• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms

    2024-02-29 09:17:12RuiJunGuo郭瑞軍XiaoDongHe何曉東ChengSheng盛誠KunPengWang王坤鵬PengXu許鵬MinLiu劉敏JinWang王謹XiaoHongSun孫曉紅YongZeng曾勇andMingShengZhan詹明生
    Chinese Physics B 2024年2期
    關鍵詞:王坤劉敏

    Rui-Jun Guo(郭瑞軍), Xiao-Dong He(何曉東), Cheng Sheng(盛誠),Kun-Peng Wang(王坤鵬), Peng Xu(許鵬), Min Liu(劉敏), Jin Wang(王謹),Xiao-Hong Sun(孫曉紅), Yong Zeng(曾勇),?, and Ming-Sheng Zhan(詹明生)

    1Henan Key Laboratory of Laser and Optoelectronic Information,National Center for International Joint Research of Electronic Materials and Systems,School of Electrical and Information Engineering,Zhengzhou University,Zhengzhou 450001,China

    2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    Keywords: quantization axis,trapping laser,angle,compensating magnetic fields

    1.Introduction

    Single neutral atoms in tightly focused optical dipole traps (ODTs) are being intensively developed for studies of quantum simulation[1,2]and quantum computation.[3–6]A practical quantum simulator or computer relies on coherent manipulation of quantum bits (qubits).Moreover, coherence times are of great importance for applications in the fields of quantum metrology[7–9]and precision measurements.[10]Although atomic states have excellent coherence properties in an isolated environment, the inherent differential light shifts(DLSs) of neutral atoms in optical tweezers induced by the trapping laser field cause a strong inhomogeneous dephasing effect.[11–14]To suppress this detrimental effect,a magicintensity trapping technique was developed recently[15]and used extensively.[16–18]

    In order to create effective magic-intensity trapping for microwave clock transitions, an external bias magnetic fieldBbiasis arranged to be strictly parallel to the circularly polarized trapping laser field.In this way, the trapping laser field induces a fourth-order hyperpolarizabilityβ4that is expressed in terms of the degree of circular polarization,hyperfine splitting and the vector polarizability of the ground state, which makes the DLS dependence on the trapping laser intensity parabolic.Owing to the parabolic dependence, at a magicintensity trap depth, the first-order sensitivity of the DLS to the trapping laser intensity variations from the whole ODT volume is eliminated so that the coherence time of87Rb qubits is substantially enhanced[15]and the coherence times of the mixed-isotope qubits are substantially enhanced and balanced to be nearly 1 s.[18]Different from the widely used linear polarization trapping laser, for atoms in the circularly or elliptically polarized magic-intensity ODTs,trapping laser fields in general give rise to vector light shifts that are equivalent to the effect of a fictitious magnetic fieldBfict[19–30]scaling linearly with the trap depth.If theBbiasdefined quantization axis is not aligned with the trapping laser, the total magnetic field combined withBfictandBbiaswill vary with the trap depth.During the measurement of the DLS parabolic curve by conventional Ramsey interferometry for the magic-intensity trapping of85Rb qubits,microwave radiation is used to coherently manipulate the clock transitions of the ground states.With a fixed microwave antenna,the projection value of microwave power on the total magnetic field also varies with the trap depths,resulting in an inconsistency of Rabi frequencies between the ground states in ODTs with different trap depths.In turn,the difference in Rabi frequencies leads to imperfect measurements of the conventional Ramsey interferometry, which is detrimental to the accurate measurement of hyperpolarizability.In addition,fluctuations of the microwave power may also cause large errors in the coherent manipulation of single qubits in the magic-intensity ODT array.[16]Therefore,it is crucial to calibrate the angle accurately.

    Since it is difficult to accurately measure the magnetic fields in the ODTs by using a traditional magnetometer, researchers have developedin situmeasurement methods to measure the magnetic field vector.In the study of optically parallel readout of multiple qubits with high fidelity,the presence of atoms and their internal states are minimally altered by utilizing a circular polarization probe laser.[31,32]It is required that the propagation direction of the probe laser must be strictly aligned with the quantization axis.A procedure adapted from Ref.[33]was used to minimize the angle,which uses the atoms themselves as probes to optimize the magnetic field vector.The quantization axis is created byBbiasalong theZdirection, further adjustment of the magnetic field by theX–Ycompensating magnetic fields is required.The87Rb qubits are first optically pumped to|F=2,mF=2〉by a circularly polarized beam.One of theσ+-polarized probe lasers is tuned to|2〉?|2′〉and optically pumps the qubits into the dark state|2,2〉.When the alignment is optimal,the dark state|2,2〉can only couple off-resonantly to|3′,3′〉.If there is any mismatch,the dark state|2,2〉mixes with the bright states and scatters photons,eventually depumping into|1〉,which can be measured by the destructive blow-away measurement.The optimum values for theX–Ycompensating magnetic fields were experimentally optimized by minimizing the survival probability such that only 13% of the qubits are transferred to|1〉.In thisin situmethod they did not quantify the relationship between the angle and theX–Ycompensating magnetic fields for further adjustment of the quantization axis.Herein,we present anin situmethod to quantitatively calibrate the angle between the quantization axis and the trapping laser with the compensating magnetic fields in the other two directions orthogonal to theBbiasdirection.

