• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical manipulation of the topological phase in ZrTe5 revealed by time-and angle-resolved photoemission

    2024-01-25 07:11:12ChaozhiHuang黃超之ChengyangXu徐騁洋FengfengZhu朱鋒鋒ShaofengDuan段紹峰JianzheLiu劉見喆LingxiaoGu顧凌霄ShichongWang王石崇HaoranLiu劉浩然DongQian錢冬WeidongLuo羅衛(wèi)東andWentaoZhang張文濤
    Chinese Physics B 2024年1期
    關鍵詞:衛(wèi)東王石

    Chaozhi Huang(黃超之), Chengyang Xu(徐騁洋), Fengfeng Zhu(朱鋒鋒), Shaofeng Duan(段紹峰),Jianzhe Liu(劉見喆), Lingxiao Gu(顧凌霄), Shichong Wang(王石崇), Haoran Liu(劉浩然),Dong Qian(錢冬),2,3,?, Weidong Luo(羅衛(wèi)東),2,§, and Wentao Zhang(張文濤),2,?

    1Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education),School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    3Tsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: time-and angle-resolved photoemission spectroscopy,electronic structure,topological insulator

    1.Introduction

    Significant research has been devoted to investigating topological materials and understanding the transitions among different topological phases, since it can broaden the understanding of new states of matter and have potential applications in electronic and spintronic devices.Transitions between topologically non-trivial and trivial states can be induced by applying external strain,[1,2]magnetic fields,[3,4]pressure,[5,6]thermal lattice expansion,[7]and chemical doping.[8–11]The optical manipulation of topological phase transitions has recently garnered significant attention because of its scientific and practical significance.Various theoretical studies have explored the possibility of optically driven topological phase transitions in different systems.[12–21]However, experimental realization of the optically driven topological phase transitions is quite challenging because of the lack of suitable platforms.

    The quasi-one-dimensional material ZrTe5has a layered orthorhombic crystal structure with a space group ofCmcm(Fig.1(a)).This material gained attention due to an anomalous resistance peak at a specific temperature,which was accompanied by a sign change in thermopower.[22,23]It was predicted to be a three-dimensional topological insulator (TI) near the phase boundary between a strong topological insulator (STI)with gapped bulk bands and surface states on every surface,and a weak topological insulator (WTI) with surface states only on side surfaces.[24]Subsequent experimental work has shown considerable discrepancies regarding the topological properties of the electronic states, which can exhibit the behavior of STI,[25,26]WTI,[27–30]or a Dirac semimetal.[31–35]Recently,the identification of the three-dimensional quantum Hall effect confirmed the presence of nontrivial topological electronic states in ZrTe5.[36]However,the WTI behavior was inconsistent with calculations based on the experimental lattice structure but consistent with the slightly expanded (calculation optimized)lattice constants instead.[24,28]These discrepancies may result from various experimental conditions,including the measuring temperature,sample strain,and dopings,which suggests the potential tunability of the topological phase in ZrTe5.The topological phase transitions in ZrTe5can be realized by tuning the temperature[37]and applying an external magnetic field,[38]pressure,[39]and strain.[40,41]Along with these equilibrium methods, phase transitions at ultrafast time scales can be induced by ultrafast laser excitation through light–matter interactions.Such topological phase transition triggered by the photoinduced coherent phonon modes or atomic motion in ZrTe5has been experimentally and theoretically proposed,[20,42,43]but the direct measurement of the electronic structures during this intriguing phenomenon remains lacking.Searching for electronic evidence of the photoinduced topological phase transition and establishing the underlying ultrafast phase transition physics are important to the field.

    In this paper, we present signatures of an ultrafast photoinduced phase transition in ZrTe5from a weak to a strong topological insulating phase investigated by time- and angleresolved photoemission spectroscopy (TRARPES).In particular, this topological phase transition was characterized by a photoinduced energy gap inversion, and the non-equilibrium STI phase could last for over 2 ps at the highest pump fluence studied.Interestingly, the precisely characterized unoccupied states were consistent with the bulk bands of the STI phase from first-principles calculations based on the experimental crystal lattice constants, although the experimental equilibrium states favor a weak insulating behavior.The observed manipulation of the topological phase cannot be explained by the photoinduced heating of electrons or modification of the conduction band (CB) filling from first-principles calculations.Rather, the screening of Coulomb interactions by photoinduced charge carriers may drive the phase transition,which indicates that many-body effects,including strong electron–electron interactions,may play crucial roles in establishing the weak topological insulating phase in ZrTe5.

