• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of edge turbulent transport on scrapeoff layer width on HL-2A tokamak

    2021-02-27 09:16:52TingWU吳婷MinXU許敏LinNIE聶林YiYU余羿JianqiangXU許健強(qiáng)TingLONG龍婷YuHE何鈺JunCHENG程鈞LongwenYAN嚴(yán)龍文ZhihuiHUANG黃治輝RuiKE柯銳PengSHI石鵬ShuoWANG王碩andBingLIU劉兵
    Plasma Science and Technology 2021年2期
    關(guān)鍵詞:龍文

    Ting WU (吳婷), Min XU (許敏), Lin NIE (聶林), Yi YU (余羿),2,Jianqiang XU (許健強(qiáng)), Ting LONG (龍婷), Yu HE (何鈺),Jun CHENG (程鈞), Longwen YAN (嚴(yán)龍文), Zhihui HUANG (黃治輝),Rui KE (柯銳), Peng SHI (石鵬), Shuo WANG (王碩) and Bing LIU (劉兵)

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 School of Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China

    3 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, People’s Republic of China

    Abstract Effect of edge turbulent transport on scrape-off layer (SOL) width has been investigated in Ohmically heated L-mode plasma under limiter configurations on HL-2A tokamak.It has been found that SOL width is doubled when plasma current decreases about 20%.With larger plasma current, E×B shear is stronger and has greater suppression effect on edge turbulent transport.SOL width is larger when power of relative density fluctuation level in the edge region is larger.It is concluded that edge turbulent transport plays a significant role on SOL width.These experimental findings may provide a better understanding and controlling of power exhaust for present and future fusion devices.

    Keywords: SOL width, edge turbulent transport, E × B shear, turbulence spreading

    1.Introduction

    Controlling heat loads on the divertor targets is one of the most urgent open issues for International Thermonuclear Experimental Reactor(ITER)and beyond fusion devices.The power decay lengthλq,interchangeably with scrape-off layer(SOL) width, depends on the competition between parallel transport and cross-field transport in the SOL [1, 2].It is a typical parameter characterizing the radial distribution of heat load and determining the area of divertor targets where the largest heat flux deposits on, consequently it is important for power exhaust and hence life span of divertor targets.

    Neoclassical effects onλqhas been studied by Heuristicdrift(HD)model[3]which has explained the Eich-scaling[4]in H-mode plasma.Meanwhile,turbulent transport also plays a role on settingλq,which has been studied by various means of theories [5–10], simulations [11–16] and experiments [17–20].

    Myraet alshowed theoretically that an interchangedriven turbulence model predicts an increasing departure from the Eich-scaling for JET and ITER [7].Gyrokinetic simulations using XGC1 code indicated that the upper limit ofλqin ITER is predominantly set by the nonlinear edge turbulence effect[12].BOUT++simulations concluded that edge radial electric field has strong effects onλq,which is inversely proportional to radial electric field [13, 14].The newest results from BOUT++ simulations indicated that there is a critical value of thermal diffusivity distinguishing two regimes namely drift dominant regime and turbulence dominant regime[15,16]on settingλq.Recent experiments in TJII stellerator highly emphasized the role of edge E×B shear[18, 19] onλq.Results from ASDEX Upgrade reported thatλqcan be widened by turbulence in H-mode plasma [20].

    In this paper,the effect of edge turbulent transport onλqis experimentally studied on HL-2A tokamak.The rest of this paper is organized as follows.The experimental setup is given in section 2.Experimental investigations on effect of edge turbulent transport onλqare presented in section 3.In section 4 there is a brief conclusion and discussion.

    Figure 1.(a)The magnetohydrodynamic equilibrium configuration from EFIT,(b)schematic diagram of probe array with θ standing for the poloidal direction, φ standing for the toroidal direction, and r standing for the radial direction.

