• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy

    2022-11-17 03:00:08NaLI李娜EdwardHAREFAandWeidongZHOU周衛(wèi)東
    Plasma Science and Technology 2022年11期
    關(guān)鍵詞:衛(wèi)東李娜

    Na LI(李娜),Edward HAREFA and Weidong ZHOU(周衛(wèi)東)

    Key Laboratory of Optical Information Detection and Display Technology of Zhejiang,Zhejiang Normal University,Jinhua 321004,People’s Republic of China

    Abstract Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample.The laser crater morphologies and ablation volumes were measured.An inter-pulse time delay dependent ablation efficiency on a nanosecond laser-heated sample was observed,which was similar to the trend of spectral intensity versus inter-pulse time delay in the delay time less than 3 μs.Based on the observation,the nanosecond pulse laser preheating effect on subsequent second laser ablation and signal enhancement is discussed,which will be helpful for understanding the ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.

    Keywords:enhancement mechanism,laser ablation,crater morphology,target preheating

    1.Introduction

    Laser-induced breakdown spectroscopy(LIBS),an atomic emission spectroscopy technique,has been widely investigated due to its unique features,including simple sample preparation,fast and simultaneous multi-element detection,rapidin situanalyses,etc[1,2].As the detection capability and sensitivity of traditional single-pulse(SP)LIBS are not good enough for real analytical application,many methods for enhancing the signal intensity of LIBS have been proposed[2],such as a spark or glow discharge enhanced LIBS[3-5],spatial and magnetic confined LIBS[6-8],microwave-assisted LIBS[9,10],sample preheating[11,12]and dual-pulse(DP)LIBS[13,14]etc.Among these methods,the DP-LIBS technique has attracted much more attention due to its advantages of simple instrument requirement and convenient operation.

    In the standard collinear DP-LIBS,two nanosecond pulse laser beams are coaxial and incident perpendicularly on the sample surface with identical focus points,and both produce ablation with a certain inter-pulse time delay.As an effective and completive signal enhancement technique for SP-LIBS,understanding the basic enhancement mechanisms is highly desirable.To date,a great effort has been devoted to elucidating the mechanisms that yield the signal enhancement in collinear DP-LIBS[13-24].In general,double pulse LIBS increases the ablation and plasma volume,affects the plasma expansion rates,temperature and ion density in the plasma kernel,and extends the decay time of plasma emissions.All these factors are mixed together to affect the line intensities of LIBS.Specific to the role of the first pulse,it causes on one hand a temporary rise of the target surface temperature,and changes the physical properties of the target material.On the other hand,it forms a plasma plume and shock wave(SW)that produces a transient change in the local atmospheric conditions,leading to the better transmission and coupling of radiant energy[19],and the varying fluid dynamics of the plasma[18,22].These two effects cooperate to increase the coupling of the second pulse energy with the target surface,so that the total mass ablated is larger than that in the case of a single pulse of the same total energy[25,26].However,it is difficult to quantify the relative contributions of physical properties(sample temperature,surface texturing,etc)changes and ambient rarefaction to increase ablation efficiency.To our knowledge,no one work in the literature achieved this quantification.

    As we all know,laser surface treatment will increase the temperature of the sample,change the physical properties of the sample,and leave some irregular patterns on the surface after cooling.Obviously,after being preheated by the first pulse laser,the increase in temperature and the change of physical properties of the target material surface will make the subsequent laser ablation easier in the standard collinear DPLIBS configuration.To know the relative contributions of the preheating effect of the first laser would be helpful for understanding the mechanism of signal enhancement in standard collinear DP-LIBS.Long pulse laser heating effect with a pulse width of 60 μs had been investigated recently by Cuiet alin their non-standard collinear long-short DP-LIBS[15].An inter-pulse time delay-dependent ablation and signal enhancement are observed,with a maximum ablation and line intensity at 30 μs inter-pulse time delay.The optimized time delay is just in the middle of long pulse duration,which is very different from that observed in standard collinear DPLIBS with two nanosecond laser pulses[27,28].