    2.Methods

    The TRARPES experiments were performed on a homebuilt TRARPES system[44,45]using a 1.77-eV infrared laser as the pump beam and a 6.05-eV ultraviolet laser as the probe beam.The measurements were conducted with a repetition rate of 250 kHz,and the spot sizes on the sample of the pump and probe beams were approximately 90 μm and 23 μm, respectively.The best overall time resolution and energy resolution of the setup were approximately 113 fs and 16 meV,respectively.It is noteworthy that a high probe photon flux was used in the time-delay measurements to reach reasonable photoemission count rates and the estimated energy resolution was about 60 meV due to the presence of the space charge effect.High-quality single crystals of ZrTe5were grown using the chemical vapor transport method.The sample was cleaved at 25 K in an ultrahigh vacuum with a base pressure better than 3×10?11Torr.The energy shifts induced by the space charge and surface photovoltage effects during the photoemission process were corrected as discussed in the supplemental material,discussion No.1.

    3.Results

    3.1.Unoccupied states

    With improved time and energy resolutions, we could clearly identify the occupied and unoccupied electronic states of ZrTe5around theΓpoint near the time of 0 with a pump fluence of 100 μJ/cm2.The constant-energy maps taken at binding energies from?0.2 eV to 0 eV were consistent with previous reports, which show that the curved rectangle contour that corresponds to the valence band (VB) gradually shrinks to a small point[29,30](Fig.1(b)).The measured band structure above the Fermi energy along ˉΓ–ˉX(kx)from approximately?0.3 eV to 0.8 eV matched the firstprinciples calculation based on the experimental lattice constants (Fig.1(c), supplemental material, discussion No.2).By contrast, the calculated band structure based on the optimized lattice constants clearly deviated from the experimental unoccupied state for the conduction band near the Fermi energy and the band near the momentum±0.1 ?A?1and 0.4 eV above the Fermi energy (Figs.1(c) and 1(e)).The band structure measured with a moderate pump fluence of 25μJ/cm2exhibited similar characteristics,generally aligning well with a STI(Fig.1(d)).We note that the calculations were performed based on density functional theory(DFT)with the spin–orbit coupling effect andkzeffect.The measurement of the unoccupied band structure indicates that the experimental lattice configuration of ZrTe5favors a STI, but many recent experiments have suggested that it is a WTI instead.[28–30,40]To resolve this controversy, we performed ultrafast dynamics measurements on the electronic states near the Fermi energy in ZrTe5,and we elaborate on this below.

    Fig.1.(a)A schematic of the TRARPES experimental setup, crystal structure,bulk Brillouin zone,and projected(010)surface Brillouin zone of ZrTe5.The polarizations of the pump and probe beams are both perpendicular to the a axis of the crystal.(b)Constant-energy mappings at different energy cuts from ?0.2 eV to 0.25 eV.(c) Band structure measured along ˉΓ–ˉX (kx) as indicated by the black line in(b)and the calculated bulk bands based on the experimental lattice constant plotted on top of the spectra with an offset of?0.04 eV.The spectra in(b)and(c)were measured at a delay time near time 0 with a pump fluence of 100 μJ/cm2.The intensities were normalized to the height of the momentum distribution curve to better illustrate the unoccupied states.(d)Same as(c)but measured with a moderate pump fluence of 25μJ/cm2.(e)Calculated bulk bands for the STI(black curves,experimental lattice constant)and WTI(red curves,optimized lattice constant)with an offset of ?0.04 eV.

    3.2.Temporal evolution

    After the pumping with an intense fluence of 125μJ/cm2,the CB and VB near the Fermi energy moved toward each other and a nominal negative energy gap of approximately?20 meV appeared at 0.15 ps and such negative energy gap lasted longer than 2 ps after photoexcitation and the nominal gap became positive at a longer delay time of 3.15 ps(Figs.2(a) and 2(d)).The excited CB bottom remained resolvable up to 3.15 ps, and the extracted energy gap was approximately 40 meV, which is qualitatively consistent with previous equilibrium experiments.[29,40,46]After the pumping with a moderate fluence of 25μJ/cm2,the CB and VB maintained a significant gap of approximately 10 meV at 0.15 ps,and they gradually separated at longer delay times(Fig.2(c)).The observed shrinkage of the energy gap after photoexcitation can be explained by the combined effects of the increased electron velocities and shifts of the CB and VB bands(Fig.2(b)).All the CB bottom (CBB) and VB top (VBT)were extracted by linearly extrapolating the dispersion derived from the momentum distribution curves(MDCs)between the same momentum (±0.032 ?A?1and±0.022 ?A?1for the CB and±0.036 ?A?1and±0.02 ?A?1for the VB, respectively).This method for estimating the energy gap was widely used in previous reports.[30,40]We note that the fitted momenta of the CBB and VBT are offset and not at zero momentum.This is probably due to the fact that the constant-energy contour is not symmetric in all directions, and there was a slight misalignment in the tilt angle and in-plane angle,accompanied by a fitting error.