    2.Experimental setup

    The experiments were performed in Ohmically heated L-mode deuterium plasmas on HL-2A tokamak [21] under limiter configurations.Its cross section is circular and the major radiusR= 1.65 m and minor radiusa= 0.4 m.In the experiments presented in this article,a fast reciprocating Langmuir probe array was utilized to measure plasma parameters from far SOL region to edge region.This probe system is mounted at low field side of the outer middle plane on HL-2A tokamak.Spatial distribution of plasma parameters along the radial direction can be obtained during a discharge with sampling rate of 1 MHz.The schematic diagram of probe array [22] is shown in figure 1.It consists of two radial steps distancing 3 mm with a four-point probe on each.The height and diameter of each tip are 2.5 mm and 2 mm,respectively.The poloidal separation of adjacent tips is 6 mm and toroidal separation is 8 mm.Tips measuring folating potentialVf,?Vand+Vare shown in figure 1.It can measure ion saturation current byelectron temperature byby triple probe configuration[23]electron density bywhereRsis the sampling resistance,eis the electric charge,Aeffis the effective collection area of each tip,kis the Boltzmann constant andmiis the ion mass.The fluctuation of poloidal electric fieldis estimated by the poloidal floating potential difference neglecting electron temperature fluctuation,and symbol ~ stands for the fluctuation level of parameters.Fluctuated radial velocity is derived byTurbulent particle flux is computed aswhere〈…〉represents a time ensemble average.Plasma potential is inferred by thewithαbeing the sheath coefficient and usually taken to be 2.8 for deuterium plasma.Radial electric field is calculated bythe poloidal flowand the shear flowThe parallel heat flux can be expressed assince it is in Sheath-limited regime[2,24],whereγis electron sheath heat transmission coefficient, which is a constant being about 7.It is usually assumed that the radial profile of‖qis a single exponential decay in the SOL so that it can be rewritten aswithbeing the parallel heat flux at last closed flux surface(LCFS),andrdistance from LCFS.

    3.Experimental results

    3.1.Discharge details and mean radial profiles

    In order to investigate the role of edge turbulent transport onλq,analyses of measured parameters under two plasma scenarios by varying plasma currents are carried out.Database of scenario A consists of 15 similar discharges withIp≈150 kA and scenario B is composed of 10 repeated discharges withIp≈120 kA.The other main parameters of discharges in both scenarios are very similar with line-averaged densitytoroidal magnetic fieldBt≈1.36 T and Ohmic heating voltageVL≈1.8 V.Edge safety factorqais 4.4 withIp≈150 kA and 5.5 withIp≈120 kA.The stored energy and energy confinement time are about 10 kJ and 38 ms in plasma scenario A withIp≈150 kA,and they are about 5 kJ and 19 ms in scenario B withIp≈120 kA.Almost the same total input power absorbed in the core through Ohmic heating could reach to far SOL region and/or wall.

    Figure 2.Radial profiles of (a) electron density n e ,(b) electron temperature Te and (c) parallel heat flux q‖ with plasma current 150 kA and 120 kA.

    As for data analysis for both scenarios, the error bar of each data point in the radial profile of one discharge is very small(usually less than 3%of the mean values,meaning that the instrumental uncertainty is much smaller than the variation of one discharge to another),so it is negligible compared to the mean values.In order to compare the two plasma scenarios,the strategy of data analysis is to average the radial profiles of all discharges in each scenario into one profile.Good reproducibility can be validated by error bars representing uncertainty among discharges in each scenario.

    The radial profiles of electron density, electron temperature and parallel heat flux measured by Langmuir probe are shown in figure 2.With increasedIp,electron density remains the same inside LCFS but decays radially faster, resulting in its smaller amplitude in SOL region; electron temperature is much larger at plasma boundary and concomitantly its rise has contributed unequivocally to sharp increase in parallel heat flux.Meanwhile the radial gradients of electron density,temperature and parallel heat flux are rising withIp.In addition, the radial profiles of electron pressure and its gradient are elevated withIp, as shown in figure 3.

    3.2.Turbulent transport at boundary region

    For both scenarios at plasma boundary, turbulence is electrostatic and has broad band frequency spectrum.Edge turbulence is pronounced in the frequency range of 20–150 kHz which is investigated in this paper.Poloidal wave numberkθis in the range of 0–3 cm?1.The cross phase betweenandis small and its cosine value is approximately to be 1.Along with the large radial gradient of density inside LCFS,it points to the drift-wave driving mechanism.