    In this work,a focus-offset collinear dual-pulse laserinduced breakdown spectroscopy(FOC-DP-LIBS)was proposed and used to investigate the laser ablation process and signal enhancement in collinear DP-LIBS.In the FOC-DPLIBS technique,the two-laser focuses are a few millimeters away along the laser pulse incident direction.This will make the first pulse have a larger radiation area on the sample surface than the second ablation pulse,which is different from that in standard collinear DP-LIBS configuration.Meanwhile,when using the first laser with relatively low laser energy,the first laser cannot generate laser plasma,but only heat,melt and modify the sample surface.To some extent,it leads to an increase in ambient air temperature around the sample.The inter-pulse time delay dependent FOC-DP-LIBS spectroscopy and the morphologies of laser craters were recorded under a low first laser energy condition.Good consistency of ablation volume and spectral intensity was observed in the delay time of less than 3 μs.Based on the results,an inter-pulse timedependent nanosecond laser preheating effect on subsequent laser ablation and spectral intensity enhancement was derived.

    2.Experimental

    The schematic diagram of the experimental setup used for the FOC-DP-LIBS configuration is shown in figure 1.Two Q-switched Nd:YAG lasers operated at 1064 nm with a pulse width of 15 ns(FWHM)are used here.Both lasers were operated at 1 Hz for the experiments described here.In the experiment,the first laser energy was fixed at 9 mJ which has a flat beam profile,while the second laser energy was kept at 36 mJ but with a Gaussian profile.Both laser beams were combined and aligned in a collinear configuration by a polarizing beam combiner(PBC).The focal points of the twolaser beams are well separated and have a spatial offset of about~7 mm.The produced craters have a diameter of~300 μm for the second laser and~600 μm for the first laser,and if firing the first laser with low energy of 9 mJ,no obvious plasma emission can be generated by the first laser.The FOCDP-LIBS plasma emission was coupled into an optic fiber by a quartz lens,and then delivered through the fiber to the entrance slit of a Czerny-Turner spectrograph(Andor Shamrock SR-303i),equipped with an ICCD(Andor iStar)detector.

    Laser pulses and data acquisition were externally synchronized by a pulse delay generator(Stanford Instruments Model DG535),which allows a wide range of delay times between two-laser pulses to be selected with minimal jitter.The time delay between laser pulses varied from 50 ns up to 24 μs in this study.The gate delay of ICCD was 0.6 μs after the second laser pulse to minimize the initial continuum Bremsstrahlung emission,which has been optimized for SPLIBS analysis in our previous investigation.The data integration time of the ICCD detector was kept at 1 μs for all measurements and an average of 20 shots was taken as a measured spectrum to reduce shot-to-shot variations.For each experiment condition,10 measured spectra were taken.The mean and the associated standard deviation were then calculated over those 10 measurements.The line Al I 394.40 nm was used for analysis.Each crater was taken after 200 successive laser shots.The size and shape of craters were determined by using a laser confocal microscope(model VK250,from KEYENCE).Figure 2 is a typical 3D diagram of a crater measured by VK250,the crater was formed in the FOC-DP-LIBS experiment.It can be seen from the side view that the crater is an inverted cone.A three-dimensional profile of the craters can be observed and measured.The values of the crater depth and diameter can be provided directly by microscope VK250,and then the ablated mass volume can be estimated and derived.

    Figure 1.Schematic diagram of FO-DP-LIBS.QWP:Quarter wave plate,HM:Higher reflection mirror,PBC:Polarizer beam combiner,L:Lens,OF:Optical fiber.

    Figure 2.Typical 3D image of a crater on aluminum alloy by FOC-DP-LIBS.

    A certified aluminum alloy analytical sample(No.5093)from the Chinese National Institute of Metrology was used in this study.The sample surface was polished and carefully cleaned before experiments.AnX-Ytranslation platform is used to move the sample horizontally and get the spectra at different sample locations.