    According to the observed indicators of photoinduced inversion of the energy gap, it is reasonable to conclude that strong photoexcitation potentially drives an ultrafast phase transition from the weak topological insulating phase to the underlying strong insulating phase in ZrTe5.This conclusion is supported by several factors: 1)previous experiments have shown evidence of an equilibrium weak topological insulating phase;[27–30]2)calculations based on experimental lattice constants suggest a strong insulating behavior,since the calculated electronic structure very well matches the experimental unoccupied states(Fig.1(c));3)a negative bulk energy gap in a strong insulating phase has been predicted by various previous theoretical works.[20,24,40,41,43]

    Fig.2.(a) Near-Fermi-energy electronic structures measured with the pump fluence of 125μJ/cm2 at 0.15 ps,1.15 ps,and 3.15 ps.The thick blue lines denote the band dispersions extracted from the peak positions of the momentum dispersion curves.The white lines are the fittings to the linear functions.The fitted momenta of the CBB and VBT are offset and not at the zero momentum possibly due to slightly misaligned sample orientation.To improve the statistics of the data above the Fermi energy,the spectra were averaged within a time window of 0.4 ps when extracting MDCs of the CB.(b) The average MDC dispersions of the CB and VB at 0.15 ps and 3.15 ps.(c) Energy position of the CBB and VBT as a function of the delay time with the pump fluences of 25 μJ/cm2 and 125 μJ/cm2, which was estimated by linearly extrapolating the high-energy dispersion.(d)Nominal gap size from the energy difference between CBB and VBT at different pump fluences as a function of the delay time.

    3.3.Fluence dependence

    The critical pump fluence for the observed gap inversion behavior was determined by conducting fluence-dependent measurements of the energy gap between CB and VB with better data quality.At a delay time of 0.25 ps, a positive energy gap was observed for the pump fluence of 25 μJ/cm2,while the gap was closed or even negative for higher pump fluences of 80μJ/cm2and 140μJ/cm2(Fig.3(a)).Considering that the energy gap size might be underestimated by linearly extrapolating the dispersions, we applied a more complex model to fit the MDC dispersions(supplemental material,discussion No.3).The results also yielded a fully closed gap at a high pump fluence immediately following photoexcitation.The pump-induced large downshift of the CB can be also indicated by the enhanced absolute Fermi velocity (6.8×105m/s and 8.8×105m/s at the fluences of 25μJ/cm2and 140μJ/cm2,respectively) (Fig.3(b)).The energies of the CBB and VBT as functions of the pump fluence clearly indicated an energy gap inversion around 60 μJ/cm2at 0.25 ps (Fig.3(c)).The critical pump fluence was also observed in the extracted energy gap as a function of the pump fluence for the delay times of 0.65 ps, 1.15 ps, and 2.15 ps but absent for delay times at 5.15 ps (Fig.3(d)).Although the fluence resolution was reduced during the experiments to obtain reasonable statistics for the MDC dispersion analysis in the unoccupied states,the critical pump fluence remained higher at longer delay times,which suggests that the observed energy gap is potentially related to the photoinduced non-equilibrium charge carriers,which should exponentially decay as a function of the delay time.The photoinduced shrinkage of the energy gap saturated above about 120μJ/cm2at 0.25 ps(Figs.3(c)and 3(d)),giving a fully inverted gap of about 35 meV.

