• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Erosion research of CX-2002U carbon composites under low-temperature high-flux hydrogen plasma

    2021-02-27 09:17:16HengxinGUO郭恒鑫ZongbiaoYE葉宗標(biāo)BizhouSHEN沈必舟JianjunWEI韋建軍BoWANG王博YuchuanLUO羅玉川KunZHANG張坤FujunGOU芶富均JianjunCHEN陳建軍andBoCHEN陳波
    Plasma Science and Technology 2021年2期
    關(guān)鍵詞:玉川陳建軍張坤

    Hengxin GUO (郭恒鑫), Zongbiao YE (葉宗標(biāo)), Bizhou SHEN (沈必舟),Jianjun WEI (韋建軍),?, Bo WANG (王博), Yuchuan LUO (羅玉川), Kun ZHANG (張坤), Fujun GOU (芶富均), Jianjun CHEN (陳建軍) and Bo CHEN (陳波)

    1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, People’s Republic of China

    2 Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,People’s Republic of China

    Abstract The net erosion yield of CX-2002U carbon fiber composites under high-flux low-temperature hydrogen plasma is investigated using a linear plasma device.It is found that the net erosion yield decreases rapidly first, and then tends to saturate with the increase of hydrogen–plasma flux.When the temperature of the sample eroded by hydrogen plasma is above 300°C, the hybridization of electrons outside the carbon atom would change.Then the carbon atoms combine with hydrogen atoms to form massive spherical nanoparticles of hydrocarbon compounds and deposit on the surface at the flux condition of 1.77×1022 m?2·s?1.Under the irradiation of hydrogen plasma loaded with negative bias,the surface morphology of the matrix carbon is changed dramatically.Moreover,the energy dependence of mass loss does not increase in proportion to the increase of hydrogen–plasma energy, but reaches a peak around 20 V negative bias voltage.Based on the analysis of different samples, it can be concluded that the enhancement of energy could make a contribution to chemical erosion and enlarge the size of pores existing on the surface.

    Keywords: carbon fiber composites, hydrogen plasma, chemical erosion, redeposition,nanoparticle

    1.Introduction

    As an important part of tokamak devices, the materials of divertors not only require a highly effective heat-treatment function and a low-level erosion property, but also must bear heat load of about 10 MW·m?2[1, 2].Because of the excellent resistance to thermal shock, graphite is considered as an optional material for divertor-condition plasma.Due to the urgent need for the construction of HL-2M devices,a new generation of tokamak device, the selection of its divertor materials has also been put on the agenda.Compared to graphite materials, the thermal conductivity, thermal expansion, and resistance to heat shock of carbon fiber composites(CFCs)are better.Further,the chemical erosion yield of CFC containing polyacrylonitrile fibers is lower than that of pure graphite materials under the irradiation of high-energy hydrogen plasma [3].Hence, the armor material of the HL-2M divertor plate intends to adopt carbon fiber composites[4].CX-2002U composite is a two-dimensional felt-type CFC which consists of resin and polyacrylonitrile fiber.The resin carbon,acting as a base material,takes 90%of the composite and the polyacrylonitrile fiber, taking 10%, plays a role in reinforcing the composite.With its uniform thermal conductivity and mechanical properties, it has become an alternative material for HL-2M devices [5].

    Figure 1.Device diagram of high-flux hydrogen plasma for irradiating sample.

    Nevertheless, carbon fiber composites react with hydrogen in the irradiation of hydrogen plasma and could be sputtered when the hydrogen plasma energy exceeds its sputtering threshold.Thus, the erosion, including chemical erosion and physical sputtering caused by hydrogen plasma,should be taken into consideration before it is used in the divertor target.In previous works, the investigation on the erosion of CFC made by K Nakamuraet alunder high heat load revealed that the weight loss of CFCs decreases as the thermal conductivity increases at high bulk temperatures[6, 7].The investigatory result of sputtering yields under the irradiation of high-energy plasma [8, 9] indicated that the sputtering yields of CFCs increase with the energy in the range of 50–100 eV.Moreover, F.Scaffidi-Argentinaet alfound that the eroded carbon would redeposit back on the irradiated surface with the irradiation of low-energy hydrogen plasma through simulating the plasma disruption [10, 11].Meanwhile, reducing the retention of hydrogen in carbon materials[12,13]under the irradiation of hydrogen plasma is an unsolved issue.In addition, the formation of hydrocarbon compounds in the process whereby hydrogen plasma erodes carbon materials is still under exploration,with much interest by many scientists [14–16].