    This paper is organized as follows.We first briefly describe the compensation method.Subsequently,we introduce the experimental setup for building an ODT to confine a single85Rb qubit and show the spatial position of the magnetic fields.Then, we make use of the qubits as sensitive probes to measure the respective resonant frequencies of the atomic qubits in linearly and circularly polarized ODTs via conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula.With known total magnetic fields,the relationship between the angle and the other two compensating magnetic fields is quantitatively obtained.Finally, we perform a comparative experiment to verify the differences between the calibrated and uncalibrated angles and the calibration accuracy of thein situcompensating technique.

    2.Experimental methods

    As the idea of a fictitious magnetic field will be of great importance to understand the compensating technique,we will discuss this concept in detail.The ODTs rely on the intensitydependent energy shift of the atomic ground state for an atom exposed to a trapping laser field,which is far-detuned with respect to the atomic transitions of D lines.For an alkali-metal atom in the ground state, the interaction Hamiltonian can be approximated as[19,25,27]

    whereαsandαvare the scalar and vector polarizabilities,respectively,ε=εuwithεandubeing the field amplitude and the polarization vector,respectively,andFis the quantum number for the total angular momentum.The effect of the vector light shift is equivalent to having an extra magnetic field,which is called a fictitious magnetic fieldBfict.We obtain an induction field by equating the shift to Zeeman shift

    withμBas the Bohr magneton andgFas the hyperfine Lande factor.The direction of theBfictis determined by the light field vector i[ε*×ε],which is a real vector.Similar to a real magnetic field, theBfictflips under time reversal.The maximal magnitude of the term i[ε*×ε] is obtained with a fully circularly polarized ODT and is zero for a linearly polarized trapping field.It is convenient to express the shift in terms of the mean trap depth for ground states asUa=-1/4αs|ε|2.For the ground state of85Rb qubits in an 830 nm circularly polarized ODT,we calculateBfict=-0.10(1)(G/MHz)·Ua.

    For an atom in the electronic ground state, the fictitious magnetic field behaves in almost every respect like a real magnetic field.When an atom is in the hybrid real–fictitious field,the total amplitude and direction of the field are under the rule of vector operation.Thus,theBfictcan be vector-added to the real magnetic fieldBreal,such that the atom is in total exposed to the effective magnetic fieldBeff=Bfict+Breal,which has been found in early works.[19,25,26,28,29]This was further supported in various experiments, demonstrating, for example,optically induced spin precession and echoes in an atomic beam,[20,21]an optical Stern–Gerlach effect from Zeeman-like ac Stark shift,[22,30]and an optically induced fictitious magnetic trap on an atom chip.[23]

    In our experiment,we define the propagation direction of the circularly polarized trapping laser to beZ-axis, which is also the direction ofBfict.The axis of the Helmholtz coil producingBbiasis not perfectly aligned with the propagation direction of the trapping laser, as shown in Fig.1, so that the quantization axis created by theBbiasis not parallel to the trapping laser.Further adjustment of the quantization axis by the compensating magnetic fieldsBxandByin the other two directions orthogonal to theBbiasdirection created by compensating Helmholtz coils are required.Here, the three-axle magnetic fields created by the Helmholtz coils are collectively referred to as the external magnetic fieldBext.The total magnetic fieldBtotin a circularly polarized trapping light field is given by the expression

    whereθis the angle between theBextandBfict, as shown in Fig.1.Thisθis exactly the angle between the quantization axis and the direction of the trapping laser.When?=0?,the projection value ofθon theZ–Xplane is expressed asθx,which can be calibrated by theBx.Similarly,when?=90?,the projection value ofθon theZ–Yplane is expressed asθy,which can be calibrated by theBy.Equation (6) can be resolved into the following two parts with the parameters

    For a given trap depth,theBfictis a constant.Therefore,the angle is stated as a function of theBextandBtot.Experimentally, the qubits serve as sensitive probes for measuring theBextandBtot, which are inherently dependent on the resonance frequencies of Zeeman-sensitive spectral transition.TheBext(Btot)can be accurately extracted from the measured resonance frequency of Zeeman-sensitive spectral transition in the linearly (fully circularly) polarized trap.Different values ofθx(θy)are obtained by varying theBx(By).The relationship betweenθx(θy)andBx(By)is quantitatively obtained.

