• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak

    2021-02-27 09:16:52TingWU吳婷MinXU許敏LinNIE聶林YiYU余羿JianqiangXU許健強(qiáng)TingLONG龍婷YuHE何鈺JunCHENG程鈞LongwenYAN嚴(yán)龍文ZhihuiHUANG黃治輝RuiKE柯銳PengSHI石鵬ShuoWANG王碩andBingLIU劉兵
    Plasma Science and Technology 2021年2期
    關(guān)鍵詞:龍文

    Ting WU (吳婷), Min XU (許敏), Lin NIE (聶林), Yi YU (余羿),2,Jianqiang XU (許健強(qiáng)), Ting LONG (龍婷), Yu HE (何鈺),Jun CHENG (程鈞), Longwen YAN (嚴(yán)龍文), Zhihui HUANG (黃治輝),Rui KE (柯銳), Peng SHI (石鵬), Shuo WANG (王碩) and Bing LIU (劉兵)

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 School of Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China

    3 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, People’s Republic of China

    Abstract Effect of edge turbulent transport on scrape-off layer (SOL) width has been investigated in Ohmically heated L-mode plasma under limiter configurations on HL-2A tokamak.It has been found that SOL width is doubled when plasma current decreases about 20%.With larger plasma current, E×B shear is stronger and has greater suppression effect on edge turbulent transport.SOL width is larger when power of relative density fluctuation level in the edge region is larger.It is concluded that edge turbulent transport plays a significant role on SOL width.These experimental findings may provide a better understanding and controlling of power exhaust for present and future fusion devices.

    Keywords: SOL width, edge turbulent transport, E × B shear, turbulence spreading

    1.Introduction

    Controlling heat loads on the divertor targets is one of the most urgent open issues for International Thermonuclear Experimental Reactor(ITER)and beyond fusion devices.The power decay lengthλq,interchangeably with scrape-off layer(SOL) width, depends on the competition between parallel transport and cross-field transport in the SOL [1, 2].It is a typical parameter characterizing the radial distribution of heat load and determining the area of divertor targets where the largest heat flux deposits on, consequently it is important for power exhaust and hence life span of divertor targets.

    Neoclassical effects onλqhas been studied by Heuristicdrift(HD)model[3]which has explained the Eich-scaling[4]in H-mode plasma.Meanwhile,turbulent transport also plays a role on settingλq,which has been studied by various means of theories [5–10], simulations [11–16] and experiments [17–20].

    Myraet alshowed theoretically that an interchangedriven turbulence model predicts an increasing departure from the Eich-scaling for JET and ITER [7].Gyrokinetic simulations using XGC1 code indicated that the upper limit ofλqin ITER is predominantly set by the nonlinear edge turbulence effect[12].BOUT++simulations concluded that edge radial electric field has strong effects onλq,which is inversely proportional to radial electric field [13, 14].The newest results from BOUT++ simulations indicated that there is a critical value of thermal diffusivity distinguishing two regimes namely drift dominant regime and turbulence dominant regime[15,16]on settingλq.Recent experiments in TJII stellerator highly emphasized the role of edge E×B shear[18, 19] onλq.Results from ASDEX Upgrade reported thatλqcan be widened by turbulence in H-mode plasma [20].

    In this paper,the effect of edge turbulent transport onλqis experimentally studied on HL-2A tokamak.The rest of this paper is organized as follows.The experimental setup is given in section 2.Experimental investigations on effect of edge turbulent transport onλqare presented in section 3.In section 4 there is a brief conclusion and discussion.

    Figure 1.(a)The magnetohydrodynamic equilibrium configuration from EFIT,(b)schematic diagram of probe array with θ standing for the poloidal direction, φ standing for the toroidal direction, and r standing for the radial direction.