    Although much work has been done on the interaction between hydrogen plasma and CFC composites, there is relatively little work concerning the erosion of carbon fiber composites with high-flux hydrogen plasma at low temperatures and analyzing the underlying dynamic process and mechanism.Therefore, it is quite necessary to investigate the morphological and structural development of CX-2002U composites on the condition of hydrogen plasma before the material is used in the HL-2M device.To address these problems,CX-2002U composites irradiated by different highflux hydrogen plasmas have been investigated in this work,with a focus on the effect of different-energy hydrogen plasmas on the samples.At the same time, our work can provide a reference as to whether CX-2002U composite materials can be applicable to HL-2M divertors.

    2.Experiment

    The CX-2002U carbon fiber composite produced by Tokyo Tanso Kogyo was cut into square blocks(1.5 cm×1.5 cm ×0.5 cm).Since samples were not protected during the process of cutting and transportation, there were many impurities,such as oil stains, debris, and dust on their surfaces.In order to remove these impurities, each sample, in turn, was ultrasonically cleaned with volatile acetone, alcohol, and deionized water for 20 min.Before the sample was irradiated by hydrogen plasma, it would stay in the blast oven with air inside at 50°C for seven hours to remove residual water for error reduction when weighing the samples.

    Hydrogen plasma is generated by a three-cathode cascaded direct current (DC) discharge in the experiment.According to the research on plasma characteristics [17], the density, energy, and the size of plasma beam spots could be adjusted by DC power supply (90–240 A), magnetic field(0–0.45 T),and gas flux(0–5000 sccm),respectively,into the chamber.As shown in figure 1, the tungsten needle rapidly rises to high temperatures with high voltages across theneedle, and emits electrons during the process of discharge.Then the argon introduced by vent pipe is ionized firstly.The ionized argon ions and electrons will increase the probability of hydrogen ionization by ramping up the number of collisions with hydrogen [18, 19].When the external absorbed energy of the hydrogen atom is up to 13.6 eV, the hydrogen gas will be ionized.Then the hydrogen plasma will be in Larmor motion along the direction of the magnetic field due to the combined action of Lorentz force and initial velocity.The flux of hydrogen plasma could be detected by Langmuir probe, and relevant experimental parameters are shown in table 1.

    Table 1.Experimental conditions corresponding to different-flux hydrogen plasmas.

    Each sample was placed on a substrate that was 0.39 m away from the plasma source.Furthermore, the chemical erosion of the CX-2002U composite caused by hydrogen plasma was studied based on the preceding experimental parameters.Furthermore, a negative electric potential difference by bias power supply was applied across the chassis to analyze the energy dependence of the erosion, and the microstructure of each irradiated sample was observed through scanning electron microscopy (SEM).

    3.Experimental results and discussion

    3.1.Effect of flux on erosion

    The energy of various particles in hydrogen plasma detected by Langmuir probe in the experiment is about 1 eV,which is far below the physical sputtering threshold of carbon-based materials (~35 eV).In the meantime, the chemical erosion caused by hydrogen plasma is a dominated process as compared with physical sputtering.Therefore, the model established by J Rothet al[20–22] shown in figure 2 is used to explain the chemical erosion process in this work.The net erosion yield of the irradiated sample is closely related to the mass loss, irradiated time, and hydrogen–plasma flux.The expression [23] is as follows:

    whereYnetis the net erosion yield,Yproductionis the net erosion production,NAis the Avogadro constant,Δmis the mass loss of each sample,Mcis the molar mass of carbon,Φ is the flux of the hydrogen plasma beam, andtis the irradiated time.Therefore, the net erosion yield is proportional to the net erosion production with the same time length and same flux of irradiation.

    Figure 2.Simple model of chemical erosion described by J Roth et al.

    Figure 3.Variation trend of the net erosion yield, temperature, and net erosion production with increasing flux of hydrogen plasma.

    With the transformation of interactional-particle amount,the temperature of the sample would increase with plasma flux.Therefore, a set of thermocouples is placed on the back of the substrate to detect the temperature of different samples in experiments.The variation trend of temperature and the net erosion yield with the increase in plasma flux has been shown in figure 3.The temperatures of samples are 130°C, 300°C,303°C, and 555°C, respectively.When the flux of hydrogen plasma increases from 6.32×1020to 2.18×1021m?2·s?1,the net erosion yield of the sample quickly decreases from 1.43×10?3atoms/ion to 2.3×10?5atoms/ion.Then the net erosion yield stays around 0.4×10?5atoms/ion when the flux is located between 2.18×1021and 1.77×1022m?2·s?1.It has been revealed that the net erosion yield of the sample is close to saturation when hydrogen plasma flux approaches 1.77×1022m?2·s?1.