    Figure 3.Radial profiles of (a) electron pressure pe and (b) pressure gradient ?pe with different plasma currents.

    The radial profiles of relative fluctuation level of plasma density and turbulent particle flux are displayed in figure 4.The relative density fluctuation level increases with radial position from edge to near SOL region and saturates in far SOL at similar levels for both plasma scenarios.In plasma scenario A withIp≈150 kA,it is about 0.1 inside LCFS,increasing up to 0.4 when moving radially outward into far SOL region.The level of edge density fluctuations is significantly larger, about 0.2 in plasma scenario B withIp≈120 kA.Note that the radial gradient of relative density fluctuation level is larger at edge and near SOL with reduced plasma current, leading to quite different relative density fluctuation levels at edge region but approximately equivalent values in far SOL region.Turbulent particle flux in plasma scenario A is much lower at edge region aboutr?rLCFS≈ ?15 to ?5 mm than that of plasma scenario B, but their values for both scenarios are approaching increasingly to be similar radially outwards taking error bars into account.

    Figure 4.The radial profiles of (a) relative fluctuation level of electron density and (b) turbulent particle fluxΓr with different plasma currents.

    Figure 5.The radial profiles of turbulence spreading with different plasma currents.

    In order to connect the edge and SOL region,it is critical to find a parameter with‘non-local’property.Here turbulence spreading [25–30] is investigated, shown in figure 5.Turbulence spreading is spatial-temporal propagation of turbulence energy by the processes of nonlinear interaction [27].It preferentially transports fluctuation from unstable to stable regions[27,28].In particular,it can decouple local turbulence intensity from the local gradient.In this paper, turbulence spreading is quantified by turbulence intensity flux or radial flux of turbulent kinetic energy, which is defined asThe quantification originates from the turbulence spreading rate defined asby Manz in [30].Turbulence spreading rate is investigated but no agreeable result is obtained.However, another parameter, turbulence intensity flux,whose radial derivative and normalization to be turbulence spreading rate, shows consistent tendency with SOL width.The radial profiles of turbulence intensity flux with differentIpare analyzed experimentally and illustrated in figure 5.Clearly that turbulence intensity flux is lower in the region from edge to far SOL with largerIp,which shows similar tendency of turbulent particle flux.

    Turbulent transport is strongly correlated with E×B shear flow, hence it is essential to understand significant effects of E×B shear flow on turbulent transport in each plasma scenario.Figure 6 shows the radial profiles of plasma potential, radial electric field and E×B shear flow withIp≈150 kA andIp≈120 kA.The radial profile of plasma potentialVpshows a convex shape and peaks around LCFS,meaning that its radial gradient orEris relative large along with large E×B shear in scenario A withIp≈150 kA,whileVpis rather flat resulting in a relative small value ofErand E×B shear in scenario B withIp≈120 kA.Especially,the maximal E×B shearing rateωE×Bis about 5 × 105s?1in scenario A withIp≈150 kA and 1 × 105s?1in scenario B withIp≈120 kA.Turbulence decorrelation time is about a few tens of microseconds in both scenarios, whose inverse is in the order of 104s?1,less than E×B shearing rate for both scenarios.Relatively larger E×B shear has stronger suppression effect on turbulent transport in plasma scenario A withIp≈150 kA whereas relatively smaller E×B shear has less impact on turbulent transport in plasma scenario B withIp≈120 kA,as demonstrated in figures 4 and 5.Significant E×B shear has suppressed turbulence spreading in plasma scenario A withIp≈150 kA,which is in agreement with the results that E×B shear can strongly reduce turbulence spreading by gyrokinetic simulation in[29]and experimental results from TJ-II stellerator [18].

    Figure 6.The radial profiles of (a) plasma potential Vp ,(b) radial electric fieldEr and (c) E×B shearing rate ω E ×B with different plasma currents.

    3.3.Effect of edge turbulent transport on SOL width

    Figure 7.The power of relative density fluctuation level at r ?rLCFS ≈ ?15 to ?10 mm versus SOL width with different plasma currents.

    Table 1.Comparison of SOL widths with different methods in each plasma scenario.

