• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna

    2022-01-23 06:36:28ShangtongJia賈尚曈ZhiLi李智andJianjunChen陳建軍
    Chinese Physics B 2022年1期
    關鍵詞:李智陳建軍

    Shangtong Jia(賈尚曈) Zhi Li(李智) and Jianjun Chen(陳建軍)

    1State Key Laboratory for Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China

    2Department of Physics and Applied Optics Beijing Area Major Laboratory,Beijing Normal University,Beijing 100875,China

    3Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    4Frontiers Science Center for Nano-optoelectronics&Collaborative Innovation Center of Quantum Matter,Peking University,Beijing 100871,China

    5Peking University Yangtze Delta Institute of Optoelectronics,Nantong 226010,China

    Keywords: single-photon emitters,brightness,hybrid nanostructures,ultrathin metallic antenna,quasi-bound state in the continuum(BIC)

    1. Introduction

    Single-photon emitters (SPEs) are the fundamental components in many quantum applications,[1]such as quantum key distributions,[2,3]quantum circuits,[4,5]boson sampling,[6,7]and quantum precision measurement.[8]For most quantum applications, a high brightness of SPEs with sufficient emission photons is essential.[1,9]By enlarging Purcell enhancements (Purcell factor Fp) as well as increasing quantum yields(QY)and collection efficiencies(CE)of SPEs,the brightness of SPEs could be increased.[9-13]In the past decades, enormous efforts were made to increase the brightness of SPEs. For example, by designing dielectric slot waveguides[14]or dielectric nanoparticles,[15]the Purcell factors were approximately Fp=300.0[14]and Fp=62.0,[15]respectively. By employing metallic bowtie antennas,[16]dimer antennas,[17]plasmonic nano-focusing cavities,[18]and a plasmonic waveguide-slit structure,[19]the Purcell factors were predicted to be from 1.5×103to 1.7×105[19]due to subwavelength field confinements of surface plasmons (SPs).However, the quantum yields in metallic nanostructures are usual very small (< 0.2)[19]because of the huge losses of metals. On the contrary, the quantum yields in the dielectric structures were easier to achieve a high quantum yield(>0.66).[21,22]In terms of collection efficiencies, parabolic antennas,[23]Yagi-Uda antennas,[24]bull’s eye antennas,[25,26]and band structures[27]were designed to control the radiative direction,and the collection efficiencies were predicted to be 0.6[numerical aperture(NA)=0.5],[23]0.84(NA=0.5),[24]0.95(NA=1.2),[25,26]and 0.99(NA=1.2),[27]respectively.

    Recently,many metallic nanostructures were designed to enlarge both of Purcell enhancements and quantum yields of SPEs.[10,28,29]For example, by designing a metallic nanorod and a metallic film (with a dielectric gap ofgd= 5 nm),Fp≈3.0×103and QY≈0.30 were numerically predicted.[28]By using a metallic torus antenna placed on a metallic film with a dielectric gap (gd=5 nm), Fp≈1.2×104and QY≈0.30 were numerically predicted.[10]By utilizing a metallic nanorod-nanorod structure(gd=10 nm),Fp≈4.1×104and QY≈0.32 were numerically predicted.[29]In these metallic structures,[10,28,29]the Purcell factors were enhanced by the SP gap modes,which had tiny mode volumes and huge local density of states, in metal-insulator-metal (MIM) structures.[20]The quantum yields were increased by the nanorods or tori,[10,28,29]which scattered the energy from the MIM structures and thus reduced the losses in metals.[10,28,29]However,the quantum yields of the above structures were still small(QY≤0.32).[10,28,29]Therefore,in metallic nanostructures,it was still a huge challenge to increase both of Purcell enhancements and quantum yields of SPEs simultaneously. Moreover,the radiation fields of SPEs almost spread along the surface of metals or diverged in the far field with a large angle,and these works did not consider the collection efficiencies.[10,28,29]

    To increase all of Purcell enhancements,quantum yields,and collection efficiencies of SPEs, hybrid dielectric-metal structures were proposed.[30-33]These hybrid dielectric-metal nanostructures combine the advantages of both dielectric nanostructures(high quantum yields)and metallic nanostructures (high Purcell enhancements). For example, by putting a silicon nano-patch on a metallic nanoparticle-on-mirror(NPOM)structure(gd=30 nm),Fp≈1.5×102,QY≈0.75,and CE≈0.99 were numerically predicted;[30]By combining a metallic bowtie antenna with silicon Yagi-Uda antennas,Fp≈1.8×103, QY≈0.60,and CE≈0.95 were numerically predicted;[31]By combining a gold nanorod with a silicon nano-disk(gd=5 nm), Fp≈1.4×103, QY≈0.70, and CE≈0.90 were numerically predicted.[32]Lately, a silicon cylinder was placed on a metallic film(gd=2 nm,tm=∞),[33]Fp≈5.0×103,QY≈0.75,and CE≈0.60 were numerically predicted.[33]In the above works,[30-33]the Purcell enhancement was enlarged by the subwavelength field confinements of the NPOM structures,[30]bowtie antennas,[31]nanorods,[32]and the metallic film.[33]The quantum yields (QY≥0.60)were increased by high-index silicon antennas because the ratio of electromagnetic fields in metals became smaller.[30-33]The collection efficiencies were increased by the resonant modes of silicon antennas,[30-33]whose divergence angles of emission light were smaller than 30°.