    Figure 4.SEM images of (a) original sample, (b)–(e) sample irradiated by different-flux hydrogen plasmas (6.32×1020, 2.18×1021,1.77×1022, and 1.48×1023 m?2·s?1, respectively).

    Figure 5.Chemical erosion on sample’s surface.

    In terms of carbon-based materials,the erosion caused by hydrogen plasma would generate·CH3,which could combine with·H in hydrogen plasma to form CH4and be released from the surface, when the temperature is between 100°C and 300°C [21], as shown in figure 5.It could result in the increase of the net erosion yield.Thus, the value of the net erosion yield at 130°C gets to maximum, though the flux of hydrogen plasma is minimum.When the temperature reaches 300°C, the bond cleavage would occur to the outer shell electrons of the carbon atom in the a-C: H structure and the electrons would be re-hybridized into the sp2configuration and form a carbon–carbon double bond with another carbon atom.The simple model of chemical erosion shown in figure 2 indicates that it would lead to the formation of olefinic hydrocarbons on the surface of the sample.Hence, the net erosion yield would dramatically decrease with the flux of hydrogen plasma increasing, then tend toward saturation,which is consistent with the chemical erosion of graphite[20, 22, 24].Besides, the erosion efficiency increases exponentially with the substrate temperature [15],which is shown in figure 3, where the net erosion production continues to increase with temperature when temperature is above 300°C.As the net erosion yield tends toward saturation, it could be concluded that both the yield of redeposition and the erosion of carbon would be amplified by the increase in plasma flux,and this could keep a dynamic balance [11].

    In order to deeply demonstrate the aforementioned phenomena caused by hydrogen plasma,the surface morphology of each sample is analyzed by SEM, as shown in figure 4.Figure 4(a) is a set of SEM images of the original sample in which the obvious scratches caused by mechanical cutting can be clearly seen.After hydrogen-plasma irradiation with different fluxes for 30 min, the scratches gradually disappear,and then the polyacrylonitrile fibers become much clearer.Since CH4is produced at temperatures no higher than 300°C,the SEM images show only that the fiber is broken down and detached.Moreover, the microstructure of the sample shown in figure 4(d) changes a lot while the temperature is higher than 300°C.It is scattered with spherical nanoparticles on the surface.As shown in figure 6,the energy dispersive spectrum of these particles show that it is mainly composed of carbon,which means that these particles should be redeposited carbon dust.Since spherical surface has the lowest potential energy,the C–C bond combines with the hydrogen atom to form spherical olefin compound in the gas phase and deposits on the surface of the sample[25–28],resulting in the decrease of the net erosion yield at 303°C.Moreover, the change in the way of electrostatic bonding would absorb a large amount of heat during irradiation[29],which leads to the stabilization of temperature at the flux of 1.77×1022m?2·s?1.Combined with the foregoing conclusion that the net erosion yield tends to saturate under this condition, this demonstrates that the reaction of hydrogen plasma and carbon is a dynamic process of erosion-deposition equilibrium when the temperature is higher than 300°C.What is more, as the flux increases to 1.48×1023m?2·s?1, it is easy to see that the deposited particles are concentrated in gully regions on the surface in figure 4(e).In addition,there are obvious erosion signs on the surface.Therefore, it could be predicted that the net erosion yield is still saturated, and the erosion caused by hydrogen plasma might be very dramatic when the hydrogen-plasma flux is above 1023m?2·s?1.

    In addition, the hydrogen-plasma irradiation would change the structural characteristics of the sample surface[30,31].As shown in figure 7,the peak position of the(002)crystal plane shifts to the right by about 0.15°as compared to the original sample.Further, the intensity of the diffraction peak is much reduced.This indicates that the crystallinity of the sample is weakened and the lattice structure of the sample would be distorted at this time.As described previously, a new compound, olefin hydrocarbons, would form in the gas phase and deposit on the sample’s surface during the erosion of carbon materials by hydrogen plasma.The new deposited hydrocarbon might finally affect the x-ray diffraction pattern result on the sample [32].Moreover, at the beginning of irradiation, the temperature difference between the surface and the inside of the sample might change the residual stress of the sample and cause the distortion of crystal lattice [33].