    Fig.3.(a) Non-equilibrium electronic structures of ZrTe5 measured along kx at 0.25 ps with pump fluences of 25 μJ/cm2, 80 μJ/cm2, and 140μJ/cm2.(b)The average MDC dispersions of the CB and VB with pump fluences of 25μJ/cm2 and 140μJ/cm2 at 0.25 ps.(c)Energies of the CBB and VBT as functions of the pump fluence at 0.25 ps.(d)The fluence-dependent bulk gap sizes estimated by linearly extrapolating the MDC dispersions measured at different delay times as noted by the numbers.Each curve is offset by 50 meV vertically.The CB cannot be resolved clearly below 50μJ/cm2 at 5.15 ps.The gray and red shaded areas indicate the positive and negative gaps,respectively.

    4.Discussion

    Several possible mechanisms for the experimentally observed optical manipulation of the topological phase can be excluded.During the photoexcitation process, the electronic temperature(Te)can be temporarily heated to thousands of degrees due to electron–electron scattering for the pump photon energy and fluence in the experiments.However,the effect ofTeon the phase transition can be excluded because the bulk gap size only slightly increased from 60 meV to 73 meV when the electronic temperature was increased from 300 K to 6000 K,as shown in the calculated near-Fermi-energy band structures in Figs.4(a) and 4(b).Additional calculations from very low temperature to 6000 K demonstrated that the electronictemperature-driven energy gap monotonically increases whenTeincreases (Fig.4(b)), which contradicts these experimental observations.Then, we altered the occupancy of the VB and CB as an analogy of the excited state of the system to calculate the bulk energy gap as a function of the occupation rate (Ro) (Figs.4(c)and 4(d)).However, the gap size is only reduced by a few meV up toRoof 40%.For the pump fluences in the experiments, the estimated photoinduced change in occupancy was less than 2%,which is far from driving the tens-meV change in the energy gap observed in the experiments.In addition, specific coherent phonon modes can induce a phase transition between STI and WTI states,[20,42,43]but the magnitude of the energy shift induced by the coherent phonon mode of 1.2 THz was less than 3 meV(supplemental material,Fig.5),which is much smaller than the photoinduced energy gap change in Figs.2 and 3.Moreover, the observed gap inversion behavior is unlikely to be attributed to the surface photovoltage effect, given its usual duration of several tens of picoseconds.[47]Finally,it cannot be a result of atomic motions in the crystal lattice, since the atomic position is almost unchanged in this short timescale of picoseconds.[42]

    Fig.4.(a) Calculated band structures in the STI case for electronic temperature Te at 300 K and 6000 K.(b) Gap size at Γ as a function of Te.(c)Calculated band structures in the STI case for different occupation rates(Ro)in CBs at 1%and 40%at 0 K.The band splitting for Ro=40%results from the enhanced spin–orbit coupling by increasing Ro.(d)Gap size as a function of Ro.

    The existence of non-negligible Coulomb interactions may play a crucial role in establishing the WTI phase, since in a Dirac system, spontaneous electron–hole pair formation through Coulomb interactions is favored due to the Dirac electron–hole symmetry.[48–50]Indeed, recent nuclear magnetic resonance studies on ZrTe5have shown evidence of exciton formation near the Fermi energy.[51]The previously observed WTI characteristics in equilibrium studies on ZrTe5may occur because a sizable Coulomb interaction breaks the energy gap inversion, although the experimental lattice constants favor an STI based on the first-principle calculation.In this context, we propose that upon photoexcitation, the photoinduced non-equilibrium charge carriers strengthen the screening of Coulomb interactions,as observed in TiSe2,[52,53]GaAs,[54]and Ta2NiSe5,[55]and the inverted energy gap and associated STI can be restored above the critical pump fluence,where photoinduced non-equilibrium charge carriers can sufficiently screen the possible electron–hole interaction.However, additional theoretical studies with sizable Coulomb interaction or other many-body effects considered are necessary to confirm this picture.

    5.Conclusion

    In conclusion, we have investigated the ultrafast electronic dynamics of ZrTe5and provided evidence of an optical manipulation of its topological phase.Such an ultrafast phase transition is not only physically interesting but also has potential novel applications in the future high-speed electronic devices.The photoexcited charge carrier screening appears to be a plausible mechanism for this phase manipulation.Moreover, our findings provide new insights into the longstanding controversy regarding the strong and weak topological properties in ZrTe5.Many-body effects including electron–electron interactions may have driven ZrTe5out of the strong topological insulating phase that the first-principles calculations based on experimental lattice constants predict, which results in a weak topological insulating phase.