    3.Experimental setup

    Figure 1 depicts the experimental setup and the spatial position of the magnetic fields.The trapping laser propagates alongkODT, the long axis of the ODT, which is set to be theZ-axis.In a circularly polarized ODT,thekODTis also the direction of theBfict.TheBext, making a polar angleθfrom theZ-axis and an azimuthal angle?from theX-axis,is combined withBx,ByandBbiasfor shifting the atomic ensemble and defining the quantization axis.The projection value ofθonto theZ–X(Z–Y) plane is expressed asθx(θy) by setting?=0?(90?).Theθx(θy) can be calibrated by applying theBx(By), which is linear with the compensating Helmholtz coil currentXcurrent(Ycurrent).The85Rb qubits are rotated by microwave radiation, which is sent through a microwave antenna that is placed at a fixed distance of 4 cm away from the ODT.The experimental details on trapping and manipulating a single85Rb qubit have been described in our previous work.[18]In brief, the single atom for encoding quantum logical state is obtained by loading it into an 830 nm ODT directly from a magneto-optical trap(MOT)based on collisional blockade mechanism.[34,35]When a single atom is detected,it is further cooled to about 14μK with the standard optical molasses method in linearly polarized ODT with trap depth of 0.4 mK.We note that the polarization of the trapping laser is actively engineered by incorporating a liquid crystal retarder.Then the trapped atom is initialized into the hyperfine state of|0〉≡|5s1/2,F=2,mF=0〉 with optical pumping.For the state-selective detection after the manipulating, a circularly polarized probe laser beam resonant with the transition between|5s1/2,F=3〉and|5p3/2,F=4〉is applied to push out the atoms in the state|5s1/2,F=3〉.Whereas,the atoms in the state|5s1/2,F=2〉remain in the trap and contribute to the fluorescence, which is collected by a single-photon counting module.

    Fig.1.Experimental setup and spatial position of the magnetic fields.The 85Rb atom(red dot)is trapped in an 830 nm ODT and coherently manipulated with microwave radiation from a horn outside the vacuum cell.The bias magnetic field Bbias is created by a leaning Helmholtz coil.The compensating magnetic fields Bx and By are also created by Helmholtz coils, which are not shown here.The direction of the external magnetic field Bext (blue line) can point in any direction by changing the Bx and By.Note that the magnetic field values and the angle shown here are not strictly to scale.

    4.Results and discussion

    For our compensation experiment,each experimental sequence starts by loading atoms into the MOT and transferring them to the ODTs.Assuming that the trap depth is shallow,the effect ofBfictis not obvious.On the contrary, if the trap depth is deeper, the atoms in the ODTs experience a higher temperature, leading to an inhomogeneous light shift broadening of the microwave spectrum for a ground-state hyperfine transition.Therefore,the typical parameter for our trap depth ish×(-1.2 MHz).

    Taking theBbiasto be about 0.60 G with a fixed Helmholtz coil current, we measure the dependence ofθxon the compensating Helmholtz coil currentXcurrent.Firstly,we set 40 mA forYcurrent, which is an estimated value for?=0?,and measure the microwave resonant frequencies between Zeeman-sensitive hyperfine states|0〉and|5s1/2,F=3,mF=1〉 in linearly and circularly polarized ODTs.The microwave spectroscopy is driven by microwave radiation at varying frequencies around 3.036 GHz.With eight different values ofXcurrent, eight sets of microwave resonant frequencies are measured, as shown in Fig.2(a).Then, eight corresponding groups ofBext(Btot) in linearly (fully circularly)polarized ODTs, as shown in Fig.2(b), are extracted from the microwave resonant frequencies by using the Breit–Rabi formula(x=μ0B/?EHFS))[36,37]for sublevels of the two hyperfine ground states.When the difference betweenBextandBtotreaches the maximum, theBextis parallel to the trapping laser.We obtain that theBfict=Btot-Bextis 0.12(2) G, which is consistent with the theoretical resultBfict=-0.10(1) (G/MHz)×Ua=0.12(1) G.Finally, substituting the fitted values ofBextandBtotunder the sameXcurrentinto Eq.(7) yields the dependence ofθxonXcurrent,which is shown in Fig.2(c) with purple squares.Theθxscales linearly with theXcurrent, and the fitted equation isθx=-0.20(1)(?/mA)×Xcurrent+23(4)?.According to this equation, we obtain that the calibrated value ofθxis 23(4)?.WhenXcurrentis 115 mA,θxis compensated to 0(4)?, which means that the quantization axis is parallel to the trapping laser.

    Accordingly, setting 115 mA forXcurrent, seven sets of microwave resonant frequencies are measured, as shown in Fig.2(d).The fitted values ofBextandBtotunder the sameYcurrent, as shown in Fig.2(e), are collected in the same way as above.The maximum difference betweenBextandBtotis 0.12(0)G,which is also consistent with the theoretical result 0.12(1) G.Then, the dependence ofθyonYcurrent, which is shown in Fig.2(f)with pink circles,is obtained though Eq.(8).Theθyscales linearly withYcurrent, and the fitted equation isθy=-0.28(1)(?/mA)×Ycurrent+9(2)?.From this equation,we obtain that the originalθyis 9(2)?.WhenYcurrentis 32 mA,θyis compensated to 0(4)?.