    λqmight be dominated by local parameters in SOL region,such as collionality [31] and E×B shear in SOL [17].However, as interpreted in introduction part, edge turbulent transport may also play a role onλq.Figure 7 illustrates the relation ofλqwith the power of relative density fluctuation level integrated within frequency range of 20?150 kHz at edge regionr?rLCFS≈ ?15 to ?10 mm.λqis in the range of 7–12 mm and its mean value is about 10 mm in plasma scenario A withIp≈150 kA while it is about 15–27 mm with its mean value of 20 mm in plasma scenario B withIp≈120 kA.The power of relative density fluctuation level in the edge region is much lower with largerI.pConsidering both plasma scenarios, it is clear thatλqis larger with increased power of relative density fluctuation level in the edge region.Besidesλqis more divergent with larger turbulence power,which can be evidenced by their values of error bars (1 mm and 4 mm respectively shown in table 1).Note that almost the same total input power absorbed in the core through Ohmic heating could reach to far SOL region and/or wall.Larger SOL width is consistent with increased relative density fluctuation level, it can be explained that larger edge turbulence spreads into SOL region radially, making SOL profiles gradient smaller, and as a consequence SOL width is larger.Hence it is concluded that edge turbulent transport plays a role on SOL width.

    4.Conclusion and discussion

    In this work, experimental investigation of edge turbulent transport influencing SOL width has been achieved in Ohmically heated L-mode plasma under limiter configurations on HL-2A tokamak.Measurements from two plasma scenarios with different plasma currents are compared.It has been found that plasma current decreases by 20% (from 150 to 120 kA) while SOL width doubles (10 mm and 20 mm respectively) in the experiments.With larger plasma current,E×B shear is stronger and has greater suppression effect on edge turbulent transport.Larger edge turbulence spreads into SOL region radially, making SOL profiles gradient smaller,and as a consequence SOL width is larger.Hence it is concluded that edge turbulent transport plays a role on SOL width.These results may provide a better understanding and controlling of power exhaust for ITER and future fusion devices.

    There are a few issues to be discussed.Firstly, it is essential to explore the physics mechanism of edge turbulent transport affectingλq.Note that in figure 5λqand turbulence spreading are both smaller with largerIp.Given that turbulence spreading transports fluctuated energy from unstable regions to stable regions, induces non-local dependence of SOL turbulence on the edge pressure gradient and links the edge and SOL region, turbulence spreading may be the mechanism of edge turbulent transport affecting SOL width.Further study will be concentrated on verifying its mechanism with biased electrode to exclude effects from different plasma currents.

    Secondly,perpendicular heat flux and its ratio over parallel heat flux are investigated for both scenarios but unfortunately no consistent and understandable conclusion was obtained.Further study about the relation between perpendicular and parallel heat flux and SOL width is worthwhile to be done.

    Thirdly,λqcalculated from experimental results, HD model and a theory based scaling are compared and results are shown in table 1.In the experiments,Iphas decreased about 20% whileλqhas doubled.

    Calculations ofλqfrom HD model (equation (5) in [3])for present experimental conditions are 8 mm and 10 mm withIp≈150 kA andIp≈120 kA respectively.WhenIpdecreases by 20%, HD model predicts an increase ofλqby 25%whileλqrises by 100%in the experiments.It should be noted that HD model is based on H-mode plasma, where turbulence is significantly suppressed by shear flow while it is Ohmic discharge with high level of turbulence in this experiment.Hence it is not necessarily contradictory between results from HD model and experiment results.

    A theory-based scaling ofλqof a circular, limited tokamak has been obtained [6, 32] considering the balance between parallel losses and anomalous perpendicular transport driven by nonlinearly saturated resistive ballooning mode turbulence.Mean values ofλqare about 27 mm and 48 mm with plasma current 150 kA and 120 kA respectively.The different values ofλqbetween this theory-based scaling and experimental results may attribute to different turbulence,as it is resistive ballooning mode turbulence in theory-based scaling while it may be drift wave in the experiments driving anomalous transport.