    2.Experimental setup

    The experiments were performed in Ohmically heated L-mode deuterium plasmas on HL-2A tokamak [21] under limiter configurations.Its cross section is circular and the major radiusR= 1.65 m and minor radiusa= 0.4 m.In the experiments presented in this article,a fast reciprocating Langmuir probe array was utilized to measure plasma parameters from far SOL region to edge region.This probe system is mounted at low field side of the outer middle plane on HL-2A tokamak.Spatial distribution of plasma parameters along the radial direction can be obtained during a discharge with sampling rate of 1 MHz.The schematic diagram of probe array [22] is shown in figure 1.It consists of two radial steps distancing 3 mm with a four-point probe on each.The height and diameter of each tip are 2.5 mm and 2 mm,respectively.The poloidal separation of adjacent tips is 6 mm and toroidal separation is 8 mm.Tips measuring folating potentialVf,?Vand+Vare shown in figure 1.It can measure ion saturation current byelectron temperature byby triple probe configuration[23]electron density bywhereRsis the sampling resistance,eis the electric charge,Aeffis the effective collection area of each tip,kis the Boltzmann constant andmiis the ion mass.The fluctuation of poloidal electric fieldis estimated by the poloidal floating potential difference neglecting electron temperature fluctuation,and symbol ~ stands for the fluctuation level of parameters.Fluctuated radial velocity is derived byTurbulent particle flux is computed aswhere〈…〉represents a time ensemble average.Plasma potential is inferred by thewithαbeing the sheath coefficient and usually taken to be 2.8 for deuterium plasma.Radial electric field is calculated bythe poloidal flowand the shear flowThe parallel heat flux can be expressed assince it is in Sheath-limited regime[2,24],whereγis electron sheath heat transmission coefficient, which is a constant being about 7.It is usually assumed that the radial profile of‖qis a single exponential decay in the SOL so that it can be rewritten aswithbeing the parallel heat flux at last closed flux surface(LCFS),andrdistance from LCFS.

    3.Experimental results

    3.1.Discharge details and mean radial profiles

    In order to investigate the role of edge turbulent transport onλq,analyses of measured parameters under two plasma scenarios by varying plasma currents are carried out.Database of scenario A consists of 15 similar discharges withIp≈150 kA and scenario B is composed of 10 repeated discharges withIp≈120 kA.The other main parameters of discharges in both scenarios are very similar with line-averaged densitytoroidal magnetic fieldBt≈1.36 T and Ohmic heating voltageVL≈1.8 V.Edge safety factorqais 4.4 withIp≈150 kA and 5.5 withIp≈120 kA.The stored energy and energy confinement time are about 10 kJ and 38 ms in plasma scenario A withIp≈150 kA,and they are about 5 kJ and 19 ms in scenario B withIp≈120 kA.Almost the same total input power absorbed in the core through Ohmic heating could reach to far SOL region and/or wall.

    Figure 2.Radial profiles of (a) electron density n e ,(b) electron temperature Te and (c) parallel heat flux q‖ with plasma current 150 kA and 120 kA.

    As for data analysis for both scenarios, the error bar of each data point in the radial profile of one discharge is very small(usually less than 3%of the mean values,meaning that the instrumental uncertainty is much smaller than the variation of one discharge to another),so it is negligible compared to the mean values.In order to compare the two plasma scenarios,the strategy of data analysis is to average the radial profiles of all discharges in each scenario into one profile.Good reproducibility can be validated by error bars representing uncertainty among discharges in each scenario.

    The radial profiles of electron density, electron temperature and parallel heat flux measured by Langmuir probe are shown in figure 2.With increasedIp,electron density remains the same inside LCFS but decays radially faster, resulting in its smaller amplitude in SOL region; electron temperature is much larger at plasma boundary and concomitantly its rise has contributed unequivocally to sharp increase in parallel heat flux.Meanwhile the radial gradients of electron density,temperature and parallel heat flux are rising withIp.In addition, the radial profiles of electron pressure and its gradient are elevated withIp, as shown in figure 3.

    3.2.Turbulent transport at boundary region

    For both scenarios at plasma boundary, turbulence is electrostatic and has broad band frequency spectrum.Edge turbulence is pronounced in the frequency range of 20–150 kHz which is investigated in this paper.Poloidal wave numberkθis in the range of 0–3 cm?1.The cross phase betweenandis small and its cosine value is approximately to be 1.Along with the large radial gradient of density inside LCFS,it points to the drift-wave driving mechanism.

    Figure 3.Radial profiles of (a) electron pressure pe and (b) pressure gradient ?pe with different plasma currents.