    3.Results and discussion

    3.1.Inter-pulse time delay dependent ablation crater

    Figure 3 is the morphologies of laser craters at different interpulse time delays.Each crater was formed after 200 successive dual-pulse laser shots with a laser energy ratio of 9 mJ/36 mJ.It can be seen that,when the inter-pulse time delay is small,an irregular ablation profile is generated.It is known that,with the radiation of a nanosecond pulse laser in SP-LIBS,the target temperature rises rapidly in a short time and maintains the molten state in the early time of laser firing.After 300-400 ns,the temperature decreases rapidly and solidifies gradually,and then reaches room temperature after about~1 μs[29,30].In FOC-DP-LIBS,the first laser energy density is designed to be lower than the ablation threshold,it cannot ablate sample and generate plasma.It may only heat the aluminum alloy and form a molten metal layer on the sample surface.With the firing of a subsequent second laser,a shark wave appears as well,which will push away the melted metal on the surface,leading to an irregular laser crater at a short inter-pulse time delay,typically shorter than 500 ns.With the increase in time delay,the molten metal layer gradually solidifies and forms a microstructure on the surface.Meanwhile,a heated layer forms on the aluminum alloy surface,which has a thermal smoothing effect on the area where the thermal conductivity of the aluminum alloy is not uniform.The heated layer is also conducive to the diffusion and absorption of second laser energy,and so in favor of ablation[31].Therefore,regular craters,i.e.an inverted conical ablation profile,gradually forms after sample cooling and surface curing at~900 ns or longer inter-pulse time delay.The ablation volume(both depth and diameter)of the craters reaches the maximum at the time delay of 1.8 μs.Further increasing the time delay,the central depth,and diameter of the ablation profile slowly decrease,indicating that with the increase of time delay,the influence of first laser heating on second laser ablation weakens gradually.

    Figure 3.Typical laser crater morphologies at different inter-pulse time delays.(a)500 ns,(b)900 ns,(c)1.2 μs,(d)1.8 μs,(e)4 μs,(f)13 μs.

    Figure 4.Al I 394.40 nm/396.15 nm obtained by FOC-DP-LIBS at 1.8 μs inter-pulse delays and single-pulse LIBS with the same total energy.

    Figure 5.The Al I 394.4 nm line intensities at different inter-pulse time delays.The enlarged graph is the intensity variation within 50-900 ns time delay.

    3.2.Inter-pulse time delay dependent line intensity

    The typical emission spectra of aluminum alloy acquired by FOC-DP-LIBS with an inter-pulse time delay of 1.8 μs and laser energy ratio of 9/36 mJ are shown in figure 4,along with the single-pulse LIBS with the same total energy(45 mJ).The integrated intensity ratios of DP-LIBS/SP-LIBS are 3.35 for line Al I 394.40 nm and 2.25 for line Al I 396.15 nm,respectively.For comparison,the ablated mass volumes of DP-LIBS and single-pulse LIBS with the same total energy were measured and a ratio of 2.97 was derived.Although the low-energy first nanosecond laser does not ablate the sample and generate plasma emission in FOC-DP-LIBS,it will obviously change the temperature,surface morphology,and optical properties of the ablated material,and the first laser pulse will change the temperature of the ambient environment as well.These changes will affect the coupling of the second laser with the aluminum alloy and lead to signal enhancement.

    After the sample and surrounding gas are heated by nanosecond laser radiation,the time-varying physical properties of the material and the ambient gas,as well as the coupling effect of the second laser pulse on the aluminum alloy,determine that the inter-pulse delay has a great influence on the signal enhancement.Figure 5 is the variation of spectral intensities of aluminum atomic spectral lines(Al I 394.4 nm)with the inter-pulse time delay between two laser pulses.It can be seen that,when the time delay is less than 500 ns,the signal intensity is obviously lower than that with other time delays.The first laser pulse with a small laser energy density may only heat the aluminum alloy and generate a molten layer on the sample surface in a short delay time and this molten layer surface only existed in a short time after the first laser firing.This molten layer is easy to be pushed and sputtered away by the second pulse laser bombardment and leaves an irregular crater,as shown in figure 3.A mirror-like molten surface has a higher optical reflectivity,which will prevent the absorption and ablation of the subsequent laser pulse,resulting in weak spectral line intensity and poor ablation efficiency.

    Figure 6.Crater volume and signal intensity of Al I 394.4 nm as a function of the inter-pulse time delay.

    When the time delay is within the range of 500 ns-3 μs,signal intensity increases sharply in the delay range of 500-900 ns,reaches the maximum at about 1.8 μs,and then decreases until about 3 μs.The signal intensity increases again,remains relatively stable at 10 to 13 μs,and then decreases gradually.