    3.2.Effect of energy on erosion

    To explore the influence of plasma energy on the surface morphology of samples, negative bias is applied to the back of the substrate to adjust the energy when the flux of the hydrogen plasma is 1.48×1023m?2·s?1.Firstly, the impact of the plasma fluence on the sample should be studied with the same energy.When the sample will be irradiated for 10 min by hydrogen plasma with 20 V negative bias applied,as shown in figure 8, the surface of polyacrylonitrile fiber would form a villus-like structure and substantial carbon dust is attached on the top of each spicule structure.As compared to polyacrylonitrile fiber, the pore size of matrix carbon is larger.This indicates that the reinforcing fiber is more resistant to hydrogen erosion than resin matrix carbon.While the irradiation time is extended to 30 min,it would be easy to find that the pore size of the sample shown in figure 9(b)becomes larger.The structure is more stab-like, which means that the erosion caused by hydrogen plasma is more serious.

    Figure 6.EDS spectrum of deposited particles.

    Figure 7.X-ray diffraction patterns of samples (a) before and (b)after exposure to hydrogen plasma.

    Then the influence of plasma energy below sputtering threshold on a sample with the same fluence is put under investigation.As shown in figure 9(a), while a 10 V negative bias voltage is applied across the substrate, the amount of carbon dust deposited on the surface decreases greatly, as compared with figure 4(e).With the negative bias approaching 20 V,substantial pores come to appear on the surface,and some cluster particles are attached to the surface.These microscopic pores form a stab-like structure layer.This structure could increase the contact area with hydrogen plasma to enhance the erosion caused by hydrogen plasma.When the negative bias voltage is about 30 V, the size of pores becomes larger than those shown in figure 9(b) and reaches the micron level.Some carbon dust eroded by hydrogen plasma adheres to the inner wall of cracks and pores.Therefore, the change in the morphology of samples becomes more obvious with the increase in the plasma energy.

    Figure 8.SEM images with different magnifications: (a) polyacrylonitrile fiber, (b) resin carbon irradiated by hydrogen plasma with 20 negative bias and flux of 1.48×1023 m?2·s?1 for 10 min.

    However, the change of the samples’ mass loss is obviously different from the trend of morphology change.Figure 10 reveals that the mass loss of the irradiated sample without bias voltage is higher than that of the irradiated sample with 10 and 30 V negative bias voltage,and the value reaches the maximum at 20 V negative bias voltage.The discussion in section 3.1 shows that the chemical erosion and the redeposition of carbon reach a dynamic equilibrium when the flux is 1.48×1023m?2·s?1because hydrogen plasma that is accelerated by the externally applied negative bias voltage can increase the probability of methane ionization,which would result in the formation of deposited carbon particles [34].Moreover, the deposition could be enhanced with the increase of negative bias[35].Therefore,the process might be the cause of the decrease of mass loss with negative bias increasing.The result is different from previous results[21, 36], namely that the mass loss does not increase monotonously with the growth of hydrogen plasma energy,whereas it is consistent with the conclusion described by Q Zhaoet althat the peak value of mass loss appears around at 20 V negative bias voltage [37].The mass loss tendency under different bias voltages is irregular but reproducible,but its inside mechanism is still not clear right now and needs further investigation in the next-step experiment.

    Figure 9.(a)–(c) SEM images with different magnifications.The sample is irradiated by hydrogen plasma beam with 10, 20, and 30 V negative-bias voltage, respectively, applied across for 30 min.

    Figure 10.Mass loss of the sample irradiated by hydrogen plasma of different energy.

    4.Conclusions

    Carbon fiber composite materials have become a potential candidate for divertor targets due to superior thermal shock resistance, high melting point, and high thermal conductivity.However, chemical erosion induced by high-flux and low-temperature hydrogen plasma would shorten the lifetime of carbon materials, so this needs detailed research before these materials are applied as divertor components.In this paper, the chemical erosion of CX-2002U composite caused by different-flux hydrogen plasma is explored by simulating the plasma condition of the divertor.In addition,the chemical erosion of the material caused by differentenergy hydrogen plasmas is researched by adding negative bias to the substrate.The conclusions can be summarized as follows:

    (1) The net erosion yield decreases rapidly with the increase of hydrogen plasma flux.It approaches saturation when the flux is close to 1.77×1022m?2·s?1,which means the chemical erosion and redeposition have reached a balance,while the net erosion production of the sample continues to increase under the irradiation of higher-flux hydrogen plasma.Although the phenomena would change surface morphology, the basic structure of each sample has not transformed.