    To evaluate the total effects of three factors on brightness of SPEs in nanostructures,an enhancement factor(EF*)is defined by

    The largest EF*in the above nanostructures[30-33]is EF*≈2.2×103.[33]Due to the large mode size(~λ)of surface plasmon polaritons on the bulky metals,the Purcell enhancement of the bulky bowtie antenna mainly depends on the gap size of the bowtie antenna.[16]What’s worse,the Purcell enhancements (Fp≤5.0×103) of these hybrid nanostructures[30-33]are much smaller than those (Fp≤4.1×104) of metallic nanostructures[10,28,29]because the silicon antennas of the above hybrid nanostructures make the SPP field confinements poorer. Hence,quantum yields of hybrid nanostructures[30-33]increased at the huge expense of Purcell enhancements. It is still a big challenge to realize a much larger EF*in hybrid nanostructures to significantly brighten SPEs.

    2. Proposal and simulation

    In this paper,we propose to combine an ultrathin metallic bowtie antenna with a silicon antenna (Fig. 1) to greatly enhance the brightness of SPEs. The ultrathin metallic bowtie antenna is placed above a metallic film with a gap,and its detail is shown in the inset of Fig.1. The rectangular coordinate system is also given by the inset.Thexyplane is on the middle surface of the ultrathin metallic bowtie antenna with thex-axis parallel to the bowtie antenna’s symmetry axis and thez-axis passing through the center of the gap. The origin of coordinatesOis located at the center of the bowtie antenna.

    Fig. 1. Schematic of the overall hybrid structure. The structure is formed by three components:an ultrathin metallic bowtie antenna(Ag),a dielectric antenna(Si),and a thick metallic substrate(Ag).Inset shows the detail of the ultrathin metallic bowtie antenna. The rectangular coordinate system is added in the inset.

    The ultrathin metallic bowtie antenna(with a thickness oftAg)is used to obtain a high Purcell enhancement due to its tiny mode volume of the resonant SPP mode. Herein, we choose an ultrathin bowtie antenna rather than a bulky one to improve the Purcell enhancement. The ultrathin metal film(<10 nm)supports an asymmetric SPP mode with deep-subwavelength field confinements (mode size~λ/100).[10,33]As a result,the Purcell enhancement of our nanostructure is predicted to be approximately two orders of magnitude greater than those based on bulky one.[10,33]The high-index silicon antenna under a quasi-BIC resonant state is used to obtain a high quantum yield by extracting the radiation field from the metallic bowtie antenna. Moreover,the silicon antenna shows small influence on the Purcell enhancement(only being decreased by 38%).

    Due to the improvement of the radiation directivity by the quasi-BIC resonant mode and the constructive interference between the upward radiation and downward radiation reflected by the metallic film,the collection efficiency is also increased. As a result,the Purcell enhancement,quantum yield,and collection efficiency are predicted to be Fp≈2.6×106,QY≈0.70,and CE≈0.71,respectively.The Purcell enhancement (Fp≈2.6×106) in the proposed hybrid nanostructures is 63 times greater than those (≤4.1×104) in the previous metallic and hybrid nanostructures.[10,28-33]Consequently,the enhancement factor of a SPE is calculated as EF*≈1.3×106,which is 5.6×102times greater than those(EF*≤2.2×103)in the previous metallic and hybrid structures.[10,28-33]

    To understand the underlying physics in the hybrid structure,we first study the antisymmetric SPP mode supported in the ultrathin metallic film by the finite element method solver of COMSOL Multiphysics(mode analysis and frequency domains). The effective refractive index(neff)and mode size of the antisymmetric SPP mode versus the thickness of silver filmtAgare shown in Fig. 2(a). Herein, the metallic film is set as silver, and it is placed on an MgF2(nMgF2=1.38) substrate.The vacuum wavelength is 780 nm.[33]The medium above the silver film is set as air (nair=1). The permittivity of silver isεAg=-29.4+0.36i.[34]The mode size is obtained by a similar method from Ref.[35]by

    With decreasingtAg,neffincreases and the mode size shrinks[Fig. 2(a)]. The reason is that the electromagnetic field of the antisymmetric SPP mode is confined more tightly with decreasingtAg.[36]WhentAg=2 nm, the electric field(Ez)distribution of an antisymmetric SPP mode is shown in Fig.2(b).The electromagnetic field is tightly confined on the silver film.WhentAg≤4 nm, the mode sizes are smaller than 1 nm[Fig. 2(a)], which is far smaller than the incident wavelength(λ=780 nm).