    The radial profiles of relative fluctuation level of plasma density and turbulent particle flux are displayed in figure 4.The relative density fluctuation level increases with radial position from edge to near SOL region and saturates in far SOL at similar levels for both plasma scenarios.In plasma scenario A withIp≈150 kA,it is about 0.1 inside LCFS,increasing up to 0.4 when moving radially outward into far SOL region.The level of edge density fluctuations is significantly larger, about 0.2 in plasma scenario B withIp≈120 kA.Note that the radial gradient of relative density fluctuation level is larger at edge and near SOL with reduced plasma current, leading to quite different relative density fluctuation levels at edge region but approximately equivalent values in far SOL region.Turbulent particle flux in plasma scenario A is much lower at edge region aboutr?rLCFS≈ ?15 to ?5 mm than that of plasma scenario B, but their values for both scenarios are approaching increasingly to be similar radially outwards taking error bars into account.

    Figure 4.The radial profiles of (a) relative fluctuation level of electron density and (b) turbulent particle fluxΓr with different plasma currents.

    Figure 5.The radial profiles of turbulence spreading with different plasma currents.

    In order to connect the edge and SOL region,it is critical to find a parameter with‘non-local’property.Here turbulence spreading [25–30] is investigated, shown in figure 5.Turbulence spreading is spatial-temporal propagation of turbulence energy by the processes of nonlinear interaction [27].It preferentially transports fluctuation from unstable to stable regions[27,28].In particular,it can decouple local turbulence intensity from the local gradient.In this paper, turbulence spreading is quantified by turbulence intensity flux or radial flux of turbulent kinetic energy, which is defined asThe quantification originates from the turbulence spreading rate defined asby Manz in [30].Turbulence spreading rate is investigated but no agreeable result is obtained.However, another parameter, turbulence intensity flux,whose radial derivative and normalization to be turbulence spreading rate, shows consistent tendency with SOL width.The radial profiles of turbulence intensity flux with differentIpare analyzed experimentally and illustrated in figure 5.Clearly that turbulence intensity flux is lower in the region from edge to far SOL with largerIp,which shows similar tendency of turbulent particle flux.

    Turbulent transport is strongly correlated with E×B shear flow, hence it is essential to understand significant effects of E×B shear flow on turbulent transport in each plasma scenario.Figure 6 shows the radial profiles of plasma potential, radial electric field and E×B shear flow withIp≈150 kA andIp≈120 kA.The radial profile of plasma potentialVpshows a convex shape and peaks around LCFS,meaning that its radial gradient orEris relative large along with large E×B shear in scenario A withIp≈150 kA,whileVpis rather flat resulting in a relative small value ofErand E×B shear in scenario B withIp≈120 kA.Especially,the maximal E×B shearing rateωE×Bis about 5 × 105s?1in scenario A withIp≈150 kA and 1 × 105s?1in scenario B withIp≈120 kA.Turbulence decorrelation time is about a few tens of microseconds in both scenarios, whose inverse is in the order of 104s?1,less than E×B shearing rate for both scenarios.Relatively larger E×B shear has stronger suppression effect on turbulent transport in plasma scenario A withIp≈150 kA whereas relatively smaller E×B shear has less impact on turbulent transport in plasma scenario B withIp≈120 kA,as demonstrated in figures 4 and 5.Significant E×B shear has suppressed turbulence spreading in plasma scenario A withIp≈150 kA,which is in agreement with the results that E×B shear can strongly reduce turbulence spreading by gyrokinetic simulation in[29]and experimental results from TJ-II stellerator [18].

    Figure 6.The radial profiles of (a) plasma potential Vp ,(b) radial electric fieldEr and (c) E×B shearing rate ω E ×B with different plasma currents.

    3.3.Effect of edge turbulent transport on SOL width

    Figure 7.The power of relative density fluctuation level at r ?rLCFS ≈ ?15 to ?10 mm versus SOL width with different plasma currents.

    Table 1.Comparison of SOL widths with different methods in each plasma scenario.