    After a time delay of 500 ns,the melted layer will gradually solidify and texture the surface.The softened and textured metal surface will be conducive to light absorption and the coupling effect between the sample and the second laser pulse,resulting in an increase in signal intensity and ablation efficiency.After a longer delay time of 13 μs,the sample temperature gradually decreases to the normal ambient value,and the signal intensity also decreases.It should be pointed out that,an obvious signal increase is observed in the time delay range between 3 and 10 μs after the signal decrement from the maximum.The phenomenon has not been observed in traditional collinear DP-LIBS.But different from the signal intensity,the ablation volume does not have an obvious increase at this time delay range,as shown in figure 5 later,indicating that the signal intensity increment is not due to the increase of ablated material in the time delay between 3 and 10 μs.Note that during this time delay phase,due to the thermal diffusion and heat exchange between the sample and the surrounding air after the first laser radiates the sample,the atmospheric condition around the sample will change transiently and finally re-balance.The high-temperature ambient gas will reduce the energy exchange of plasma with the surrounding gas,which is conducive to the expansion and emission of the second laser plasma[32,33].The signal enhancement observed in the time delay between 3 and 10 μs is likely caused by this phenomenon.

    Based on the laser crater depth and diameter,the ablated mass volume at each inter-pulse time delay was derived,with the results shown in figure 6.If the inter-pulse time delay dependents ablation volume and spectral line intensity curves are put together,as shown in figure 6 as well,an obvious correlation between the ablation mass and spectral line intensity is observed,except in the delay range from 3 to 10 μs.When the inter-pulse time delay is less than 900 ns,no regular ablation crater was formed and the crater volume cannot be calculated and discussed here.At a time delay between 900 ns and 1.8 μs,the laser ablation volume continues to increase until the ablation volume reaches a maximum of 1.8 μs,which is roughly consistent with the varying trend of spectral intensity.At time delay in the range of 1.8-3 μs,both the volume and intensity decrease simultaneously,and their varying trend of them is consistent as well.The consistency of ablation volume and signal intensity observed here shows that the enhancement of spectral intensity is determined by the enhancement of ablation mass in FOC-DPLIBS in the time delay range of 900 ns-3 μs.This basically depends on the physical process of rapid heating and melting of the material surface after being irradiated by a low-energy nanosecond laser,then cooling and shaping through thermal diffusion,and finally changing its surface morphology.Previously,the LIBS line intensity enhancement in a preheated aluminum target had been investigated by Sanginéset al[11],both the crater volume and line intensities were found to be dependent on the temperature of a preheated sample,and a crater volume dependent line intensities were found.No correlation between the line intensity and the measurement electron temperature was observed,and the emission enhancement was assigned to an increment of the ablated mass in their study.The crater volume-dependent line intensity found here in inter-pulse time delay range from 900 ns to 3 μs probably may mean a similar enhancement mechanism.The disagreement of the varying trend between line intensity and ablated volume in the time delay range of 3-10 μs probably was caused by a hot ambient gas,which benefits the second laser plasma expansion and reduces its energy losses,but cannot significantly affect the second laser ablation.

    4.Conclusion

    In summary,a FOC-DP-LIBS was proposed and used to investigate the nanosecond laser heating effect of laser ablation and plasma emission on an aluminum alloy sample.An irregular laser crater and low signal intensity were observed at a shorter inter-pulse time delay.While further increasing the interpulse time delay,an inverted conical regular crater can be formed,along with an inter-pulse time delay-dependent laser craters and ablation volume.In addition,consistency of ablation volume and spectral intensity versus inter-pulse time delay was found in the time delay of less than 3 μs,indicating that the signal enhancement is almost determined by ablated mass in the nanosecond pulse laser-heated sample in this time delay range.The observed inter-pulse delay-dependent ablation volume and signal intensity are consistent with the physical process,that is,the material surface is rapidly heated and melted after being irradiated by the low-energy first laser,then cooled and shaped by thermal diffusion,and finally changed its surface morphology.Due to heat diffusion and formation of high-temperature ambient gas,spectral line intensity increases again after 3 μs inter-pulse time delay.The nanosecond laser heating effect on subsequent laser ablation and spectral intensity enhancement was then been derived.The result obtained here will be helpful for further understanding the laser ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.