    (2) The changing tendency of mass loss does not increase monotonically as the energy of hydrogen plasma increases, but reaches a peak value when substrate is added to 20 V negative bias.It would form a nanometer-size burr-like layer on the surface at this time, which might facilitate the erosion caused by hydrogen plasma.The nanostructure could have more potential applications in battery anode materials, ion transportation,and mass transfer of particulate materials with the characteristic of high specific surface area.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (No.11875198), Young Scientists Fund of National Natural Science Foundation of China (No.11905151), Fundamental Research Funds for the Central Universities of China (No.2019SCU12072), and the China Postdoctoral Science Foundation (No.2019M663487).

    猜你喜歡
    玉川陳建軍張坤
    Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
    城破前
    讀者(2020年21期)2020-10-28 08:47:30
    TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES ?
    張坤 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:50:58
    張大千課徒稿—人物(二)
    老年教育(2018年1期)2018-01-24 05:46:16
    復(fù)變函數(shù)洛朗級數(shù)的展開方法淺探
    An Interpretation of For Whom the Bell Tolls from the perspective of narratology
    贈兒房產(chǎn)卻被掃地出門,老人如何維護(hù)居住權(quán)
    新天地(2016年3期)2016-05-30 10:48:04
    巧妙安排波瀾起伏
    玉川堂:錘起銅器200年
    中華手工(2014年9期)2015-03-17 03:03:20
    国产成人免费无遮挡视频| 国产男人的电影天堂91| 99精品久久久久人妻精品| 永久免费av网站大全| 精品少妇黑人巨大在线播放| 久久天堂一区二区三区四区| 另类亚洲欧美激情| 国产不卡av网站在线观看| 在线观看免费视频网站a站| 免费av中文字幕在线| 日韩大片免费观看网站| av又黄又爽大尺度在线免费看| 狂野欧美激情性xxxx| 狂野欧美激情性xxxx| 日韩中文字幕视频在线看片| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 在线观看免费高清a一片| 91精品伊人久久大香线蕉| 我要看黄色一级片免费的| 老司机亚洲免费影院| 久热爱精品视频在线9| 婷婷成人精品国产| 悠悠久久av| 97在线人人人人妻| 日韩精品免费视频一区二区三区| 无遮挡黄片免费观看| av欧美777| 大香蕉久久网| 国产精品av久久久久免费| 大型av网站在线播放| 18禁黄网站禁片午夜丰满| 国产男女内射视频| 亚洲精品国产一区二区精华液| 国产精品欧美亚洲77777| 日韩中文字幕视频在线看片| 亚洲精品乱久久久久久| 各种免费的搞黄视频| 亚洲伊人久久精品综合| 国产精品人妻久久久影院| 国产激情久久老熟女| 亚洲国产精品一区三区| 国产精品一区二区免费欧美 | 电影成人av| 交换朋友夫妻互换小说| 最黄视频免费看| 精品一区在线观看国产| 精品第一国产精品| 久久 成人 亚洲| 久久久久网色| 亚洲精品中文字幕在线视频| 国产野战对白在线观看| 国产又色又爽无遮挡免| 免费观看人在逋| 国产成人av教育| 男女高潮啪啪啪动态图| 免费在线观看日本一区| 精品卡一卡二卡四卡免费| 一区二区三区激情视频| 国产在线一区二区三区精| 青春草视频在线免费观看| 欧美97在线视频| 十八禁网站网址无遮挡| 免费观看人在逋| 欧美日韩福利视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 2021少妇久久久久久久久久久| 亚洲三区欧美一区| 精品亚洲成国产av| 人人妻人人爽人人添夜夜欢视频| 久久女婷五月综合色啪小说| 亚洲精品久久久久久婷婷小说| 午夜久久久在线观看| 久久久久久久精品精品| 国语对白做爰xxxⅹ性视频网站| 亚洲精品成人av观看孕妇| 男人舔女人的私密视频| 在线观看免费视频网站a站| 19禁男女啪啪无遮挡网站| 叶爱在线成人免费视频播放| 久久中文字幕一级| 亚洲欧美精品自产自拍| 1024视频免费在线观看| 国产成人av教育| 操美女的视频在线观看| 精品欧美一区二区三区在线| 