    λqmight be dominated by local parameters in SOL region,such as collionality [31] and E×B shear in SOL [17].However, as interpreted in introduction part, edge turbulent transport may also play a role onλq.Figure 7 illustrates the relation ofλqwith the power of relative density fluctuation level integrated within frequency range of 20?150 kHz at edge regionr?rLCFS≈ ?15 to ?10 mm.λqis in the range of 7–12 mm and its mean value is about 10 mm in plasma scenario A withIp≈150 kA while it is about 15–27 mm with its mean value of 20 mm in plasma scenario B withIp≈120 kA.The power of relative density fluctuation level in the edge region is much lower with largerI.pConsidering both plasma scenarios, it is clear thatλqis larger with increased power of relative density fluctuation level in the edge region.Besidesλqis more divergent with larger turbulence power,which can be evidenced by their values of error bars (1 mm and 4 mm respectively shown in table 1).Note that almost the same total input power absorbed in the core through Ohmic heating could reach to far SOL region and/or wall.Larger SOL width is consistent with increased relative density fluctuation level, it can be explained that larger edge turbulence spreads into SOL region radially, making SOL profiles gradient smaller, and as a consequence SOL width is larger.Hence it is concluded that edge turbulent transport plays a role on SOL width.

    4.Conclusion and discussion

    In this work, experimental investigation of edge turbulent transport influencing SOL width has been achieved in Ohmically heated L-mode plasma under limiter configurations on HL-2A tokamak.Measurements from two plasma scenarios with different plasma currents are compared.It has been found that plasma current decreases by 20% (from 150 to 120 kA) while SOL width doubles (10 mm and 20 mm respectively) in the experiments.With larger plasma current,E×B shear is stronger and has greater suppression effect on edge turbulent transport.Larger edge turbulence spreads into SOL region radially, making SOL profiles gradient smaller,and as a consequence SOL width is larger.Hence it is concluded that edge turbulent transport plays a role on SOL width.These results may provide a better understanding and controlling of power exhaust for ITER and future fusion devices.

    There are a few issues to be discussed.Firstly, it is essential to explore the physics mechanism of edge turbulent transport affectingλq.Note that in figure 5λqand turbulence spreading are both smaller with largerIp.Given that turbulence spreading transports fluctuated energy from unstable regions to stable regions, induces non-local dependence of SOL turbulence on the edge pressure gradient and links the edge and SOL region, turbulence spreading may be the mechanism of edge turbulent transport affecting SOL width.Further study will be concentrated on verifying its mechanism with biased electrode to exclude effects from different plasma currents.

    Secondly,perpendicular heat flux and its ratio over parallel heat flux are investigated for both scenarios but unfortunately no consistent and understandable conclusion was obtained.Further study about the relation between perpendicular and parallel heat flux and SOL width is worthwhile to be done.

    Thirdly,λqcalculated from experimental results, HD model and a theory based scaling are compared and results are shown in table 1.In the experiments,Iphas decreased about 20% whileλqhas doubled.

    Calculations ofλqfrom HD model (equation (5) in [3])for present experimental conditions are 8 mm and 10 mm withIp≈150 kA andIp≈120 kA respectively.WhenIpdecreases by 20%, HD model predicts an increase ofλqby 25%whileλqrises by 100%in the experiments.It should be noted that HD model is based on H-mode plasma, where turbulence is significantly suppressed by shear flow while it is Ohmic discharge with high level of turbulence in this experiment.Hence it is not necessarily contradictory between results from HD model and experiment results.

    A theory-based scaling ofλqof a circular, limited tokamak has been obtained [6, 32] considering the balance between parallel losses and anomalous perpendicular transport driven by nonlinearly saturated resistive ballooning mode turbulence.Mean values ofλqare about 27 mm and 48 mm with plasma current 150 kA and 120 kA respectively.The different values ofλqbetween this theory-based scaling and experimental results may attribute to different turbulence,as it is resistive ballooning mode turbulence in theory-based scaling while it may be drift wave in the experiments driving anomalous transport.

    Acknowledgments

    The authors are very grateful to Prof Carlos Hidalgo for frequent private discussions and appreciate useful discussions with Prof P Diamond and Prof G Tynan in the 3rd AAPPSDPP conference and Prof Y Xu in the 12th APFA conference.This work is supported by National Natural Science Foundation of China (Nos.11875124, U1867222, 11575055,11705052,11875020 and 11705151)and National Key Research and Development Program of China (Nos.2018YFE0309103,2018YFE0303102, 2017YFE0300405 and 2017YFE0301203).