    In our experimental system, the calculated values ofθxandθyare 23(4)?and 9(2)?,respectively.With knownθx(θy),we can obtain the projection value of anyBbiasin the other two directions orthogonal to theBbiasdirection and eliminate theθx(θy) by applying the compensating magnetic fieldBx(By) in the equivalent direction.Naturally, the compensating currentXcurrent(Ycurrent)is obtained based on the linear relationship between the compensating magnetic fieldBx(By)and the compensating Helmholtz coil currentXcurrent(Ycurrent).In addition, an estimation of the angle between the other two compensating magnetic fieldsBxandByis(90±10)?,which is obtained by comparing theBfictfrom Figs.2(b)and 2(e).

    To understand the sources contributing to the aboveaccumulated error ofθx(θy), we examine four main sources of error during the measurement of the magnetic fields in our experiment.

    (1)The temperature fluctuation of the atoms As a thermal ensemble with the temperature ofTa,the atoms possess an average potential energy of 3κBTa/2.The average trap depthUaseen by the thermal atoms fulfillsUa=hU0+3κBTa/2,whereU0is the dipole potential at the bottom of the trap.During the experimental sequence, the temperature with a fluctuation of 10% is obtained using the release and recapture method.It introduces a 3% fluctuation in theBfict, which is proportional to the trap depthUa.So the maximum fluctuation of the cos(θ)is 3%,which is the same order of magnitude as the calculated value ofθx(θy).

    (2)Fluctuations in the background magnetic field Using a flux-gate magnetometer, we measured a peak-to-peak value of the magnetic field (with fluctuations of~1.0 mG)dominated by components at 50 Hz.This fluctuation of the background magnetic field in all directions introduces 1%fluctuation ofBfictand 1‰fluctuation ofBext.These parameters introduce the maximal fluctuation of the cos(θ)up to 15‰.

    Fig.2.Dependence of magnetic field and angle on the other two compensating Helmholtz coil currents.(a) The dependence of microwave resonant frequencies in linearly polarized ODTs(red circles)and in fully circularly polarized ODTs(black squares)on Xcurrent.(b)The dependence of Bext (red circles)in linearly polarized ODTs and the Btot (black squares)in fully circularly polarized ODTs on Xcurrent.(c)The dependence of θx on Xcurrent.The purple squares are experimental data and the solid line is the fitting curve.(d)The dependence of microwave resonant frequencies in linearly polarized ODTs(green circles)and in fully circularly polarized ODTs(blue squares)on Ycurrent.(e)The dependence of Bext (green circles)in linearly polarized ODTs and the Btot (blue squares)in fully circularly polarized ODTs on Ycurrent.(f)The dependence of θy on Ycurrent.The pink circles are experimental data and the solid line is the fitting curve.The data points in these figures are averaged over 50 experimental runs.

    (3)Error introduced by the technical limitations The currents of the three pairs of Helmholtz coils are actively locked by proportional integral and differential controllers with precise resistors(RS:VPR221T)which serve as feedback sensors.We monitor the current feedback loop that the current drifts by~1‰.The contributions ofBxandByto the fluctuation ofBextare cos(90?-θ)×?Bxand cos(90?-θ)×?By,which are orders of magnitude smaller than the measurement error and nearly negligible.However,the contribution ofBbiasto the fluctuation ofBextis cos(θ)×?Bbias,which is not negligible.Thus these parameters introduce the fluctuation of the cos(θ)up to 6‰.

    (4)Fitting error of experimental data The inhomogeneous light shift broadening of the microwave spectrum frequency between states|0〉and|5s1/2,F=3,mF=1〉is 1‰,which is linear with Zeeman shiftgFμBmFB.Thus the fitting errors of theBextandBtotare 1‰and the fluctuation of cos(θ) is 6‰.All sources of errors combine to give a~4%fluctuation of the compensated value ofθx(θy),consistent with the measurement result.

    To further verify the differences between the calibrated and uncalibrated angles and the calibration accuracy of the compensating technique,we observe the Rabi oscillations between|0〉and|5s1/2,F=3,mF=0〉states of85Rb qubits in both the linearly and circularly polarized ODTs.Rabi oscillations on Zeeman-insensitive transition are recorded at a trap depth ofh×(-10.0 MHz).TheBfict=-0.10(1)(G/MHz)×Uais about 1.00 G, which is the same order of magnitude as theBext.We fit the experimental data in Fig.3(a) withP(t) =C[1-cos(?Rt)]/2, which yields Rabi frequencies of?R/(2π)=7.2(1) kHz in a linearly polarized ODT and?R/(2π) = 15.9(1) kHz in a circularly polarized ODT before implementing the compensating magnetic fields.Owing to theBfictinduced by the circularly polarized trapping laser,the direction of the quantization axis is different from that in the linearly polarized ODT.Consequently,the projection value of the microwave antenna on the quantization axis varies in ODTs with different polarizations,which leads to inconsistent Rabi frequencies.In addition, the dephasing of Rabi oscillation in circularly polarized ODTs is due to the impurity of the degree of trapping laser polarization, which is caused by the original angle between theBbiasand the propagating direction of the light field for trapping neutral atoms.After applying the compensating magnetic fields of theX- andY-axis withXcurrent=115 mA andYcurrent=32 mA,the Rabi frequency of the Zeeman-insensitive transition in circularly polarized ODTs is almost the same as that in linearly polarized ODTs,as verified by the experimental data in Fig.3(b);the Rabi frequencies are 5.4(2) kHz and 5.7(1) kHz, respectively.The maximum population detected in state|0〉is 90(5)%in Fig.3.This evident decrement,as observed from 100%,is caused by two reasons.One is that some atoms are lost before the state-selective detection due to atoms heating in the ODTs.The other reason is the imperfect optical pumping process.