男女国产视频网站| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 精品视频人人做人人爽| 女人久久www免费人成看片| 久久人妻熟女aⅴ| 亚洲人成电影观看| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 少妇猛男粗大的猛烈进出视频| 精品福利观看| 久久久久久久国产电影| 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费| 嫁个100分男人电影在线观看 | 黄色毛片三级朝国网站| 欧美 亚洲 国产 日韩一| 久久久久久免费高清国产稀缺| 亚洲伊人色综图| 久久狼人影院| 久久久精品免费免费高清| 国产成人一区二区在线| 纵有疾风起免费观看全集完整版| 欧美亚洲 丝袜 人妻 在线| 一级毛片 在线播放| 中文字幕色久视频| 欧美久久黑人一区二区| 久久精品国产综合久久久| 国产成人一区二区在线| 欧美日韩综合久久久久久| 日韩人妻精品一区2区三区| 国产熟女午夜一区二区三区| 国产国语露脸激情在线看| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 啦啦啦在线免费观看视频4| 老司机深夜福利视频在线观看 | 男女国产视频网站| 午夜日韩欧美国产| 日韩 亚洲 欧美在线| 91字幕亚洲| 国产精品香港三级国产av潘金莲 | 观看av在线不卡| 少妇人妻久久综合中文| 两个人看的免费小视频| 大片免费播放器 马上看| 丝袜脚勾引网站| 飞空精品影院首页| 国产免费又黄又爽又色| 成人免费观看视频高清| 欧美精品一区二区大全| 波多野结衣一区麻豆| 国产人伦9x9x在线观看| 色播在线永久视频| 亚洲国产精品成人久久小说| 婷婷色av中文字幕| av欧美777| 永久免费av网站大全| 欧美黄色淫秽网站| 日本av手机在线免费观看| 中文乱码字字幕精品一区二区三区| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 国产精品二区激情视频| 久久这里只有精品19| 夜夜骑夜夜射夜夜干| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 欧美久久黑人一区二区| 午夜免费成人在线视频| 只有这里有精品99| 又黄又粗又硬又大视频| 蜜桃在线观看..| 欧美日韩福利视频一区二区| 男人爽女人下面视频在线观看| 亚洲人成网站在线观看播放| 免费不卡黄色视频| 亚洲精品在线美女| 亚洲国产精品一区二区三区在线| 日日夜夜操网爽| 午夜福利视频在线观看免费| 免费人妻精品一区二区三区视频| av电影中文网址| av视频免费观看在线观看| 成人手机av| 精品高清国产在线一区| 国产91精品成人一区二区三区 | 电影成人av| 国产99久久九九免费精品| 男女午夜视频在线观看| 日韩人妻精品一区2区三区| 啦啦啦中文免费视频观看日本| 在线观看人妻少妇| 青草久久国产| 日韩免费高清中文字幕av| 成人午夜精彩视频在线观看| 国产精品秋霞免费鲁丝片| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| 久久久久精品人妻al黑| 国产男女内射视频| 十八禁高潮呻吟视频| a级毛片在线看网站| 高潮久久久久久久久久久不卡| av天堂在线播放| 欧美精品人与动牲交sv欧美| 亚洲中文日韩欧美视频| 成年动漫av网址| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看 | 国产精品香港三级国产av潘金莲 | 亚洲av在线观看美女高潮| 在线看a的网站| 色视频在线一区二区三区| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 人妻人人澡人人爽人人| 久久久欧美国产精品| 亚洲av成人精品一二三区| 亚洲欧美中文字幕日韩二区| 叶爱在线成人免费视频播放| 国产av国产精品国产| 午夜影院在线不卡| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 国产精品一区二区在线观看99| 日韩av免费高清视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 91精品国产国语对白视频| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 精品国产国语对白av| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 又黄又粗又硬又大视频| 视频区欧美日本亚洲| 黑人猛操日本美女一级片| 自线自在国产av| 亚洲激情五月婷婷啪啪| 欧美性长视频在线观看| 免费高清在线观看日韩| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 亚洲精品在线美女| 1024视频免费在线观看| 亚洲一区中文字幕在线| 一级毛片黄色毛片免费观看视频| av在线播放精品| 久久精品熟女亚洲av麻豆精品| 欧美日韩福利视频一区二区| 在线观看www视频免费| 亚洲欧美精品自产自拍| 9191精品国产免费久久| 精品人妻熟女毛片av久久网站| 可以免费在线观看a视频的电影网站| 999精品在线视频| 交换朋友夫妻互换小说| 欧美乱码精品一区二区三区| 午夜福利,免费看| 成人三级做爰电影| 一级毛片我不卡| h视频一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| cao死你这个sao货| 我要看黄色一级片免费的| 亚洲国产精品999| 免费高清在线观看视频在线观看| 国产成人一区二区三区免费视频网站 | 一区在线观看完整版| 高潮久久久久久久久久久不卡| 亚洲伊人色综图| 