    Fig.2. The(a)neff and mode size of a silver film versus tAg. (b)Electric field distribution of an antisymmetric SPP mode(tAg=2 nm)on the surface of a silver film. (c)Fp of a dipole placed 5 nm above a silver film versus tAg. (d)Schematic of the ultrathin metallic bowtie antenna placed on a MgF2 substrate. The red arrow denotes the orientation of the dipole. Inset: Electric distribution (|E|) of the bowtie antenna in xy plane. Blue arrows denote the polarization of the electric field in the gap. (e)Fp, QY and(f)CE of the dipole placed in the center of the ultrathin metallic bowtie antenna versus tAg.

    Then, we calculate the Purcell enhancement of a dipole placed 5 nm above an ultrathin silver film with differenttAg[Fig.2(c)].In simulation,a dipole is used as a SPE.The dipole orients along thez-axis and its intrinsic quantum yield assumes to be 1.[1,10,28-33,37-41]The Purcell enhancement is calculated by[10,28,41]

    whereγ0andW0are the total decay rate and the total power of a dipole placed in a vacuum, respectively.γtotalandWtotalare the total decay rate and the total power of a dipole placed in a structure,respectively.Wtotalcan be obtained by conforming the dipole in a 2 nm radius sphere and performing surface integrals over the Poynting vectorSon the sphere, and it is calculated by[28]

    The Purcell enhancement shows a monotonous increase from 9.6 to 391.2 with decreasingtAgfrom 20 nm to 2 nm in Fig.2(c). The reason is that the mode sizes of the asymmetric SPP mode in the ultrathin metallic film become smaller whentAgdecreases[Fig.2(a)]. Fortunately,the ultrathin metal film(tmfrom 1 nm to 10 nm)has been realized in experiments,[42]so the choice of the 2-nm metal film is reasonable.

    Next, we simulate an ultrathin metallic bowtie antenna placed on an MgF2substrate[Fig.2(d)]. The bowtie antenna has a thickness oftAg, a length ofl, and a gap ofg. In addition, the antenna’s edge is curved for 2 nm, which can avoid the tip bringing errors in the simulation. A plane wave,whose polarization orients along thex-axis,vertically illuminates the bowtie antenna(tAg=6 nm,l=30 nm, andg=2 nm). The tiny gap of the bowtie antenna(g=0.5 nm)has been realized by electron-beam lithography in the previous work.[43]The electric field|E|distribution is shown by the inset in Fig.2(d).The electric field|E|confined tightly in the gap is larger than that outside the gap. The electric field|Ex|in the gap is 2700 times larger than that of the incident plane wave.The polarization of the electric field in the gap is along thex-axis(denoted by the blue arrows), which verifies that the SPP mode of the metallic bowtie antenna resonates alongx-axis.

    In the ultrathin metallic bowtie antenna with a dipole(orienting along thex-axis) placed in the middle of the gap, the Purcell enhancements,quantum yields,and collection efficiencies are simulated. The quantum yield is calculated by[10,28,41]

    WhentAgdecreases, the Purcell enhancement and quantum yield are shown in Fig. 2(e). The Purcell enhancement is improved largely from 5.0×105to 1.3×107with decreasingtAg. The variation tendency stems from that the mode size of the asymmetric SPP mode in the ultrathin metallic film becomes smaller whentAgdecreases [Fig. 2(a)]. Due to the ultra-tight field confinements and enormous field enhancements of the resonant SPP mode in the metallic bowtie antenna[Fig.2(d)], the Purcell enhancement is enlarged. The Purcell enhancement(Fp≥4.2×106)of the ultrathin bowtie antenna(tAg≤6 nm)is approximately two orders of magnitude larger than those(Fp≤4.1×104)of the previous metallic and hybrid structures.[10,28-33]The quantum yield decreases rapidly(from 0.88 to 0.05) because losses in the metallic antenna increase when the mode size of the SPP mode becomes smaller in the thinner silver film[Fig.2(a)]. The quantum yields(QY≤0.4)of the ultrathin metallic bowtie antenna(tAg≤6 nm)are lower than those(QY≥0.6)of previous hybrid structures.[30-33]Besides, the collection efficiencies are very low [Fig. 2(f)] because the ultra-tight confinements by the ultrathin bowtie antenna suppress the energies radiating to far field [Figs. 2(a)and 2(b)]. The collection efficiency (CE≈0.06) of the ultrathin metallic bowtie antenna (tAg≤6 nm) is an order of magnitude lower than those (CE≥0.6) of previous hybrid nanostructures.[30-33]A thickness oftAg=6 nm is selected based on the balance between Purcell enhancement and quantum yield(Fp≈4.2×106,QY≈0.40,and CE≈0.06).