    Acknowledgements

    W.T.Z.acknowledges support from the National Key R&D Program of China (Grant Nos.2021YFA1400202 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos.12141404 and 11974243),and the Natural Science Foundation of Shanghai (Grant Nos.22ZR1479700 and 23XD1422200).S.F.D.acknowledges support from the China Postdoctoral Science Foundation (Grant No.2022M722108).D.Q.acknowledges support from the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2021YFA1400100) and the National Natural Science Foundation of China (Grant No.12074248).

    猜你喜歡
    衛(wèi)東王石
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    祝衛(wèi)東
    王石:創(chuàng)業(yè)要有反彈力
    愛打噴嚏的小河馬
    王石,退出萬科是進步
    為創(chuàng)始人王石加油
    不醉不行
    王石審判王石
    種心情
    POWER, DESIRE, AND VIOLENCE
    漢語世界(2014年4期)2014-02-27 01:19:23
    毛片女人毛片| 老司机午夜福利在线观看视频| 欧美性猛交黑人性爽| 色综合亚洲欧美另类图片| 亚洲片人在线观看| 中文字幕人成人乱码亚洲影| 国产精品久久久av美女十八| 99国产极品粉嫩在线观看| 午夜影院日韩av| 99国产极品粉嫩在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲乱码一区二区免费版| 少妇人妻一区二区三区视频| 精品久久久久久,| 嫩草影视91久久| 波多野结衣高清无吗| 97碰自拍视频| 人人妻,人人澡人人爽秒播| 男人舔奶头视频| 我要搜黄色片| videosex国产| 国产成年人精品一区二区| 欧美黄色片欧美黄色片| 国产午夜精品久久久久久| 长腿黑丝高跟| 亚洲精品国产精品久久久不卡| 90打野战视频偷拍视频| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 国产伦人伦偷精品视频| 欧美在线一区亚洲| 香蕉国产在线看| 最新在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久久久久| 国产在线精品亚洲第一网站| 免费在线观看日本一区| 中文字幕av在线有码专区| 日本熟妇午夜| 一二三四在线观看免费中文在| 一区二区三区高清视频在线| 国产精品综合久久久久久久免费| 亚洲专区中文字幕在线| 午夜福利18| 国内揄拍国产精品人妻在线| 天堂√8在线中文| 国产亚洲欧美在线一区二区| 俄罗斯特黄特色一大片| 免费观看人在逋| 国产精品 国内视频| 国产亚洲av嫩草精品影院| 无人区码免费观看不卡| 熟女少妇亚洲综合色aaa.| 亚洲天堂国产精品一区在线| 99精品在免费线老司机午夜| 波多野结衣巨乳人妻| 特级一级黄色大片| 在线a可以看的网站| 精品国产超薄肉色丝袜足j| 亚洲专区国产一区二区| 日本黄色视频三级网站网址| 午夜视频精品福利| 神马国产精品三级电影在线观看 | 欧美黑人欧美精品刺激| 亚洲无线在线观看| 精品免费久久久久久久清纯| 欧美成人一区二区免费高清观看 | 国产亚洲欧美在线一区二区| 在线观看美女被高潮喷水网站 | 亚洲中文av在线| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| 久久精品成人免费网站| 国产真实乱freesex| 97超级碰碰碰精品色视频在线观看| 91麻豆av在线| 久久久久久久久免费视频了| 看片在线看免费视频| 亚洲av成人一区二区三| 国产精品乱码一区二三区的特点| 成年版毛片免费区| 老汉色∧v一级毛片| 亚洲乱码一区二区免费版| 91麻豆精品激情在线观看国产| 亚洲中文av在线| 一夜夜www| 久久久久国内视频| 免费在线观看黄色视频的| 一卡2卡三卡四卡精品乱码亚洲| 亚洲男人的天堂狠狠| 50天的宝宝边吃奶边哭怎么回事| 麻豆一二三区av精品| 欧美精品啪啪一区二区三区| 国产精品99久久99久久久不卡| 亚洲 国产 在线| 国产真人三级小视频在线观看| 深夜精品福利| 淫秽高清视频在线观看| 黄色视频,在线免费观看| 男女做爰动态图高潮gif福利片| 搡老岳熟女国产| 亚洲 国产 在线| 色噜噜av男人的天堂激情| 久久中文看片网| 成在线人永久免费视频| 69av精品久久久久久| 国产成人影院久久av| 国产精品美女特级片免费视频播放器 | 777久久人妻少妇嫩草av网站| 两个人的视频大全免费| 美女大奶头视频| 