| 岛国视频午夜一区免费看| 亚洲国产精品久久男人天堂| 日韩精品免费视频一区二区三区| 国产亚洲欧美精品永久| 国产又爽黄色视频| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| netflix在线观看网站| 亚洲人成77777在线视频| 国产精品野战在线观看| 亚洲中文av在线| 免费一级毛片在线播放高清视频 | 91精品国产国语对白视频| 久久香蕉国产精品| 真人做人爱边吃奶动态| 成人亚洲精品一区在线观看| 一级毛片精品| 黄色视频不卡| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 淫妇啪啪啪对白视频| 亚洲精品美女久久久久99蜜臀| 淫妇啪啪啪对白视频| 88av欧美| 黄色a级毛片大全视频| 亚洲男人天堂网一区| 亚洲在线自拍视频| 久久精品影院6| 精品国内亚洲2022精品成人| 欧美激情极品国产一区二区三区| 中文字幕av电影在线播放| av有码第一页| 99久久99久久久精品蜜桃| 国产av精品麻豆| 美国免费a级毛片| 亚洲精品中文字幕一二三四区| 757午夜福利合集在线观看| or卡值多少钱| 女人爽到高潮嗷嗷叫在线视频| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜夜夜夜久久久久| 国产精品影院久久| 99久久精品国产亚洲精品| 午夜影院日韩av| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 黄片播放在线免费| 国产三级黄色录像| 天堂影院成人在线观看| 在线免费观看的www视频| 免费观看精品视频网站| 色综合站精品国产| 亚洲国产欧美网| 一夜夜www| 手机成人av网站| 18禁裸乳无遮挡免费网站照片 | 91在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 一本大道久久a久久精品| 亚洲aⅴ乱码一区二区在线播放 | tocl精华| 老司机靠b影院| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 亚洲欧美激情综合另类| 国产av在哪里看| 十分钟在线观看高清视频www| 最好的美女福利视频网| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| av天堂久久9| 国产精品一区二区三区四区久久 | 高清在线国产一区| 国产精品香港三级国产av潘金莲| www.精华液| 在线免费观看的www视频| 可以在线观看毛片的网站| 婷婷六月久久综合丁香| 法律面前人人平等表现在哪些方面| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 国产99久久九九免费精品| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲| 电影成人av| 亚洲中文字幕一区二区三区有码在线看 | 精品免费久久久久久久清纯| 国产精品1区2区在线观看.| 国产色视频综合| 嫩草影视91久久| 久久久国产成人精品二区| avwww免费| 我的亚洲天堂| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 色哟哟哟哟哟哟| 99久久精品国产亚洲精品| 久久狼人影院| 国产高清videossex| 亚洲熟妇中文字幕五十中出| 热re99久久国产66热| а√天堂www在线а√下载| 黑人巨大精品欧美一区二区mp4| 禁无遮挡网站| 亚洲av成人不卡在线观看播放网| 中出人妻视频一区二区| 宅男免费午夜| 国产99久久九九免费精品| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| 亚洲av美国av| 国产亚洲精品av在线| 免费高清在线观看日韩| 曰老女人黄片| 香蕉国产在线看| 亚洲精品一区av在线观看| 欧美国产日韩亚洲一区| 日韩三级视频一区二区三区|