    Fig. 3. (a) Front view of a silicon antenna placed above a silver film. (b)Optical quasi-BIC mode of an individual silicon cylinder in(a). The Q with a thick metal film versus r. Here,h=300 nm. (c)Electric field|E|distributions in the xz cross section(top)and xy cross section(bottom),respectively.The black arrows in bottom denote the electric filed polarization. (d) The 3D far field intensity of the silicon antenna at the quasi-BIC state.

    To increase the quantum yield and collection efficiency,we propose to combine a high-index silicon (nSi=3.5) antenna to form a hybrid nanostructure, as shown in Fig. 3(a).Noting that the silicon antenna is quite small so that we ignore the absorption losses of silicon atλ=780 nm.Moreover,a silver substrate is placed below the silicon antenna separated by an MgF2spacer[with a thickness oftMgF2=250 nm], which is used to reflect the downward radiation from the quasi-BIC mode and forms constructive interference with the upward radiation. The quality factor(Q)versus different radii(r)of the silicon antenna is displayed in Fig. 3(b). Whenr=215 nm,theQof the silicon antenna arrives at a maximum, revealing a quasi-BIC state. The definition, principle, and calculation method of the quasi-BIC state can be found in Ref. [44]. In this case, the electric field|E| distributions in thexzandxycross sections of the silicon antenna are shown in Fig. 3(c).The electric vectors are denoted by black arrows in the bottom of Fig. 3(c). As a result, the quasi-BIC mode radiates an azimuthally polarized light.The three-dimensional(3D)far field intensity is shown in Fig.3(d). The silicon antenna under the quasi-BIC state radiates almost along the upper space,and the divergence angle is approximately 30°[Fig. 3(d)], indicating good radiation directivity.

    At last,we insert the ultrathin metallic bowtie antenna between the silicon antenna and MgF2spacer. The orientation of the dipole is the same as that in Fig. 2(d) [along thex-axis].In addition,we separate the ultrathin metallic bowtie antenna and the silicon antenna by a MgF2layer (with a thickness ofd=2 nm),[33]as schematically shown in Figs.4(a)and 4(b).In the hybrid nanostructure,the silicon antenna can extract the confined electromagnetic field from the metallic bowtie antenna more easily due to its high refractive index. As a result,the ratio of electromagnetic fields in the ultrathin metallic bowtie antenna decreases, and the quantum yield increases.We move the silicon antenna along they-axis, and the simulated results are shown in Figs. 4(c) and 4(d). Herein, the dipole is always placed in the middle of the gap. In Fig.4(c),the Purcell enhancements increase (decrease) monotonously[from 1.4×106(2.6×106) to 2.8×106(1.4×106)] at the range ofy=20 nm-60 nm(160 nm-200 nm). And it changes gently at the range ofy=60 nm-160 nm because the resonant SPP mode of the metallic bowtie antenna overlaps with the quasi-BIC mode of the silicon antenna at the range ofy=60 nm-160 nm [Fig. 3(c)]. The quantum yields increase(decrease) monotonously [from 0.40 (0.70) to 0.70 (0.40)] at the range ofy=20 nm-110 nm(110 nm-200 nm). When the ultrathin metallic antenna is located aty=110 nm, the overlap between the metallic bowtie antenna and silicon antenna reaches at the maximum. The quantum yield is QY≈0.70,and the Purcell enhancement is Fp≈2.6×106, which losses 38% from that (Fp≈4.2×106) of the bare metallic bowtie antenna.

    Fig.4. Schematic and characterization of the hybrid structure: (a)front view and(b)top view of the hybrid structure. The coordinate axes are the same as those in Fig. 1. Inset shows the detail of the ultrathin metallic bowtie antenna. Orientation of the dipole is added in (a). In (b),the moving direction of the silicon antenna is denoted by a white arrow. (c)Fp,QY,(d)CE,and EF* of the dipole placed in a hybrid structure versus y,(e)3D far field intensity at y=85 nm.

    In Fig. 4(d), the collection efficiencies decrease slightly from 0.8 to 0.6. The enhancement factor is also calculated,as shown in Fig.4(d). The enhancement factors increase(decrease) at the range ofy=20 nm-85 nm (85 nm-200 nm).The maximal enhancement factor (EF*≈1.3×106) is obtained aty=85 nm,and the 3D far field intensity is displayed in Fig. 4(e). The hybrid structure shows an excellent upward radiation characteristic, which is similar to that of Fig. 3(d).The lack of the cylindrical symmetry [Fig. 4(e)] results from that the ultrathin metallic bowtie antenna breaks the symmetry of the silicon antenna. Comparing with the previous work,[33]we overcome the challenge that the light energy confined on the ultrathin metal surface was difficult to be extracted by a dielectric antenna.[33]

    The Purcell enhancement, quantum yield, and collection efficiency of our nanostructure are predicted as Fp≈2.6×106,QY≈0.70, and CE≈0.71, respectively. The Purcell enhancement (Fp≈2.6×106) is 520 times greater than those(Fp≤5×103) in hybrid nanostructures,[30-33]and 63 times greater than those (Fp≤4.1×104) even in previous metallic nanostructures.[10,28,29]Moreover, the quantum yield and the collection efficiency are close to those of the previous hybrid nanostructures.[30-33]The enhancement factor (EF*≈1.3×106) is 5.6×102times greater than the simulation and experimental results (EF*≤2.2×103) in previous metallic and hybrid nanostructures.[10,25,28-33,45]By further optimizing the position of the silicon antenna and moving the location of the dipole along thez-axis,the enhancement factor is increased to be EF*≈1.8×106.