99精品欧美一区二区三区四区| 极品教师在线免费播放| 久久精品成人免费网站| 国产精品美女特级片免费视频播放器 | 制服丝袜大香蕉在线| 91国产中文字幕| 两人在一起打扑克的视频| 伦理电影免费视频| 亚洲成av人片在线播放无| 日本熟妇午夜| 国产精品综合久久久久久久免费| 国产一区在线观看成人免费| 床上黄色一级片| 啪啪无遮挡十八禁网站| 美女 人体艺术 gogo| 国产高清videossex| 丁香六月欧美| 婷婷亚洲欧美| 国内少妇人妻偷人精品xxx网站 | 国产精品影院久久| 亚洲18禁久久av| 在线观看美女被高潮喷水网站 | 亚洲av熟女| 一级作爱视频免费观看| 蜜桃久久精品国产亚洲av| 久久久久久久久中文| 国产视频一区二区在线看| 丁香欧美五月| 国产亚洲欧美在线一区二区| 久久久久国内视频| 精品欧美一区二区三区在线| 国产1区2区3区精品| 久热爱精品视频在线9| 国产成人系列免费观看| 久久久水蜜桃国产精品网| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 亚洲精品中文字幕一二三四区| 搡老妇女老女人老熟妇| 免费人成视频x8x8入口观看| 狠狠狠狠99中文字幕| 国产精品 国内视频| 成人国语在线视频| 亚洲 欧美一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲专区中文字幕在线| 国产av一区二区精品久久| 欧美日韩亚洲综合一区二区三区_| 又大又爽又粗| 最新在线观看一区二区三区| 怎么达到女性高潮| 精品少妇一区二区三区视频日本电影| 此物有八面人人有两片| 久久天堂一区二区三区四区| 香蕉丝袜av| 久久久国产成人免费| 日韩欧美在线二视频| 视频区欧美日本亚洲| 我要搜黄色片| 久久香蕉激情| 高清在线国产一区| 免费在线观看视频国产中文字幕亚洲| 亚洲成人久久性| 久久久国产欧美日韩av| 老汉色av国产亚洲站长工具| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| 国产av麻豆久久久久久久| 精品一区二区三区视频在线观看免费| 国产精品香港三级国产av潘金莲| 国产一区二区三区在线臀色熟女| 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 国产亚洲精品综合一区在线观看 | 母亲3免费完整高清在线观看| 99热6这里只有精品| 免费在线观看日本一区| 国产精品1区2区在线观看.| 神马国产精品三级电影在线观看 | 又爽又黄a免费视频| 亚洲性久久影院| 男的添女的下面高潮视频| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 国产精品伦人一区二区| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 国产不卡一卡二| 免费观看人在逋| 欧美3d第一页| 麻豆一二三区av精品| 精品一区二区三区人妻视频| avwww免费| 亚洲最大成人av| 最近手机中文字幕大全| 亚洲美女搞黄在线观看| 欧美日本视频| 欧美一区二区精品小视频在线| 午夜a级毛片| а√天堂www在线а√下载| 成人鲁丝片一二三区免费| 日韩欧美在线乱码| 亚洲成人久久性| 久久久久久久久大av| 嫩草影院新地址| 美女 人体艺术 gogo| 可以在线观看毛片的网站| 免费观看在线日韩| 国产成人91sexporn| 亚洲精品影视一区二区三区av| 麻豆乱淫一区二区| 国产伦精品一区二区三区四那| 身体一侧抽搐| 97超视频在线观看视频| 能在线免费看毛片的网站| 国产精品伦人一区二区| 久久亚洲国产成人精品v| 亚洲一区二区三区色噜噜| 免费av毛片视频| 在线观看午夜福利视频| 日本在线视频免费播放| 一级黄色大片毛片| 最新中文字幕久久久久| 国产黄色小视频在线观看| 美女高潮的动态| 亚洲成av人片在线播放无| 久久久久久九九精品二区国产| av又黄又爽大尺度在线免费看 | 长腿黑丝高跟| 亚洲最大成人手机在线| 亚洲国产精品国产精品| 免费无遮挡裸体视频| 亚洲国产精品sss在线观看| 一级二级三级毛片免费看| 狂野欧美白嫩少妇大欣赏| 成人欧美大片| 亚洲国产高清在线一区二区三| 草草在线视频免费看| 美女内射精品一级片tv| 老司机福利观看| h日本视频在线播放| 在线观看一区二区三区| 亚洲av第一区精品v没综合| 秋霞在线观看毛片| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 97人妻精品一区二区三区麻豆| 日韩欧美三级三区| 男插女下体视频免费在线播放| 男女那种视频在线观看| h日本视频在线播放| 久久婷婷人人爽人人干人人爱| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 在线观看免费视频日本深夜| 久久人人爽人人爽人人片va| 日韩亚洲欧美综合| 国内精品久久久久精免费| 边亲边吃奶的免费视频| 精品久久久久久久久av| 国产成人aa在线观看| 亚洲欧美成人精品一区二区| 最好的美女福利视频网| 成人漫画全彩无遮挡| 国产日本99.