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    紅軍第一位飛行員龍文光
    勤上光電收購(gòu)標(biāo)的經(jīng)營(yíng)亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    美女高潮的动态| 最近最新中文字幕大全电影3| 成人av在线播放网站| 乱人视频在线观看| 搡女人真爽免费视频火全软件| 亚洲国产高清在线一区二区三| 久久久a久久爽久久v久久| 欧美xxxx性猛交bbbb| 国产高清有码在线观看视频| 免费人成在线观看视频色| 18禁在线无遮挡免费观看视频| 有码 亚洲区| 男女啪啪激烈高潮av片| 三级男女做爰猛烈吃奶摸视频| 欧美变态另类bdsm刘玥| 亚洲国产成人一精品久久久| 国产精品嫩草影院av在线观看| 99久久无色码亚洲精品果冻| 免费观看a级毛片全部| 亚洲欧美成人精品一区二区| 青春草国产在线视频| 亚洲婷婷狠狠爱综合网| 91久久精品国产一区二区三区| 看非洲黑人一级黄片| 久久久久久九九精品二区国产| 久久鲁丝午夜福利片| 国产探花在线观看一区二区| 人妻少妇偷人精品九色| 精品免费久久久久久久清纯| 日韩大片免费观看网站 | 天堂中文最新版在线下载 | 久久精品熟女亚洲av麻豆精品 | 日产精品乱码卡一卡2卡三| 国产成人一区二区在线| 国产一级毛片在线| 成人无遮挡网站| 精品久久久久久电影网 | 久久精品综合一区二区三区| 精华霜和精华液先用哪个| 全区人妻精品视频| av在线亚洲专区| 啦啦啦韩国在线观看视频| 人妻系列 视频| 中国国产av一级| 日日啪夜夜撸| 亚洲经典国产精华液单| 欧美97在线视频| 久久精品夜色国产| 两个人视频免费观看高清| 美女黄网站色视频| 欧美不卡视频在线免费观看| 女的被弄到高潮叫床怎么办| 久久久久九九精品影院| 日韩强制内射视频| 亚洲伊人久久精品综合 | 国产乱人视频| 欧美日韩综合久久久久久| 色5月婷婷丁香| 晚上一个人看的免费电影| 人妻系列 视频| 色播亚洲综合网| 国产一区二区在线av高清观看| 日韩欧美精品v在线| 国产免费福利视频在线观看| 日韩,欧美,国产一区二区三区 | 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 级片在线观看| 精品久久久久久成人av| 免费看av在线观看网站| 国产麻豆成人av免费视频| 国产精品久久久久久av不卡| 舔av片在线| 国产一区二区亚洲精品在线观看| 丰满人妻一区二区三区视频av| 国产一区二区在线观看日韩| 国产极品天堂在线| 精品人妻偷拍中文字幕| 国内精品美女久久久久久| 久久精品91蜜桃| 精品不卡国产一区二区三区| 亚洲欧美日韩东京热| 日韩视频在线欧美| 成人美女网站在线观看视频| 别揉我奶头 嗯啊视频| 九九爱精品视频在线观看| 国产单亲对白刺激| 精品人妻熟女av久视频| 禁无遮挡网站| 一个人观看的视频www高清免费观看| 视频中文字幕在线观看| 国产一区亚洲一区在线观看| 免费av毛片视频| 亚洲真实伦在线观看| 汤姆久久久久久久影院中文字幕 | 欧美3d第一页| 欧美另类亚洲清纯唯美| 日韩亚洲欧美综合| 一区二区三区乱码不卡18| 卡戴珊不雅视频在线播放| 91久久精品国产一区二区成人| 日日干狠狠操夜夜爽| 一夜夜www| 日日干狠狠操夜夜爽| 视频中文字幕在线观看| 久久人人爽人人爽人人片va| 日本午夜av视频| 亚洲真实伦在线观看| 波多野结衣高清无吗| 国产av在哪里看| 久久热精品热| 一级黄色大片毛片| 熟女电影av网| 老司机影院毛片| 99久久九九国产精品国产免费| 国产精品一区二区三区四区免费观看| 人人妻人人看人人澡| 亚洲人成网站在线观看播放| 国产成人a区在线观看| 国产一区有黄有色的免费视频 | 男人舔奶头视频| 国产成人精品久久久久久| 国产探花极品一区二区| 国产精品不卡视频一区二区| 成人欧美大片| 国产 一区 欧美 日韩| 在线播放国产精品三级| 久久久久久久国产电影| 麻豆乱淫一区二区| 国产片特级美女逼逼视频| 99久久无色码亚洲精品果冻| 国产高清有码在线观看视频| 18禁在线播放成人免费| 一级二级三级毛片免费看| 久久人人爽人人爽人人片va| 床上黄色一级片| 床上黄色一级片| 麻豆国产97在线/欧美| 国产黄a三级三级三级人| 亚洲欧美成人综合另类久久久 | 亚洲国产最新在线播放| 卡戴珊不雅视频在线播放| 在线观看美女被高潮喷水网站| 女人十人毛片免费观看3o分钟| 最近中文字幕高清免费大全6| 深爱激情五月婷婷| 一个人免费在线观看电影| 丝袜美腿在线中文| 欧美成人一区二区免费高清观看| 一个人观看的视频www高清免费观看| 国产黄色小视频在线观看| av卡一久久| 毛片一级片免费看久久久久| 男女视频在线观看网站免费| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看| 久久精品国产亚洲av涩爱| 一个人看视频在线观看www免费| 不卡视频在线观看欧美| 