    In addition, the simulation shows that the Purcell enhancement of a dipole orienting along thez-axis ory-axis is smaller than that orienting along thex-axis by two orders of magnitude. The reason is that the electric field at the center of the bowtie antenna is along thex-axis. As a result,the dipole orienting along thez-axis ory-axis has little effect on the results. With the help of the recent nano-fabrication techniques,[42,43]the ultrathin metal film (tmfrom 1 nm to 10 nm) can be fabricated by an evaporation technique with a sputtered copper seed layer,[42]and the metal bowtie antenna with ultrathin gap(gfrom 0.5 nm to 10 nm)can also be fabricated by a developed high-resolution electron-beam lithography(EBL)process.[43]The silicon antenna and multilayer film can be fabricated by EBL and a dry-etching process.[44]The thickness accuracy on the metal film in Ref.[42]is 1 nm,and the gap accuracy on the bowtie antenna in Ref.[43]is 0.5 nm.Moreover, the silicon antenna has a loose diameter accuracy of±20 nm which is easy to be confirmed in EBL. When the thickness and gap of the ultrathin bowtie antenna and the radius of the silicon antenna reach their respective fabrication tolerances (e.g.,tAg=7 nm,g=2.5 nm, andr=225 nm),the simulation results show that the Purcell enhancement decreases by about 30%. Therefore,our structure is expected to be experimentally realized in the future.

    3. Conclusion

    We proposed to brighten SPEs by combining an ultrathin metallic bowtie antenna and a silicon antenna on a metallic substrate. The Purcell enhancement (Fp≈2.6×106)in the proposed hybrid nanostructures is 63 times greater than those (≤4.1×104) in the previous metallic and hybrid nanostructures.[10,28-33]The silicon antenna was used to keep a high quantum yield (QY≈0.70) and collection efficiency(CE≈0.71). Finally, the enhancement factor was calculated as EF*≈1.3×106, which is 5.6×102times greater than those (EF*≤2.2×103) in the previous metallic and hybrid structures.[10,25,28-33,45]The bright SPEs might find important applications in the areas of quantum key distributions, quantum circuits,boson sampling,and quantum precision measurement.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0704401,2017YFF0206103,and 2016YFA0203500),the National Natural Science Foundation of China (Grant Nos. 61922002,91850103, 11674014, 61475005, 11527901, 11525414, and 91850111), and the Beijing Natural Science Foundation,China(Grant No.Z180015).