免费观看| 亚洲欧美成人精品一区二区| 只有这里有精品99| 一夜夜www| 国产精品蜜桃在线观看 | 精华霜和精华液先用哪个| 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 美女黄网站色视频| 欧美色视频一区免费| 免费av观看视频| 美女大奶头视频| 一区二区三区免费毛片| 十八禁国产超污无遮挡网站| 麻豆久久精品国产亚洲av| 中国国产av一级| 精品久久久久久久久av| 亚洲国产色片| 中文字幕av在线有码专区| 午夜福利在线在线| а√天堂www在线а√下载| 晚上一个人看的免费电影| 黄色日韩在线| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 一级毛片aaaaaa免费看小| 日韩欧美 国产精品| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 亚洲性久久影院| 久久亚洲精品不卡| 亚洲精品国产av成人精品| 日韩一区二区视频免费看| 国产爱豆传媒在线观看| 舔av片在线| 欧美另类亚洲清纯唯美| 高清午夜精品一区二区三区 | 亚洲在线自拍视频| 久久久久久九九精品二区国产| 免费观看人在逋| 级片在线观看| 久久久久久九九精品二区国产| 99九九线精品视频在线观看视频| 国产亚洲欧美98| 日本成人三级电影网站| 久久人人爽人人爽人人片va| 中出人妻视频一区二区| 久久精品91蜜桃| 免费看美女性在线毛片视频| 婷婷色av中文字幕| 中文字幕久久专区| 日韩av不卡免费在线播放| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| av在线播放精品| 亚洲欧美日韩高清在线视频| 日韩人妻高清精品专区| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久久久久久| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 亚洲精品乱码久久久久久按摩| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 国产乱人视频| 校园人妻丝袜中文字幕| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 男女那种视频在线观看| av天堂在线播放| 好男人视频免费观看在线| 成人综合一区亚洲| 91aial.com中文字幕在线观看| 天天躁日日操中文字幕| 久久这里有精品视频免费| 日韩欧美精品v在线| 男插女下体视频免费在线播放| 亚洲丝袜综合中文字幕| av国产免费在线观看| 午夜精品在线福利| 精品少妇黑人巨大在线播放 | 久久精品国产清高在天天线| 亚洲成人久久爱视频| 不卡视频在线观看欧美| 国产精品一及| 国产麻豆成人av免费视频| 岛国毛片在线播放| 精品久久久噜噜| 成人毛片a级毛片在线播放| 免费观看人在逋| 又爽又黄a免费视频| 国产高潮美女av| 天美传媒精品一区二区| 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| 啦啦啦观看免费观看视频高清| 国产午夜精品久久久久久一区二区三区| 日韩欧美精品免费久久| 欧美一级a爱片免费观看看| 成人三级黄色视频| 亚洲最大成人手机在线| 黄色配什么色好看| 长腿黑丝高跟| 午夜精品国产一区二区电影 | 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 国产亚洲欧美98| 国产极品精品免费视频能看的| 日韩成人av中文字幕在线观看| 久久久精品大字幕| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 欧美激情国产日韩精品一区| 国产精品,欧美在线| 日本撒尿小便嘘嘘汇集6| 在线天堂最新版资源| 舔av片在线| 久久精品国产亚洲av天美| 国产精品久久久久久亚洲av鲁大| 美女内射精品一级片tv| 国产激情偷乱视频一区二区| 国内揄拍国产精品人妻在线| 日韩欧美一区二区三区在线观看| 男人和女人高潮做爰伦理| 国产午夜精品论理片| 久久久久久久久大av| 欧美丝袜亚洲另类| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 亚洲久久久久久中文字幕| 男人舔奶头视频| 久久国内精品自在自线图片| 国产探花极品一区二区| 长腿黑丝高跟| 亚洲久久久久久中文字幕| 国产av在哪里看| 久久九九热精品免费| 国产精品国产高清国产av| 亚洲精品国产成人久久av| 别揉我奶头 嗯啊视频| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 深夜精品福利| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 天天躁日日操中文字幕| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 精品日产1卡2卡| 欧美又色又爽又黄视频| 一本一本综合久久| 麻豆成人av视频| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 欧美日本亚洲视频在线播放| 亚洲四区av| 伊人久久精品亚洲午夜| 国产一区二区亚洲精品在线观看| 又爽又黄a免费视频| 国内揄拍国产精品人妻在线| 