    Fig.3.Rabi oscillations in linearly polarized ODTs(red dots)and circularly polarized ODTs (black squares) before and after implementing the compensating magnetic fields in the other two directions orthogonal to Bbias direction.(a)Before applying the compensating magnetic fields,the relative difference of Rabi frequencies in linearly and circularly polarized ODTs is 0.377(7)with θx =23(4)?and θy =9(2)?.In addition, the lifetime of the Rabi oscillation in linearly polarized ODTs is about 433μs.(b)After the compensation,the relative difference has been reduced to almost zero with θx =0(4)?and θy=0(4)?,which also substantially enhances the lifetime of the Rabi oscillation in linearly polarized ODT to 1464μs.The data points in this figure are averaged over 50 experimental runs.

    5.Conclusion

    In conclusion,we have presented a novelin situmethod to calibrate the angle between the quantization axis and the propagating direction of a tightly-focused trapping laser.With this method,the projected value of the angle on either of the compensating planes is reduced to 0(4)?,which is very important for the accurate measurement of hyperpolarizability in magicintensity ODTs.Moreover,when the original angle is reduced to nearly zero, the projected value of the microwave power on the quantization axis is a constant, which is beneficial to the coherent manipulation of single qubits in magic-intensity ODT arrays.Our method can be straightforwardly extended to other similar precision measurements with trapped neutral atoms,e.g.,cancellation of the angle between circularly polarized Rydberg excitation lasers and the quantization axis.[38]

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413) and the China Postdoctoral Science Foundation(Grant No.2021M702955).