狠狠婷婷综合久久久久久88av| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 深夜精品福利| 一级毛片 在线播放| 国产亚洲一区二区精品| 国产男女超爽视频在线观看| 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 美女大奶头黄色视频| 国产精品一区二区免费欧美 | 成人午夜精彩视频在线观看| 观看av在线不卡| 五月天丁香电影| 热99久久久久精品小说推荐| 日本wwww免费看| 在线 av 中文字幕| 亚洲成av片中文字幕在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情av网站| 一二三四社区在线视频社区8| 麻豆国产av国片精品| netflix在线观看网站| av视频免费观看在线观看| 精品一区二区三区四区五区乱码 | 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 欧美性长视频在线观看| 午夜福利,免费看| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 深夜精品福利| 国产一区二区三区av在线| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 国产成人影院久久av| 亚洲av片天天在线观看| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 欧美日韩黄片免| 99国产综合亚洲精品| 午夜久久久在线观看| 欧美性长视频在线观看| 国产精品国产av在线观看| 国产福利在线免费观看视频| 欧美另类一区| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 亚洲国产中文字幕在线视频| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 激情视频va一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲五月婷婷丁香| 日本av手机在线免费观看| 日本五十路高清| 一级,二级,三级黄色视频| 国产成人a∨麻豆精品| 久久天堂一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 黄色视频不卡| 亚洲综合色网址| 国产亚洲一区二区精品| 成人亚洲精品一区在线观看| 777米奇影视久久| 美女视频免费永久观看网站| 日韩,欧美,国产一区二区三区| 日本wwww免费看| 亚洲欧美清纯卡通| 亚洲欧美色中文字幕在线| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 免费黄频网站在线观看国产| 丝袜人妻中文字幕| 亚洲精品久久午夜乱码| 一个人免费看片子| 亚洲一码二码三码区别大吗| 国产精品一区二区免费欧美 | 另类精品久久| 日韩,欧美,国产一区二区三区| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 久久久久久人人人人人| 亚洲av在线观看美女高潮| 叶爱在线成人免费视频播放| 亚洲熟女精品中文字幕| 又黄又粗又硬又大视频| 免费在线观看完整版高清| av福利片在线| 下体分泌物呈黄色| 久久狼人影院| 色精品久久人妻99蜜桃| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 99国产精品一区二区蜜桃av | 亚洲国产精品999| 久久久久精品国产欧美久久久 | 国产亚洲欧美在线一区二区| 久久 成人 亚洲| 国产精品.久久久| 亚洲,一卡二卡三卡| 十八禁网站网址无遮挡| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 美国免费a级毛片| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 少妇裸体淫交视频免费看高清 | 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 成年动漫av网址| 一区二区三区精品91| 国产1区2区3区精品| 亚洲专区中文字幕在线| 国产亚洲精品久久久久5区| 欧美另类一区| 老司机靠b影院| 国产在线免费精品| 精品欧美一区二区三区在线| 国产免费一区二区三区四区乱码| 亚洲 国产 在线| 国产黄色免费在线视频| 国精品久久久久久国模美| 久久久久久久国产电影| 黄频高清免费视频| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 日本av免费视频播放| 亚洲国产精品成人久久小说| 午夜福利在线免费观看网站| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 国产精品一国产av| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| 久久精品久久久久久久性| 欧美精品一区二区大全| 午夜91福利影院| 亚洲男人天堂网一区| 青青草视频在线视频观看| 九草在线视频观看| 一本久久精品| 久久久亚洲精品成人影院| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 一本综合久久免费| 久久人妻福利社区极品人妻图片 | 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一出视频| 伊人亚洲综合成人网| 国产在视频线精品| 国产亚洲欧美在线一区二区| 丰满少妇做爰视频| 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 