    Acknowledgments

    The authors are very grateful to Prof Carlos Hidalgo for frequent private discussions and appreciate useful discussions with Prof P Diamond and Prof G Tynan in the 3rd AAPPSDPP conference and Prof Y Xu in the 12th APFA conference.This work is supported by National Natural Science Foundation of China (Nos.11875124, U1867222, 11575055,11705052,11875020 and 11705151)and National Key Research and Development Program of China (Nos.2018YFE0309103,2018YFE0303102, 2017YFE0300405 and 2017YFE0301203).

    猜你喜歡
    龍文
    Relativistic Hartree–Fock model and its recent progress on the description of nuclear structure*
    Free-boundary plasma equilibria with toroidal plasma flows
    Non-Hermitian quasicrystal in dimerized lattices?
    典故逸事龍文鞭影
    Experimental study of sheath potential coefficient in the J-TEXT tokamak
    紅軍第一位飛行員龍文光
    勤上光電收購(gòu)標(biāo)的經(jīng)營(yíng)亂象
    向北 向北 再向北
    明成祖朱棣:成就大業(yè)不忘恩師
    龍文未駕 鞭影猶存
    熟女电影av网| 最新中文字幕久久久久| 狂野欧美激情性xxxx在线观看| 美女cb高潮喷水在线观看| 91精品国产九色| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 日本午夜av视频| 国国产精品蜜臀av免费| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜爱| 欧美 亚洲 国产 日韩一| 国产精品一区www在线观看| 国内精品宾馆在线| 午夜激情av网站| 亚洲人成网站在线播| 久久久久久久久久久丰满| 亚洲国产成人一精品久久久| 精品99又大又爽又粗少妇毛片| 亚洲av在线观看美女高潮| 国产高清三级在线| 中文字幕久久专区| kizo精华| 国产伦理片在线播放av一区| 久久久久久久久久成人| 少妇高潮的动态图| 亚洲成人av在线免费| 日本-黄色视频高清免费观看| 两个人的视频大全免费| av播播在线观看一区| 欧美人与性动交α欧美精品济南到 | 欧美日韩一区二区视频在线观看视频在线| 女人精品久久久久毛片| 9色porny在线观看| 亚洲欧美清纯卡通| 晚上一个人看的免费电影| 国产在线一区二区三区精| 久热这里只有精品99| 亚洲精品美女久久av网站| 欧美+日韩+精品| 亚洲中文av在线| 久久女婷五月综合色啪小说| 精品国产露脸久久av麻豆| 日本黄大片高清| freevideosex欧美| 免费人妻精品一区二区三区视频| 国产一区二区三区av在线| 国产伦精品一区二区三区视频9| 最近最新中文字幕免费大全7| 黑人高潮一二区| 一级毛片电影观看| 久久韩国三级中文字幕| 亚洲av免费高清在线观看| 免费黄色在线免费观看| 内地一区二区视频在线| 99国产综合亚洲精品| 国产一区二区在线观看av| av卡一久久| 九九爱精品视频在线观看| 成人免费观看视频高清| 精品久久蜜臀av无| 亚洲精品成人av观看孕妇| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 久久久精品区二区三区| 久久久久久久久久久免费av| xxx大片免费视频| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 蜜桃久久精品国产亚洲av| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 久久国产亚洲av麻豆专区| 亚洲精品国产av蜜桃| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 最近手机中文字幕大全| 另类亚洲欧美激情| 成人国产麻豆网| 亚洲高清免费不卡视频| 国产淫语在线视频| 在线观看免费日韩欧美大片 | 国产欧美亚洲国产| 国产一区二区在线观看av| 插阴视频在线观看视频| 久久这里有精品视频免费| 亚洲精品乱码久久久久久按摩| 色哟哟·www| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 精品国产一区二区久久| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| 亚洲精品自拍成人| 一二三四中文在线观看免费高清| 亚洲av成人精品一区久久| 国产成人精品无人区| 男女边吃奶边做爰视频| 免费看av在线观看网站| 女性生殖器流出的白浆| 久久人人爽人人爽人人片va| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 