    猜你喜歡
    李智陳建軍
    學界翹楚李智
    西部學刊(2023年20期)2023-10-25 09:31:18
    五家渠市交通信號控制系統(tǒng)可行性改造研究
    聞一多致梁實秋一封書信考釋
    長江學術(2020年4期)2020-11-12 07:26:26
    Running the Hillsby James M. Janik
    TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES ?
    老頭和小偷
    光影
    大眾攝影(2020年3期)2020-03-13 08:14:37
    婆婆也是媽
    老頭和小偷
    小小說月刊(2015年2期)2015-04-16 09:12:07
    男子激情離婚怒討“親子權”
    黄色怎么调成土黄色| 免费高清在线观看日韩| 国产精品一区二区三区四区久久 | 五月开心婷婷网| 岛国视频午夜一区免费看| av天堂在线播放| 国产一区二区三区视频了| 日韩中文字幕欧美一区二区| 国产精品一区二区精品视频观看| 欧美 亚洲 国产 日韩一| 无限看片的www在线观看| 亚洲av片天天在线观看| 一区二区三区国产精品乱码| 国产高清videossex| 午夜久久久在线观看| 精品久久久久久成人av| 女生性感内裤真人,穿戴方法视频| 欧美激情高清一区二区三区| 国产成人一区二区三区免费视频网站| 看免费av毛片| 999久久久国产精品视频| 国产蜜桃级精品一区二区三区| 中文字幕人妻丝袜制服| 大码成人一级视频| 老司机在亚洲福利影院| 99re在线观看精品视频| 午夜亚洲福利在线播放| 高清av免费在线| 免费一级毛片在线播放高清视频 | 欧美日韩视频精品一区| 久久影院123| e午夜精品久久久久久久| 91麻豆av在线| 欧美大码av| 看片在线看免费视频| 欧美乱码精品一区二区三区| 精品福利观看| 午夜视频精品福利| 丰满的人妻完整版| 十八禁网站免费在线| 叶爱在线成人免费视频播放| 中亚洲国语对白在线视频| 亚洲人成电影观看| 后天国语完整版免费观看| 在线观看免费午夜福利视频| 欧美丝袜亚洲另类 | 两人在一起打扑克的视频| 久久草成人影院| 丰满人妻熟妇乱又伦精品不卡| av天堂久久9| 中文字幕av电影在线播放| 好看av亚洲va欧美ⅴa在| 老司机在亚洲福利影院| 亚洲精品国产区一区二| 嫩草影视91久久| 国产又色又爽无遮挡免费看| 长腿黑丝高跟| 国产精品爽爽va在线观看网站 | 在线观看午夜福利视频| 超色免费av| 操出白浆在线播放| 国产亚洲欧美精品永久| 国产精品一区二区免费欧美| 黑人操中国人逼视频| 国产精品免费视频内射| 亚洲专区中文字幕在线| 99国产极品粉嫩在线观看| 最好的美女福利视频网| 欧美在线黄色| a级片在线免费高清观看视频| 两个人免费观看高清视频| av在线播放免费不卡| av中文乱码字幕在线| 亚洲精品一二三| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 亚洲国产精品一区二区三区在线| 成人手机av| 国产成人av教育| 精品久久久久久成人av| 在线国产一区二区在线| 国产成人系列免费观看| 长腿黑丝高跟| 久久中文字幕人妻熟女| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 性欧美人与动物交配| 亚洲情色 制服丝袜| 亚洲一区二区三区不卡视频| 日本黄色视频三级网站网址| 亚洲国产精品999在线| 亚洲,欧美精品.| 琪琪午夜伦伦电影理论片6080| 精品国产乱码久久久久久男人| 满18在线观看网站| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 757午夜福利合集在线观看| 午夜福利欧美成人| 成年人黄色毛片网站| 一级毛片女人18水好多| 亚洲全国av大片| 免费高清在线观看日韩| 日本三级黄在线观看| 一二三四在线观看免费中文在| 午夜免费观看网址| 操出白浆在线播放| 久久久久国产精品人妻aⅴ院| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 国产单亲对白刺激| 夫妻午夜视频| 人人妻人人添人人爽欧美一区卜| 欧美日韩乱码在线| 十八禁人妻一区二区| 人人妻人人澡人人看| 人人澡人人妻人| 久久精品亚洲精品国产色婷小说| 纯流量卡能插随身wifi吗| 欧美黑人精品巨大| 国产一区二区三区在线臀色熟女 | 精品卡一卡二卡四卡免费| 免费日韩欧美在线观看| 成人特级黄色片久久久久久久| 国产99白浆流出| 亚洲成人免费av在线播放| а√天堂www在线а√下载| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 久久久久久久午夜电影 | 久热这里只有精品99| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 丰满迷人的少妇在线观看| 12—13女人毛片做爰片一| 免费高清在线观看日韩| 天堂影院成人在线观看| 女人高潮潮喷娇喘18禁视频| 男人的好看免费观看在线视频 | 久久香蕉精品热| 丰满饥渴人妻一区二区三| 成人av一区二区三区在线看| 午夜福利欧美成人| 成在线人永久免费视频| 一级片免费观看大全| 免费在线观看亚洲国产| 亚洲欧美日韩高清在线视频| 老司机在亚洲福利影院| 日韩免费av在线播放| 国产精品国产av在线观看| 极品教师在线免费播放| 久久九九热精品免费| 无人区码免费观看不卡| 精品久久久久久久久久免费视频 | 久久精品成人免费网站| 精品高清国产在线一区| 国产免费av片在线观看野外av| 男人操女人黄网站| 曰老女人黄片| 国产成年人精品一区二区 | 婷婷六月久久综合丁香| 操出白浆在线播放| 97人妻天天添夜夜摸| 久久久水蜜桃国产精品网| 老司机午夜十八禁免费视频| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 男女高潮啪啪啪动态图| av天堂在线播放| 一级片免费观看大全| 国产99久久九九免费精品| 久久精品91蜜桃| 国产野战对白在线观看| 久久天堂一区二区三区四区| 国产av精品麻豆| 99在线视频只有这里精品首页| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 每晚都被弄得嗷嗷叫到高潮| 88av欧美| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 女性被躁到高潮视频| 99久久人妻综合| 国产成年人精品一区二区 | 亚洲精品av麻豆狂野| 精品少妇一区二区三区视频日本电影| 波多野结衣高清无吗| 亚洲,欧美精品.