    猜你喜歡
    王坤劉敏
    Analysis on the cation distribution of MgxNi1-xFe2O4(x=0,0.25,0.5,0.75,1)using M¨ossbauer spectroscopy and magnetic measurement
    富貴車
    安徽文學(2022年1期)2022-01-20 08:24:36
    90后“處長”的神秘“畫皮”
    廉政瞭望(2021年24期)2022-01-15 07:22:24
    90后“處長”的神秘“畫皮”
    血型也會改變
    抗癌之窗(2021年3期)2021-02-12 08:59:08
    我在聽你歌唱
    歌海(2020年5期)2020-11-16 06:04:02
    當年最貧困的同學都經(jīng)歷了什么
    GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES?
    都是愛
    詩選刊(2015年4期)2015-10-26 08:45:21
    Kinetic and Thermodynamic Studies of Acid Scarlet 3R Adsorption onto Low-cost Adsorbent Developed from Sludge and Straw*
    亚洲国产av新网站| 国产色婷婷99| 久久精品夜色国产| 国产成人av激情在线播放 | 99国产精品免费福利视频| 中文字幕亚洲精品专区| 国产精品久久久久成人av| 色视频在线一区二区三区| 精品久久蜜臀av无| 91午夜精品亚洲一区二区三区| 一个人看视频在线观看www免费| 高清毛片免费看| 成年人午夜在线观看视频| 视频中文字幕在线观看| 99热网站在线观看| 天堂中文最新版在线下载| 午夜视频国产福利| 成人毛片60女人毛片免费| 欧美一级a爱片免费观看看| 纯流量卡能插随身wifi吗| 建设人人有责人人尽责人人享有的| 一本一本综合久久| 亚洲精品久久午夜乱码| 日韩av免费高清视频| 七月丁香在线播放| 欧美人与性动交α欧美精品济南到 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲av免费高清在线观看| 大香蕉97超碰在线| 欧美日韩视频高清一区二区三区二| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人看| 日韩精品有码人妻一区| 大陆偷拍与自拍| 91精品三级在线观看| h视频一区二区三区| 亚洲av综合色区一区| 黑人猛操日本美女一级片| 日本黄大片高清| 久久久久久久久久成人| 精品人妻在线不人妻| 亚洲国产精品国产精品| 亚洲成人一二三区av| 九色亚洲精品在线播放| 国产成人a∨麻豆精品| 国产视频首页在线观看| 97超视频在线观看视频| 天天躁夜夜躁狠狠久久av| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| 99国产精品免费福利视频| 国产免费又黄又爽又色| 性色av一级| 日韩亚洲欧美综合| 啦啦啦视频在线资源免费观看| 午夜久久久在线观看| 一本色道久久久久久精品综合| 欧美日韩成人在线一区二区| 在线天堂最新版资源| 插逼视频在线观看| 免费高清在线观看日韩| 人妻制服诱惑在线中文字幕| 国产成人午夜福利电影在线观看| 少妇被粗大的猛进出69影院 | 狂野欧美激情性xxxx在线观看| 2018国产大陆天天弄谢| 免费av中文字幕在线| 亚洲综合色网址| 又粗又硬又长又爽又黄的视频| 亚洲av.av天堂| 男人操女人黄网站| 哪个播放器可以免费观看大片| 日韩av在线免费看完整版不卡| 99精国产麻豆久久婷婷| 国产又色又爽无遮挡免| 丁香六月天网| 国产精品久久久久久精品古装| 美女cb高潮喷水在线观看| 免费观看无遮挡的男女| av天堂久久9| 一级毛片 在线播放| 欧美亚洲 丝袜 人妻 在线| 国产成人精品久久久久久| 国产av精品麻豆| 国产亚洲av片在线观看秒播厂| 国产精品蜜桃在线观看| 日韩一区二区三区影片| 狂野欧美白嫩少妇大欣赏| 国产片特级美女逼逼视频| 久久久久久久久大av| 午夜av观看不卡| 国产黄频视频在线观看| 欧美亚洲 丝袜 人妻 在线| 一级,二级,三级黄色视频| 日本-黄色视频高清免费观看| 国产高清不卡午夜福利| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线播放无遮挡| 人妻一区二区av| 全区人妻精品视频| 最新的欧美精品一区二区| 免费高清在线观看日韩| 国产高清不卡午夜福利| 欧美激情 高清一区二区三区| 国产又色又爽无遮挡免| 欧美激情 高清一区二区三区| 熟女av电影| 欧美+日韩+精品| 久久久欧美国产精品| 午夜免费观看性视频| 日本91视频免费播放| 韩国高清视频一区二区三区| 99热6这里只有精品| 免费日韩欧美在线观看| 2021少妇久久久久久久久久久| 人妻人人澡人人爽人人| 精品国产国语对白av| 国精品久久久久久国模美| 成人漫画全彩无遮挡| 亚洲国产精品一区三区| 久久影院123| 欧美精品国产亚洲| 97超视频在线观看视频| 99热网站在线观看| 国产国拍精品亚洲av在线观看| av一本久久久久| 777米奇影视久久| 欧美精品国产亚洲| 青青草视频在线视频观看| 一区二区三区四区激情视频| 九色成人免费人妻av| 一级毛片电影观看| 国产男女内射视频| 黄片播放在线免费| 国产免费视频播放在线视频| 婷婷色综合www| 国产精品久久久久成人av| 亚洲精品日本国产第一区| 中文乱码字字幕精品一区二区三区| 曰老女人黄片| 国产精品久久久久久精品电影小说| 老司机亚洲免费影院| 日韩亚洲欧美综合| 国产 精品1| 狂野欧美激情性bbbbbb| 国产成人aa在线观看| 欧美亚洲日本最大视频资源| 欧美激情国产日韩精品一区| 视频在线观看一区二区三区| 久久久久视频综合| 久久久久人妻精品一区果冻| 久久青草综合色| 亚洲欧洲日产国产| 欧美少妇被猛烈插入视频| 亚洲色图综合在线观看| 亚洲国产色片| 亚洲精品第二区| 欧美日韩av久久| 欧美精品亚洲一区二区| 韩国av在线不卡| 999精品在线视频| 亚洲精品国产av蜜桃| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 纯流量卡能插随身wifi吗| 久久精品国产鲁丝片午夜精品| 丁香六月天网| 精品一区二区三卡| 亚洲丝袜综合中文字幕| 午夜影院在线不卡| 在线观看人妻少妇| 大又大粗又爽又黄少妇毛片口| 丝瓜视频免费看黄片| 久久久a久久爽久久v久久| 亚洲国产毛片av蜜桃av| 亚洲国产精品国产精品| 亚洲不卡免费看| 久久久久久人妻| 国产日韩欧美亚洲二区| 夜夜爽夜夜爽视频| 亚洲人成网站在线观看播放| 一个人看视频在线观看www免费| 欧美成人精品欧美一级黄| 国产免费又黄又爽又色| 91精品一卡2卡3卡4卡| 国产探花极品一区二区| 