精品熟女少妇av免费看| 国产午夜精品久久久久久一区二区三区| 九九久久精品国产亚洲av麻豆| 黑人高潮一二区| 男女高潮啪啪啪动态图| 男男h啪啪无遮挡| 水蜜桃什么品种好| 国产精品久久久久久久久免| 精品一区二区三卡| 欧美日韩国产mv在线观看视频| 国产亚洲精品久久久com| 久久99热6这里只有精品| 丝瓜视频免费看黄片| 夜夜爽夜夜爽视频| 国产成人精品在线电影| 国产黄色免费在线视频| 久久韩国三级中文字幕| 午夜免费观看性视频| 国产极品天堂在线| 精品少妇内射三级| h视频一区二区三区| 这个男人来自地球电影免费观看 | 一区二区三区乱码不卡18| 蜜桃国产av成人99| 少妇被粗大的猛进出69影院 | 在线观看一区二区三区激情| kizo精华| 国产免费福利视频在线观看| 少妇被粗大猛烈的视频| 欧美国产精品一级二级三级| 王馨瑶露胸无遮挡在线观看| 飞空精品影院首页| 欧美+日韩+精品| 久久免费观看电影| 一区二区三区四区激情视频| 日韩电影二区| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 亚洲精品成人av观看孕妇| 九草在线视频观看| 久久人人爽人人爽人人片va| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 精品国产国语对白av| 日韩视频在线欧美| 日韩伦理黄色片| 我要看黄色一级片免费的| 精品人妻在线不人妻| 国产午夜精品久久久久久一区二区三区| 久久国产亚洲av麻豆专区| 久久国产精品男人的天堂亚洲 | 久久午夜综合久久蜜桃| 丝袜喷水一区| 男人操女人黄网站| 中文乱码字字幕精品一区二区三区| 18+在线观看网站| 久久精品久久久久久噜噜老黄| 中文字幕精品免费在线观看视频 | 日产精品乱码卡一卡2卡三| 亚洲精品av麻豆狂野| 午夜影院在线不卡| 少妇被粗大猛烈的视频| 曰老女人黄片| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 国产深夜福利视频在线观看| 超色免费av| 大片免费播放器 马上看| 精品一品国产午夜福利视频| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 国产不卡av网站在线观看| 人人妻人人澡人人看| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频| 国产精品人妻久久久影院| 在线观看www视频免费| 国产av精品麻豆| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 免费观看无遮挡的男女| 丁香六月天网| 精品久久久久久久久亚洲| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一二三区在线看| 久久久久久久久久人人人人人人| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说 | 晚上一个人看的免费电影| 国产免费福利视频在线观看| 好男人视频免费观看在线| 赤兔流量卡办理| 国产一区二区在线观看av| 午夜激情福利司机影院| 在线天堂最新版资源| 制服人妻中文乱码| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 国产不卡av网站在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 国产视频首页在线观看| 亚洲第一av免费看| 99热国产这里只有精品6| 国产精品一区www在线观看| 成人亚洲精品一区在线观看| 在线观看美女被高潮喷水网站| 亚洲欧美色中文字幕在线| 国产精品无大码| 亚洲av免费高清在线观看| 国产在线视频一区二区| 在线观看国产h片| 在线观看人妻少妇| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 中文字幕人妻丝袜制服| 久久影院123| 亚洲国产毛片av蜜桃av| 精品久久久久久久久亚洲| a 毛片基地| 夫妻性生交免费视频一级片| xxxhd国产人妻xxx| 久久亚洲国产成人精品v| 桃花免费在线播放| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 国产在线免费精品| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 日韩av在线免费看完整版不卡| 国模一区二区三区四区视频| av有码第一页| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 亚洲精品乱久久久久久| 乱人伦中国视频| 久久99精品国语久久久| 51国产日韩欧美| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 欧美激情 高清一区二区三区| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 如日韩欧美国产精品一区二区三区 | 能在线免费看毛片的网站| 亚洲精品一二三| 精品久久蜜臀av无| 老女人水多毛片| 男人操女人黄网站| 天堂俺去俺来也www色官网| 黑丝袜美女国产一区| 黄色怎么调成土黄色| 考比视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 日日啪夜夜爽| 亚洲美女视频黄频| 中文字幕免费在线视频6| 91久久精品电影网| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 一级二级三级毛片免费看| 天天影视国产精品| 女人精品久久久久毛片| 日日啪夜夜爽| 极品人妻少妇av视频| 亚洲精品456在线播放app| 男女边摸边吃奶| 国产精品熟女久久久久浪| .