| www.www免费av| 国产精品 欧美亚洲| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线播放一区| 精品一区二区三卡| 午夜福利在线免费观看网站| 日本一区二区免费在线视频| 黑人欧美特级aaaaaa片| 亚洲人成网站在线播放欧美日韩| 精品一区二区三卡| 久久中文字幕一级| 亚洲成a人片在线一区二区| 夜夜躁狠狠躁天天躁| 精品国产亚洲在线| 亚洲片人在线观看| 男女之事视频高清在线观看| 国产精华一区二区三区| 丰满人妻熟妇乱又伦精品不卡| a级毛片黄视频| 亚洲国产看品久久| 免费搜索国产男女视频| 亚洲avbb在线观看| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 男女之事视频高清在线观看| 性少妇av在线| 看片在线看免费视频| 激情视频va一区二区三区| 色在线成人网| 免费高清在线观看日韩| 搡老乐熟女国产| 国产高清视频在线播放一区| 久久久久九九精品影院| www日本在线高清视频| 国产欧美日韩精品亚洲av| 久久草成人影院| 老司机靠b影院| 99国产精品一区二区蜜桃av| 精品久久久精品久久久| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 欧美中文综合在线视频| 国产熟女xx| 少妇粗大呻吟视频| 国产蜜桃级精品一区二区三区| 国产又爽黄色视频| 长腿黑丝高跟| 中国美女看黄片| 人妻久久中文字幕网| 午夜激情av网站| 久热这里只有精品99| 十八禁人妻一区二区| 午夜免费鲁丝| 欧美日韩黄片免| 亚洲,欧美精品.| 日韩大码丰满熟妇| 级片在线观看| av免费在线观看网站| 亚洲国产毛片av蜜桃av| 久久亚洲真实| 无限看片的www在线观看| 天堂√8在线中文| 日本三级黄在线观看| 亚洲精品在线观看二区| 日本一区二区免费在线视频| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看 | 香蕉丝袜av| 亚洲欧美日韩高清在线视频| 久热这里只有精品99| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 老司机靠b影院| 19禁男女啪啪无遮挡网站| 国产色视频综合| 夜夜躁狠狠躁天天躁| 身体一侧抽搐| 亚洲男人天堂网一区| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 神马国产精品三级电影在线观看 | 99riav亚洲国产免费| 中文字幕最新亚洲高清| 变态另类成人亚洲欧美熟女 | 欧美黑人欧美精品刺激| 国产精品永久免费网站| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 丝袜在线中文字幕| 久久精品亚洲av国产电影网| 国产精品免费视频内射| 天堂中文最新版在线下载| 看黄色毛片网站| 亚洲av美国av| 久久国产精品人妻蜜桃| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 看黄色毛片网站| 91成人精品电影| 91av网站免费观看| av片东京热男人的天堂| 免费日韩欧美在线观看| 在线免费观看的www视频| 日本一区二区免费在线视频| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 操出白浆在线播放| 无限看片的www在线观看| 一a级毛片在线观看| 这个男人来自地球电影免费观看| 黄色怎么调成土黄色| 成人国产一区最新在线观看| 久久久久久久午夜电影 | 好男人电影高清在线观看| 久久久国产精品麻豆| 久久久国产成人精品二区 | 狠狠狠狠99中文字幕| 久久草成人影院| 少妇 在线观看| 欧美黑人欧美精品刺激| 99久久国产精品久久久| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 国产成人av教育| 九色亚洲精品在线播放| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕一二三四区| 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 免费女性裸体啪啪无遮挡网站| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费 | 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 天堂动漫精品| 免费观看精品视频网站| 国产一区二区在线av高清观看| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区| av片东京热男人的天堂| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲精品不卡| 男人的好看免费观看在线视频 | 久久香蕉国产精品| 最近最新中文字幕大全免费视频| 国产亚洲欧美98| 又黄又粗又硬又大视频| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| 91麻豆av在线| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 欧美中文日本在线观看视频| 免费少妇av软件| 免费在线观看黄色视频的| 精品电影一区二区在线| 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 亚洲精品国产区一区二| 麻豆av在线久日| 女同久久另类99精品国产91| 国产av又大| 黄色 视频免费看| 久久久久国内视频| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 757午夜福利合集在线观看| 日韩av在线大香蕉| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91| 国产aⅴ精品一区二区三区波| 欧美在线黄色| 久久99一区二区三区| 丰满迷人的少妇在线观看| 久久婷婷成人综合色麻豆| 亚洲七黄色美女视频| 成人影院久久| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 中文字幕色久视频| 亚洲精品国产区一区二| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 午夜激情av网站| 久久久久久大精品| 欧美日韩福利视频一区二区| 久久 成人 亚洲| 午夜免费成人在线视频| www.www免费av| 