日韩免费高清中文字幕av| cao死你这个sao货| 久久精品久久久久久久性| 在线观看免费午夜福利视频| 免费黄频网站在线观看国产| 欧美另类一区| 亚洲国产日韩一区二区| av电影中文网址| 交换朋友夫妻互换小说| 亚洲国产av新网站| av网站在线播放免费| 亚洲熟女毛片儿| 久久人妻福利社区极品人妻图片 | 高清欧美精品videossex| 亚洲成av片中文字幕在线观看| 香蕉丝袜av| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| av欧美777| 免费在线观看黄色视频的| 国产亚洲av高清不卡| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 一个人免费看片子| 亚洲七黄色美女视频| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线| 成年美女黄网站色视频大全免费| 亚洲国产精品一区三区| 国产野战对白在线观看| 麻豆国产av国片精品| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| 午夜免费鲁丝| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频 | 一本色道久久久久久精品综合| 无限看片的www在线观看| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 久久国产精品影院| 天天添夜夜摸| 成年女人毛片免费观看观看9 | 亚洲,欧美,日韩| 国产成人一区二区三区免费视频网站 | 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 在线av久久热| 亚洲伊人色综图| 欧美日韩一级在线毛片| 中文字幕制服av| 操美女的视频在线观看| 久久久欧美国产精品| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 国产亚洲av高清不卡| 操出白浆在线播放| 国产免费又黄又爽又色| 久久人人爽av亚洲精品天堂| 成人亚洲欧美一区二区av| 老司机在亚洲福利影院| 精品国产乱码久久久久久小说| 天天影视国产精品| 两个人看的免费小视频| 色网站视频免费| 97精品久久久久久久久久精品| 日韩伦理黄色片| 日韩视频在线欧美| 久久99热这里只频精品6学生| 狠狠婷婷综合久久久久久88av| 国产视频一区二区在线看| 少妇人妻 视频| 美女中出高潮动态图| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人| 热re99久久精品国产66热6| 青草久久国产| 下体分泌物呈黄色| 美女国产高潮福利片在线看| 九草在线视频观看| 久久国产精品人妻蜜桃| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 日韩制服骚丝袜av| 婷婷成人精品国产| 国产精品国产三级专区第一集| 亚洲国产精品成人久久小说| 美女脱内裤让男人舔精品视频| 精品国产国语对白av| 亚洲成色77777| 精品高清国产在线一区| 免费高清在线观看日韩| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 9热在线视频观看99| 人成视频在线观看免费观看| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 一边摸一边抽搐一进一出视频| 欧美在线一区亚洲| 国产精品熟女久久久久浪| 亚洲成av片中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁高潮呻吟视频| e午夜精品久久久久久久| 国产深夜福利视频在线观看| av又黄又爽大尺度在线免费看| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线进入| 9热在线视频观看99| 国产国语露脸激情在线看| 欧美变态另类bdsm刘玥| av国产久精品久网站免费入址| 欧美精品人与动牲交sv欧美| 999久久久国产精品视频| 亚洲欧洲日产国产| 亚洲av电影在线进入| 亚洲三区欧美一区| 国产成人欧美在线观看 | 亚洲精品乱久久久久久| 99热全是精品| 日韩视频在线欧美| 精品久久蜜臀av无| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 91成人精品电影| 国产成人欧美在线观看 | 亚洲成人国产一区在线观看 | 精品少妇黑人巨大在线播放| 日日夜夜操网爽| 人体艺术视频欧美日本| 免费在线观看视频国产中文字幕亚洲 | 女人高潮潮喷娇喘18禁视频| 日韩大片免费观看网站| 美女中出高潮动态图| 中文字幕最新亚洲高清| 欧美黑人欧美精品刺激| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费| 久久久久网色| av福利片在线| kizo精华| 又黄又粗又硬又大视频| 日韩伦理黄色片| 欧美变态另类bdsm刘玥| 中文字幕精品免费在线观看视频| 一区在线观看完整版| 国产成人91sexporn| 亚洲精品一二三| 在现免费观看毛片| 亚洲人成电影免费在线| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 制服诱惑二区| 精品人妻在线不人妻| 国产在视频线精品| 99精品久久久久人妻精品| 久久毛片免费看一区二区三区| 我要看黄色一级片免费的| 久久精品久久久久久噜噜老黄| 另类亚洲欧美激情| av不卡在线播放| 国产成人一区二区三区免费视频网站 | 精品福利永久在线观看| 亚洲专区中文字幕在线| 两个人看的免费小视频| 亚洲黑人精品在线| 成人国产一区最新在线观看 | 成在线人永久免费视频|