国产精品久久| 天美传媒精品一区二区| 高清视频免费观看一区二区| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 日本vs欧美在线观看视频| 蜜桃国产av成人99| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| av电影中文网址| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 另类亚洲欧美激情| 男女国产视频网站| 欧美变态另类bdsm刘玥| 久久久精品94久久精品| 一区二区日韩欧美中文字幕 | 一级二级三级毛片免费看| 亚洲精品久久成人aⅴ小说 | 老女人水多毛片| 视频区图区小说| 啦啦啦啦在线视频资源| 日本与韩国留学比较| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 99久久精品国产国产毛片| 亚洲人成77777在线视频| av在线播放精品| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 久久av网站| 伦理电影免费视频| av视频免费观看在线观看| 久久人人爽人人爽人人片va| 国产淫语在线视频| 一级a做视频免费观看| 久久国产精品男人的天堂亚洲 | 大香蕉97超碰在线| 国产免费福利视频在线观看| 亚洲精品日本国产第一区| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 国产成人精品福利久久| 国产免费视频播放在线视频| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| av天堂久久9| 久热这里只有精品99| 少妇的逼好多水| 成人综合一区亚洲| 高清av免费在线| 夜夜爽夜夜爽视频| 免费久久久久久久精品成人欧美视频 | 青春草国产在线视频| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 男女免费视频国产| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 熟女人妻精品中文字幕| 亚洲一区二区三区欧美精品| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| a级毛色黄片| av在线观看视频网站免费| 99热全是精品| 国产精品偷伦视频观看了| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 亚洲五月色婷婷综合| 亚洲精品aⅴ在线观看| 五月天丁香电影| 高清黄色对白视频在线免费看| 国产精品久久久久成人av| 亚洲成人av在线免费| 男男h啪啪无遮挡| 成人免费观看视频高清| 日韩欧美精品免费久久| 在线天堂最新版资源| 一本久久精品| 天堂中文最新版在线下载| 99久久精品国产国产毛片| 高清午夜精品一区二区三区| 最近手机中文字幕大全| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 大陆偷拍与自拍| 一区二区三区免费毛片| 永久网站在线| 熟女人妻精品中文字幕| av在线观看视频网站免费| 99热全是精品| 国产午夜精品久久久久久一区二区三区| 国产无遮挡羞羞视频在线观看| 中文欧美无线码| 欧美亚洲日本最大视频资源| 亚洲欧美成人综合另类久久久| 黑人巨大精品欧美一区二区蜜桃 | 成人无遮挡网站| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 日韩熟女老妇一区二区性免费视频| 欧美少妇被猛烈插入视频| 91成人精品电影| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| videosex国产| 日韩强制内射视频| 免费黄频网站在线观看国产| 亚洲天堂av无毛| 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲 | 大码成人一级视频| 中文字幕免费在线视频6| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 久久久久久久亚洲中文字幕| 国产极品粉嫩免费观看在线 | 日韩一本色道免费dvd| 亚洲人与动物交配视频| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 日日撸夜夜添| 99久久精品一区二区三区| 日韩强制内射视频| 国产欧美亚洲国产| 一本久久精品| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区| 飞空精品影院首页| av免费在线看不卡| 在线观看免费视频网站a站| 成人影院久久| 国产欧美亚洲国产| 亚洲综合精品二区| 母亲3免费完整高清在线观看 | 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 国内精品宾馆在线| 国产极品天堂在线| 熟妇人妻不卡中文字幕| 国产精品人妻久久久影院| h视频一区二区三区| 久久午夜综合久久蜜桃| 五月开心婷婷网| 插阴视频在线观看视频| 男女啪啪激烈高潮av片| 91精品国产九色| 精品一区二区免费观看| 中文字幕久久专区| 亚洲精品av麻豆狂野| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 