热99国产精品久久久久久7| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 久久中文字幕人妻熟女| 亚洲av片天天在线观看| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| 韩国精品一区二区三区| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 女人被狂操c到高潮| 午夜a级毛片| 亚洲一区高清亚洲精品| avwww免费| 日本三级黄在线观看| 国产不卡一卡二| 中文字幕最新亚洲高清| 久久久久亚洲av毛片大全| 精品久久久久久电影网| 亚洲精品国产区一区二| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久| 激情视频va一区二区三区| 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 91麻豆av在线| 午夜视频精品福利| 中文欧美无线码| 不卡av一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美丝袜亚洲另类 | 人人澡人人妻人| 大型黄色视频在线免费观看| 超色免费av| 99国产精品99久久久久| 丰满的人妻完整版| 成人亚洲精品av一区二区 | av网站在线播放免费| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 1024香蕉在线观看| 热re99久久国产66热| av电影中文网址| 欧美成人免费av一区二区三区| 韩国精品一区二区三区| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美软件| 亚洲av成人av| 成年女人毛片免费观看观看9| 男人舔女人的私密视频| 亚洲黑人精品在线| 在线观看舔阴道视频| 90打野战视频偷拍视频| 两个人看的免费小视频| 日韩欧美三级三区| 日韩一卡2卡3卡4卡2021年| 热re99久久精品国产66热6| 亚洲性夜色夜夜综合| 国产成人免费无遮挡视频| 亚洲男人天堂网一区| 精品一区二区三区av网在线观看| 女性生殖器流出的白浆| 免费在线观看日本一区| 国产av在哪里看| 欧美日韩乱码在线| 欧美激情 高清一区二区三区| 真人一进一出gif抽搐免费| 免费在线观看视频国产中文字幕亚洲| 国产一卡二卡三卡精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| 香蕉久久夜色| 久久狼人影院| 性欧美人与动物交配| 欧美日韩亚洲高清精品| 真人一进一出gif抽搐免费| 国产野战对白在线观看| 级片在线观看| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看 | а√天堂www在线а√下载| 欧美日韩国产mv在线观看视频| 日韩人妻精品一区2区三区| 国产成人欧美| 18禁黄网站禁片午夜丰满| 精品一区二区三卡| √禁漫天堂资源中文www| 啦啦啦 在线观看视频| 国产精品乱码一区二三区的特点 | 久久香蕉激情| 色在线成人网| 99久久综合精品五月天人人| 88av欧美| 免费一级毛片在线播放高清视频 | 一进一出抽搐动态| 美女午夜性视频免费| 久久久国产一区二区| 99精品欧美一区二区三区四区| av有码第一页| 人人妻人人添人人爽欧美一区卜| 性色av乱码一区二区三区2| 亚洲欧美激情在线| av网站免费在线观看视频| 老汉色∧v一级毛片| 国产亚洲欧美98| 色在线成人网| 亚洲在线自拍视频| 国产亚洲精品久久久久5区| 老司机深夜福利视频在线观看| 国产精品成人在线| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 国产精品日韩av在线免费观看 | 欧美一区二区精品小视频在线| 欧美人与性动交α欧美精品济南到| 亚洲第一av免费看| 人人妻人人添人人爽欧美一区卜| 日本a在线网址| 老司机靠b影院| 成人黄色视频免费在线看| 国产精品久久久av美女十八| 看免费av毛片| 黄色视频不卡| netflix在线观看网站| 18禁裸乳无遮挡免费网站照片 | 午夜精品在线福利| 欧美av亚洲av综合av国产av| av网站在线播放免费| 美女高潮到喷水免费观看| 看黄色毛片网站| 亚洲一区二区三区欧美精品| 久久欧美精品欧美久久欧美| 欧美中文日本在线观看视频| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看 | 亚洲精品一区av在线观看| 日本一区二区免费在线视频| 精品少妇一区二区三区视频日本电影| 色婷婷av一区二区三区视频| 99re在线观看精品视频| 中文字幕人妻熟女乱码| 在线十欧美十亚洲十日本专区| 热re99久久国产66热| 日韩欧美一区二区三区在线观看| 国产激情久久老熟女| 国产av在哪里看| 美女 人体艺术 gogo| 三上悠亚av全集在线观看| 国产亚洲欧美98| av欧美777| 欧美中文日本在线观看视频| 国产又爽黄色视频| 桃色一区二区三区在线观看| 国产真人三级小视频在线观看| 老司机午夜十八禁免费视频| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 午夜福利欧美成人| 性欧美人与动物交配| 男女做爰动态图高潮gif福利片 | 黑人巨大精品欧美一区二区mp4| 丝袜人妻中文字幕| 成人特级黄色片久久久久久久| 中国美女看黄片| 国产成人欧美| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 久久这里只有精品19| 国产成人欧美| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 久久九九热精品免费| 亚洲欧美激情在线| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 国产精品久久视频播放| 国产一区二区三区视频了| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 制服诱惑二区| 婷婷精品国产亚洲av在线| 欧美另类亚洲清纯唯美| 国产精品自产拍在线观看55亚洲| 不卡一级毛片| 最新在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 777久久人妻少妇嫩草av网站| 成人黄色视频免费在线看| 国产蜜桃级精品一区二区三区| 欧美乱色亚洲激情| 日韩高清综合在线| 国产不卡一卡二| 国产亚洲精品一区二区www| 久久久久久久久久久久大奶| 色在线成人网|