欧美3d第一页| 人妻夜夜爽99麻豆av| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 亚洲精品成人久久久久久| 久99久视频精品免费| 校园人妻丝袜中文字幕| 老司机影院成人| 波野结衣二区三区在线| 深爱激情五月婷婷| 啦啦啦韩国在线观看视频| 免费av毛片视频| 午夜福利成人在线免费观看| 国产亚洲5aaaaa淫片| 一进一出抽搐动态| 亚洲欧美精品自产自拍| 六月丁香七月| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 秋霞在线观看毛片| 欧美一区二区精品小视频在线| 日本欧美国产在线视频| 欧美区成人在线视频| 69人妻影院| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国国产精品蜜臀av免费| 联通29元200g的流量卡| 爱豆传媒免费全集在线观看| 国产精品永久免费网站| 欧美日韩精品成人综合77777| 人妻系列 视频| 国产精品一区二区性色av| 日韩高清综合在线| 中国美白少妇内射xxxbb| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久| 青春草国产在线视频 | 内地一区二区视频在线| 99热这里只有是精品50| 不卡视频在线观看欧美| 九九在线视频观看精品| 一级毛片电影观看 | 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 18+在线观看网站| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 欧美色视频一区免费| 精品熟女少妇av免费看| 最后的刺客免费高清国语| 波野结衣二区三区在线| 日本av手机在线免费观看| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 国产成人精品婷婷| 久久久a久久爽久久v久久| 美女黄网站色视频| 国产av一区在线观看免费| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 好男人在线观看高清免费视频| kizo精华| 亚洲精品国产成人久久av| 国产在线男女| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 深夜a级毛片| 久久午夜亚洲精品久久| 一级黄色大片毛片| a级毛片a级免费在线| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 亚洲一区高清亚洲精品| 国产极品天堂在线| 亚洲国产精品成人久久小说 | 在现免费观看毛片| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 免费观看在线日韩| 99在线视频只有这里精品首页| av在线蜜桃| 成人性生交大片免费视频hd| 悠悠久久av| 午夜爱爱视频在线播放| 1000部很黄的大片| 精品人妻熟女av久视频| 国产熟女欧美一区二区| 国产精品久久视频播放| 欧美区成人在线视频| 午夜福利视频1000在线观看| 人妻夜夜爽99麻豆av| 在线免费十八禁| 男人舔奶头视频| 国产亚洲欧美98| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| avwww免费| 精品人妻一区二区三区麻豆| 国产私拍福利视频在线观看| 国产成人精品一,二区 | 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| av专区在线播放| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 一级二级三级毛片免费看| 国产精品乱码一区二三区的特点| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 一本久久中文字幕| 亚洲成人久久性| 日韩一区二区三区影片| 亚洲精品日韩av片在线观看| 欧美高清性xxxxhd video| 高清日韩中文字幕在线| 十八禁国产超污无遮挡网站| 亚洲av成人av| 在线国产一区二区在线| 深爱激情五月婷婷| 亚洲国产精品合色在线| 国产成人影院久久av| 99久久久亚洲精品蜜臀av| 麻豆精品久久久久久蜜桃| www日本黄色视频网| 久久精品国产鲁丝片午夜精品| 色吧在线观看| 丝袜喷水一区| 男女边吃奶边做爰视频| 欧美日韩国产亚洲二区| 最近中文字幕高清免费大全6| av福利片在线观看| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 国产日本99.免费观看| 日韩中字成人| av黄色大香蕉| 国产黄a三级三级三级人| 成人欧美大片| 中国国产av一级| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 精品人妻偷拍中文字幕| 国产亚洲欧美98| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 伊人久久精品亚洲午夜| 国模一区二区三区四区视频| 国产免费一级a男人的天堂| 久久久久性生活片| 日韩欧美精品v在线| 午夜久久久久精精品|