看十八女毛片水多多多| 一级黄色大片毛片| 男的添女的下面高潮视频| 自拍偷自拍亚洲精品老妇| 亚洲自拍偷在线| 婷婷六月久久综合丁香| 国产精品,欧美在线| 七月丁香在线播放| 99热网站在线观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美一区二区国产精品久久精品| 亚洲国产欧洲综合997久久,| 一边亲一边摸免费视频| 亚洲国产欧美人成| or卡值多少钱| 日本免费a在线| 久久韩国三级中文字幕| 午夜老司机福利剧场| 久久久色成人| 少妇熟女欧美另类| 亚洲美女搞黄在线观看| 成人美女网站在线观看视频| 人人妻人人看人人澡| 人妻制服诱惑在线中文字幕| 精品不卡国产一区二区三区| 亚洲精品自拍成人| 在线观看一区二区三区| 变态另类丝袜制服| 久久久久久久午夜电影| 欧美激情在线99| 2021少妇久久久久久久久久久| 一级黄片播放器| 99热这里只有精品一区| 国产精品不卡视频一区二区| 天堂av国产一区二区熟女人妻| kizo精华| 高清午夜精品一区二区三区| 午夜福利在线在线| 看非洲黑人一级黄片| 床上黄色一级片| 亚洲aⅴ乱码一区二区在线播放| 久久久久九九精品影院| 亚洲欧美一区二区三区国产| 久久草成人影院| 国产大屁股一区二区在线视频| 国产免费又黄又爽又色| 看黄色毛片网站| 一个人看视频在线观看www免费| 插逼视频在线观看| 波多野结衣高清无吗| 午夜a级毛片| 99热网站在线观看| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久| 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| 精品国内亚洲2022精品成人| 不卡视频在线观看欧美| 国产成人精品久久久久久| 国产三级中文精品| 26uuu在线亚洲综合色| 精品午夜福利在线看| 日韩强制内射视频| 国产精品久久视频播放| 免费在线观看成人毛片| 尤物成人国产欧美一区二区三区| 成人午夜精彩视频在线观看| 国语自产精品视频在线第100页| 国内精品美女久久久久久| 婷婷色麻豆天堂久久 | 久久久久九九精品影院| 99热6这里只有精品| videos熟女内射| 国产成人午夜福利电影在线观看| 亚洲av二区三区四区| 久久久午夜欧美精品| 亚洲av免费在线观看| 欧美性猛交╳xxx乱大交人| 最后的刺客免费高清国语| 国产一级毛片在线| 99热精品在线国产| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 内地一区二区视频在线| 99热这里只有是精品50| 久久精品91蜜桃| 少妇高潮的动态图| 成年女人看的毛片在线观看| av播播在线观看一区| 国产私拍福利视频在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲av成人精品一区久久| 亚洲无线观看免费| 天堂中文最新版在线下载 | 成人国产麻豆网| 国产色婷婷99| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 亚洲精品,欧美精品| 免费不卡的大黄色大毛片视频在线观看 | 夫妻性生交免费视频一级片| 亚洲真实伦在线观看| 国产精品,欧美在线| 久久6这里有精品| 国产精品熟女久久久久浪| 干丝袜人妻中文字幕| 天堂影院成人在线观看| 伦精品一区二区三区| 日本黄大片高清| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 久久久色成人| 直男gayav资源| 色5月婷婷丁香| 国产高潮美女av| 精品久久久久久电影网 | 可以在线观看毛片的网站| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| 噜噜噜噜噜久久久久久91| 精品欧美国产一区二区三| av线在线观看网站| 特级一级黄色大片| 日韩一本色道免费dvd| 日韩三级伦理在线观看| 国产免费视频播放在线视频 | 99久久精品国产国产毛片| 欧美极品一区二区三区四区| 国产成人午夜福利电影在线观看| 中文亚洲av片在线观看爽| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 亚洲欧美精品综合久久99| 欧美激情国产日韩精品一区| 免费看a级黄色片| 视频中文字幕在线观看| 国产69精品久久久久777片| 美女被艹到高潮喷水动态| 永久网站在线| 精品一区二区免费观看| 日本爱情动作片www.