久久精品人人爽人人爽视色| 最近中文字幕2019免费版| 免费人妻精品一区二区三区视频| 亚洲精品乱久久久久久| 最近手机中文字幕大全| 91精品国产九色| 精品一品国产午夜福利视频| 亚洲在久久综合| 三级国产精品欧美在线观看| 男女免费视频国产| 蜜臀久久99精品久久宅男| 中文欧美无线码| 国产成人91sexporn| 国产视频首页在线观看| 视频中文字幕在线观看| 日韩欧美精品免费久久| 国产 精品1| 热re99久久精品国产66热6| 999精品在线视频| 丝袜喷水一区| 在线精品无人区一区二区三| 熟女电影av网| 天堂中文最新版在线下载| 日本av免费视频播放| 日本vs欧美在线观看视频| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 青青草视频在线视频观看| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 婷婷成人精品国产| 国产亚洲精品第一综合不卡 | 麻豆乱淫一区二区| 内地一区二区视频在线| 精品久久久噜噜| 伦精品一区二区三区| 国产成人精品无人区| 国产一区二区在线观看日韩| 黑人猛操日本美女一级片| 国产片特级美女逼逼视频| 91精品国产九色| 老女人水多毛片| 久久亚洲国产成人精品v| 熟女电影av网| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 日韩三级伦理在线观看| 人人澡人人妻人| 亚洲四区av| 香蕉精品网在线| 亚洲丝袜综合中文字幕| 国产精品一区二区在线观看99| 哪个播放器可以免费观看大片| 欧美性感艳星| 免费观看的影片在线观看| 色婷婷久久久亚洲欧美| 一本大道久久a久久精品| 嘟嘟电影网在线观看| 免费看不卡的av| 日本免费在线观看一区| 国产 一区精品| 国产极品天堂在线| 国产国语露脸激情在线看| 久久久久视频综合| 街头女战士在线观看网站| 久久精品国产自在天天线| 日韩人妻高清精品专区| 日本wwww免费看| 久久久久人妻精品一区果冻| 一级毛片我不卡| 性色av一级| 亚洲第一av免费看| 日本黄色日本黄色录像| 亚洲国产精品一区二区三区在线| 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频| 久久ye,这里只有精品| 亚洲,一卡二卡三卡| 亚洲国产色片| 久久久久久人妻| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 视频在线观看一区二区三区| 桃花免费在线播放| 久久 成人 亚洲| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 免费看不卡的av| 满18在线观看网站| 少妇被粗大猛烈的视频| 777米奇影视久久| 亚洲,一卡二卡三卡| 99热6这里只有精品| 满18在线观看网站| 亚洲婷婷狠狠爱综合网| 少妇人妻精品综合一区二区| 十八禁高潮呻吟视频| 色5月婷婷丁香| 亚洲欧美精品自产自拍| 一区在线观看完整版| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 亚洲精品久久成人aⅴ小说 | 国产毛片在线视频| 日本黄大片高清| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕最新亚洲高清| 成人无遮挡网站| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 一级毛片黄色毛片免费观看视频| 精品久久国产蜜桃| 国产视频内射| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 国产高清有码在线观看视频| 成人二区视频| 国产精品人妻久久久久久| 成人毛片60女人毛片免费| 久久久久视频综合| 人妻人人澡人人爽人人| videos熟女内射| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 99久久综合免费| 蜜桃久久精品国产亚洲av| 免费大片黄手机在线观看| 如日韩欧美国产精品一区二区三区 | .国产精品久久| 国产熟女午夜一区二区三区 | 亚洲丝袜综合中文字幕| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 大香蕉97超碰在线| 天天影视国产精品| 亚洲经典国产精华液单| 少妇被粗大猛烈的视频| 亚洲怡红院男人天堂| 啦啦啦中文免费视频观看日本| 国产精品一二三区在线看| 午夜视频国产福利| 欧美精品人与动牲交sv欧美| 欧美精品国产亚洲| 中文乱码字字幕精品一区二区三区| 国产亚洲精品第一综合不卡 | 亚洲欧美成人精品一区二区| 日本与韩国留学比较| 午夜久久久在线观看| 国产 精品1| 久热这里只有精品99| 精品熟女少妇av免费看| 免费观看在线日韩| 亚洲av福利一区| 久久国内精品自在自线图片| 亚洲精品一区蜜桃| 成人免费观看视频高清| 99热国产这里只有精品6| 最近中文字幕高清免费大全6| 国产精品久久久久久精品古装| 国产成人精品一,二区| 精品熟女少妇av免费看| 成人国语在线视频| 日韩亚洲欧美综合| 成人综合一区亚洲| 插逼视频在线观看| 国产片内射在线| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区三区| a级毛色黄片| 麻豆成人av视频| 午夜av观看不卡| 嫩草影院入口| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 午夜视频国产福利| 精品一区二区免费观看| 美女国产高潮福利片在线看| 老熟女久久久| 99国产综合亚洲精品| 久久久久视频综合| 性色av一级| 精品国产一区二区三区久久久樱花| 久久久久视频综合| 久久精品国产亚洲网站| 久久久久久久久久成人| 免费观看a级毛片全部| 免费大片18禁| 九九爱精品视频在线观看| 色94色欧美一区二区| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 日韩精品免费视频一区二区三区 | 国产高清三级在线| 成人手机av| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 99国产综合亚洲精品| 在线观看三级黄色| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 青青草视频在线视频观看| 亚洲av不卡在线观看| 黑丝袜美女国产一区| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 亚洲四区av| 国产精品国产av在线观看| 日本av免费视频播放| 少妇猛男粗大的猛烈进出视频| 极品少妇高潮喷水抽搐| 在线看a的网站| 在线观看国产h片| 内地一区二区视频在线| 永久免费av网站大全| 国产亚洲最大av| 九九爱精品视频在线观看| 永久免费av网站大全| 