中文欧美无线码| 高清毛片免费看| 国产精品人妻久久久影院| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 国产精品久久久久久久电影| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 亚洲精品一二三| 亚洲国产精品专区欧美| 久久久久久久久久久丰满| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久久久| 黑人欧美特级aaaaaa片| 久久国产精品大桥未久av| a级毛片黄视频| av播播在线观看一区| 亚洲精品乱码久久久v下载方式| 免费不卡的大黄色大毛片视频在线观看| 一区二区日韩欧美中文字幕 | 国语对白做爰xxxⅹ性视频网站| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 人人妻人人澡人人看| 日本欧美视频一区| 久久综合国产亚洲精品| 亚洲人成77777在线视频| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| 国产深夜福利视频在线观看| 国产精品免费大片| 不卡视频在线观看欧美| 我要看黄色一级片免费的| 亚洲精品视频女| 久热久热在线精品观看| 成人国语在线视频| 91精品一卡2卡3卡4卡| 免费观看无遮挡的男女| 人妻夜夜爽99麻豆av| 久久精品久久久久久久性| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 九九在线视频观看精品| 亚洲五月色婷婷综合| 免费播放大片免费观看视频在线观看| 男人添女人高潮全过程视频| 久久久久久久精品精品| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 精品国产一区二区久久| 精品人妻在线不人妻| av在线播放精品| 天堂中文最新版在线下载| a级毛色黄片| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 91久久精品国产一区二区成人| 天堂中文最新版在线下载| 久久99热6这里只有精品| 日本vs欧美在线观看视频| av视频免费观看在线观看| 国产免费视频播放在线视频| 成人毛片a级毛片在线播放| 超碰97精品在线观看| 成人国语在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一国产av| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 少妇丰满av| 久久婷婷青草| 黄色毛片三级朝国网站| 22中文网久久字幕| 久久久久久久大尺度免费视频| 爱豆传媒免费全集在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧洲国产日韩| 80岁老熟妇乱子伦牲交| 热re99久久国产66热| 日韩一本色道免费dvd| 欧美成人午夜免费资源| 男女国产视频网站| 色网站视频免费| 日韩一区二区三区影片| 色婷婷av一区二区三区视频| 国产成人午夜福利电影在线观看| 精品卡一卡二卡四卡免费| 日韩av在线免费看完整版不卡| 丝瓜视频免费看黄片| 丰满乱子伦码专区| 色网站视频免费| 99热这里只有是精品在线观看| 成人国产麻豆网| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 丝袜美足系列| 成年女人在线观看亚洲视频| 2018国产大陆天天弄谢| 成人综合一区亚洲| 2018国产大陆天天弄谢| av专区在线播放| 国产亚洲最大av| 亚洲无线观看免费| 久久久久久久精品精品| 成人免费观看视频高清| 国语对白做爰xxxⅹ性视频网站| 男女免费视频国产| 亚洲人与动物交配视频| 在线观看免费日韩欧美大片 | 最新的欧美精品一区二区| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 丁香六月天网| 精品久久久久久久久av| 亚洲欧美成人精品一区二区| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 99热全是精品| 国产一区二区在线观看日韩| 97在线人人人人妻| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 久久久久久久精品精品| 久久国产精品大桥未久av| 国产精品嫩草影院av在线观看| 22中文网久久字幕| 18禁动态无遮挡网站| 黑人猛操日本美女一级片| 人体艺术视频欧美日本| 国产一级毛片在线| 有码 亚洲区| 国产男女超爽视频在线观看| 久久久精品区二区三区| 国产亚洲欧美精品永久| 亚洲成色77777| 性色av一级| 啦啦啦在线观看免费高清www| 国产精品一区二区三区四区免费观看| 在线免费观看不下载黄p国产| 亚洲av.av天堂| 欧美日本中文国产一区发布| 欧美xxxx性猛交bbbb| 色吧在线观看| 看免费成人av毛片| 一本久久精品| 亚洲一区二区三区欧美精品| 国产一级毛片在线| 午夜福利在线观看免费完整高清在| 中国国产av一级| 两个人免费观看高清视频| 久久ye,这里只有精品| 黄色一级大片看看| 亚洲四区av| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 桃花免费在线播放| 80岁老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 在线观看www视频免费| 26uuu在线亚洲综合色| 少妇精品久久久久久久|