在线观看| 青春草国产在线视频| 国产激情偷乱视频一区二区| av在线蜜桃| 国产精品人妻久久久影院| 亚洲aⅴ乱码一区二区在线播放| 一级av片app| 国产精品不卡视频一区二区| 国产乱人视频| 国产国拍精品亚洲av在线观看| 一本久久精品| 国产在视频线在精品| 人人妻人人澡人人爽人人夜夜 | 看黄色毛片网站| 午夜福利高清视频| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 色网站视频免费| 亚洲欧洲国产日韩| 我要搜黄色片| 精品欧美国产一区二区三| 亚洲一区高清亚洲精品| 国产欧美日韩精品一区二区| 看黄色毛片网站| 麻豆久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 国产真实乱freesex| 国产又黄又爽又无遮挡在线| 精品酒店卫生间| www日本黄色视频网| 视频中文字幕在线观看| 久久精品国产亚洲网站| 日韩成人伦理影院| 中文字幕av成人在线电影| 国产成人福利小说| 亚洲av免费高清在线观看| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 日产精品乱码卡一卡2卡三| 变态另类丝袜制服| 久久国内精品自在自线图片| videos熟女内射| 在线a可以看的网站| 国产精品久久久久久精品电影| 国产高清有码在线观看视频| 三级毛片av免费| 国产午夜精品一二区理论片| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 午夜精品在线福利| 久久久久久久亚洲中文字幕| 欧美三级亚洲精品| 日韩欧美三级三区| 亚洲欧美清纯卡通| videos熟女内射| 熟女电影av网| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 国产在线一区二区三区精 | 2021天堂中文幕一二区在线观| 国产精品女同一区二区软件| 韩国av在线不卡| 国产成人一区二区在线| 亚洲国产精品sss在线观看| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 大香蕉久久网| 最新中文字幕久久久久| 国模一区二区三区四区视频| 最近最新中文字幕大全电影3| 免费观看在线日韩| 国产成人精品婷婷| 欧美色视频一区免费| 国产一区有黄有色的免费视频 | 精品无人区乱码1区二区| 国产伦精品一区二区三区四那| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 亚洲av成人精品一二三区| 久久久久九九精品影院| 青春草视频在线免费观看| 亚洲精品乱码久久久久久按摩| 青青草视频在线视频观看| 精品久久久久久成人av| 国产熟女欧美一区二区| 欧美精品国产亚洲| 简卡轻食公司| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 免费看美女性在线毛片视频| 内地一区二区视频在线| 你懂的网址亚洲精品在线观看 | 又爽又黄a免费视频| 亚洲电影在线观看av| 欧美精品国产亚洲| 国产亚洲一区二区精品| 国内精品一区二区在线观看| 久久久成人免费电影| 午夜精品在线福利| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 丰满少妇做爰视频| 青春草视频在线免费观看| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 男女那种视频在线观看| 国产极品天堂在线| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 久久精品人妻少妇| 亚洲av一区综合| 99久久人妻综合| 永久网站在线| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 亚洲精品国产成人久久av| 成人亚洲精品av一区二区| 日本黄色视频三级网站网址| 亚洲国产欧美人成| 99久国产av精品| 精品人妻偷拍中文字幕| 嫩草影院新地址| 级片在线观看| 国产乱人视频| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 男人舔奶头视频| 两个人视频免费观看高清| 在线播放国产精品三级| 国产午夜福利久久久久久| 免费大片18禁| 中文在线观看免费www的网站| 婷婷色麻豆天堂久久 | 国产成人a区在线观看| 亚洲精品久久久久久婷婷小说 | 麻豆精品久久久久久蜜桃| 大香蕉久久网| 亚洲熟妇中文字幕五十中出| 少妇熟女欧美另类| 免费无遮挡裸体视频| 精品久久久久久久久av| 蜜桃亚洲精品一区二区三区| av.在线天堂| 免费看美女性在线毛片视频| 国产一区有黄有色的免费视频 | 亚洲精品乱久久久久久| 亚洲成人久久爱视频| 国内精品一区二区在线观看| 在线观看66精品国产| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 中文字幕免费在线视频6| 国产免费福利视频在线观看| 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生 | 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 国产精品一区www在线观看| 国产精品乱码一区二三区的特点| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品野战在线观看| 