国产精品熟女久久久久浪| 久久婷婷青草| 免费人妻精品一区二区三区视频| 中文字幕av电影在线播放| 91成人精品电影| 亚洲精品,欧美精品| 最近手机中文字幕大全| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 各种免费的搞黄视频| 成人二区视频| 一边摸一边做爽爽视频免费| 亚洲av二区三区四区| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频| 久久久a久久爽久久v久久| 美女大奶头黄色视频| 国产日韩一区二区三区精品不卡 | 女的被弄到高潮叫床怎么办| 99国产综合亚洲精品| 一级a做视频免费观看| 欧美丝袜亚洲另类| 夫妻性生交免费视频一级片| xxx大片免费视频| 99久久精品国产国产毛片| 国产又色又爽无遮挡免| 看非洲黑人一级黄片| 成人无遮挡网站| 成年女人在线观看亚洲视频| 亚洲国产精品专区欧美| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频 | 久久女婷五月综合色啪小说| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产在线免费精品| 精品午夜福利在线看| 性色av一级| 狠狠婷婷综合久久久久久88av| 多毛熟女@视频| 内地一区二区视频在线| 边亲边吃奶的免费视频| 日韩成人av中文字幕在线观看| 老女人水多毛片| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| av黄色大香蕉| 精品国产露脸久久av麻豆| 狂野欧美激情性xxxx在线观看| 久久精品国产a三级三级三级| 国产免费一级a男人的天堂| 国产精品久久久久久av不卡| 91精品三级在线观看| 大片电影免费在线观看免费| 内地一区二区视频在线| 久久久午夜欧美精品| 亚洲精品国产av成人精品| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看| 搡女人真爽免费视频火全软件| 99热全是精品| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| a级毛色黄片| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 精品视频人人做人人爽| 日韩伦理黄色片| 999精品在线视频| 国产精品 国内视频| 亚洲高清免费不卡视频| 99国产精品免费福利视频| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久丰满| 国产一区二区三区av在线| 熟女人妻精品中文字幕| 少妇高潮的动态图| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| av播播在线观看一区| 欧美xxxx性猛交bbbb| 精品人妻偷拍中文字幕| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| videos熟女内射| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 91久久精品电影网| 一区二区三区乱码不卡18| 老司机影院毛片| 亚洲精品av麻豆狂野| 午夜视频国产福利| 久久久久视频综合| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| a 毛片基地| 久久国产精品大桥未久av| 久久久久久久精品精品| 人妻 亚洲 视频| 亚洲精品色激情综合| 三上悠亚av全集在线观看| 国产极品天堂在线| 日韩 亚洲 欧美在线| 高清黄色对白视频在线免费看| 在线观看免费高清a一片| 亚洲,欧美,日韩| 欧美另类一区| 黄色欧美视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品456在线播放app| 男女边摸边吃奶| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 黄色毛片三级朝国网站| 女人久久www免费人成看片| 啦啦啦中文免费视频观看日本| 亚洲精华国产精华液的使用体验| 欧美精品国产亚洲| 一个人免费看片子| 亚洲国产精品专区欧美| 免费看av在线观看网站| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区国产| 永久免费av网站大全| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 精品久久久精品久久久| 久久国产精品大桥未久av| 国产成人a∨麻豆精品| 国产精品一区二区三区四区免费观看| 99九九线精品视频在线观看视频| 久热这里只有精品99| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 搡老乐熟女国产| 国产探花极品一区二区| av在线播放精品| 看免费成人av毛片| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 美女xxoo啪啪120秒动态图| 欧美激情 高清一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 极品人妻少妇av视频| 狠狠精品人妻久久久久久综合| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 久久久午夜欧美精品| 亚洲人与动物交配视频| 美女大奶头黄色视频| a 毛片基地| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 久久国产精品大桥未久av| 18禁在线无遮挡免费观看视频| 女性生殖器流出的白浆| 国产高清有码在线观看视频| 日本黄色日本黄色录像| 91在线精品国自产拍蜜月| 亚洲精品美女久久av网站| 免费观看性生交大片5| 国产探花极品一区二区| 国产黄片视频在线免费观看| 不卡视频在线观看欧美| 免费观看性生交大片5| 国产一区二区三区综合在线观看 | 一级毛片电影观看| 国产av一区二区精品久久| 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 有码 亚洲区| 国产毛片在线视频| 国产av国产精品国产| 国产av精品麻豆| 99久久综合免费| 久久精品人人爽人人爽视色| 亚洲成人手机| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频 | 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 大陆偷拍与自拍| 最近手机中文字幕大全| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 久久免费观看电影| 国产乱来视频区| 如日韩欧美国产精品一区二区三区 |