午夜a级毛片| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 国产黄a三级三级三级人| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站 | 伦理电影大哥的女人| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 欧美激情在线99| 久久久欧美国产精品| 免费不卡的大黄色大毛片视频在线观看 | 免费观看a级毛片全部| 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 色哟哟·www| av线在线观看网站| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 特级一级黄色大片| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 在线观看av片永久免费下载| 欧美xxxx黑人xx丫x性爽| 精品少妇黑人巨大在线播放 | 直男gayav资源| 久久久午夜欧美精品| 国产在视频线精品| 亚洲欧美日韩东京热| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的 | 校园人妻丝袜中文字幕| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 秋霞在线观看毛片| 天堂中文最新版在线下载 | 一级av片app| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看| 色5月婷婷丁香| 一边亲一边摸免费视频| 国产在线一区二区三区精 | 成年女人永久免费观看视频| 亚洲美女搞黄在线观看| 神马国产精品三级电影在线观看| 亚洲欧美日韩高清专用| 国产白丝娇喘喷水9色精品| 欧美性猛交╳xxx乱大交人| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久99热6这里只有精品| 纵有疾风起免费观看全集完整版 | 日韩中字成人| 人妻系列 视频| 1000部很黄的大片| 日本一二三区视频观看| 岛国毛片在线播放| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 国产三级在线视频| 在线免费十八禁| 国内精品美女久久久久久| 欧美zozozo另类| kizo精华| www.色视频.com| 日本欧美国产在线视频| 99久久九九国产精品国产免费| 国产亚洲最大av| 可以在线观看毛片的网站| 99久久中文字幕三级久久日本| 如何舔出高潮| 2021天堂中文幕一二区在线观| 国产麻豆成人av免费视频| 1000部很黄的大片| 在现免费观看毛片| 女人久久www免费人成看片 | 久久精品熟女亚洲av麻豆精品 | 国产av码专区亚洲av| or卡值多少钱| 日韩成人伦理影院| 一夜夜www| 亚洲色图av天堂| 成人无遮挡网站| 亚洲成人av在线免费| 性插视频无遮挡在线免费观看| www.av在线官网国产| 免费大片18禁| 国产在线男女| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 国产精品一及| 99久久人妻综合| 久久这里只有精品中国| 晚上一个人看的免费电影| 2021天堂中文幕一二区在线观| 简卡轻食公司| 精品一区二区三区人妻视频| 国产亚洲精品久久久com| 在线观看66精品国产| 国模一区二区三区四区视频| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区| 久久久久久久午夜电影| 久久久久久久久中文| 国产成人精品婷婷| 国产色爽女视频免费观看| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 精品国产三级普通话版| 久久久久久久国产电影| 男人舔女人下体高潮全视频| 中文字幕免费在线视频6| 久久精品夜夜夜夜夜久久蜜豆| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 精品久久久久久成人av| 热99在线观看视频| 直男gayav资源| 亚洲av.av天堂| 国产色爽女视频免费观看| 国产亚洲91精品色在线| 成人欧美大片| 国产精品三级大全| 久久久欧美国产精品| 激情 狠狠 欧美| 色5月婷婷丁香| 搡老妇女老女人老熟妇| 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| .国产精品久久| 插阴视频在线观看视频| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 日本-黄色视频高清免费观看| 久久久国产成人免费| 日韩一本色道免费dvd| 三级国产精品片| 看非洲黑人一级黄片| 久久精品国产亚洲av天美| 日本wwww免费看| 尤物成人国产欧美一区二区三区| 少妇丰满av|