    Acknowledgments

    This study was supported by National Natural Science Foundation of China(No.61975186).

    ORCID iDs

    猜你喜歡
    衛(wèi)東李娜
    李娜作品
    大眾文藝(2022年22期)2022-12-01 11:52:58
    《榜樣》:藝術(shù)創(chuàng)作的一次“出圈”表達
    Application research of bamboo materials in interior design
    祝衛(wèi)東
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術(shù)家(2017年2期)2017-11-26 21:26:20
    愛打噴嚏的小河馬
    “娜”些第一
    好孩子畫報(2015年1期)2015-06-19 18:12:41
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    種心情
    亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 久久狼人影院| 国产区一区二久久| 久久久久久久精品吃奶| av在线播放免费不卡| 亚洲精品成人av观看孕妇| 国产99久久九九免费精品| 欧美黄色淫秽网站| 高清黄色对白视频在线免费看| 欧美黑人精品巨大| 999精品在线视频| 色综合婷婷激情| 精品午夜福利视频在线观看一区 | a级毛片在线看网站| 大香蕉久久网| 好男人电影高清在线观看| 女性被躁到高潮视频| 久久热在线av| 操美女的视频在线观看| 久久精品91无色码中文字幕| 极品教师在线免费播放| 免费少妇av软件| 超碰97精品在线观看| 在线观看舔阴道视频| 黑人猛操日本美女一级片| 99香蕉大伊视频| 久久人妻熟女aⅴ| 亚洲精品美女久久久久99蜜臀| 精品亚洲乱码少妇综合久久| 国产精品99久久99久久久不卡| 久久久久久久久免费视频了| 国产一区二区在线观看av| 中亚洲国语对白在线视频| 国产三级黄色录像| 国产精品一区二区在线观看99| 久久精品aⅴ一区二区三区四区| 免费在线观看影片大全网站| 欧美 亚洲 国产 日韩一| 亚洲精品久久午夜乱码| 老司机福利观看| 一区二区三区精品91| 69av精品久久久久久 | 色综合欧美亚洲国产小说| 中文欧美无线码| 天堂中文最新版在线下载| 国产精品免费一区二区三区在线 | 久久99热这里只频精品6学生| 咕卡用的链子| 一二三四在线观看免费中文在| 怎么达到女性高潮| 久久久久视频综合| 中文字幕人妻熟女乱码| 久久亚洲真实| 久久久国产精品麻豆| 日韩欧美一区视频在线观看| 大型黄色视频在线免费观看| 9热在线视频观看99| 丁香六月欧美| 一级片'在线观看视频| 69精品国产乱码久久久| 极品少妇高潮喷水抽搐| 精品少妇一区二区三区视频日本电影| 精品福利观看| 一区二区三区国产精品乱码| 亚洲欧洲日产国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美一区二区综合| 国产三级黄色录像| 另类亚洲欧美激情| 19禁男女啪啪无遮挡网站| 久久久欧美国产精品| videosex国产| 美女高潮喷水抽搐中文字幕| 91成人精品电影| 亚洲精品中文字幕在线视频| www日本在线高清视频| 日日夜夜操网爽| 伦理电影免费视频| 一本—道久久a久久精品蜜桃钙片| 嫁个100分男人电影在线观看| 日韩欧美免费精品| 国产欧美日韩精品亚洲av| 精品一区二区三卡| 丝瓜视频免费看黄片| 亚洲精品成人av观看孕妇| 王馨瑶露胸无遮挡在线观看| 啦啦啦在线免费观看视频4| 免费av中文字幕在线| 午夜老司机福利片| 夜夜爽天天搞| 99精国产麻豆久久婷婷| 亚洲熟妇熟女久久| 亚洲国产成人一精品久久久| 欧美精品啪啪一区二区三区| 久久影院123| 国产成人精品在线电影| 精品视频人人做人人爽| 一边摸一边抽搐一进一出视频| 99久久99久久久精品蜜桃| 亚洲伊人久久精品综合| 99riav亚洲国产免费| 精品亚洲成国产av| 在线观看免费视频日本深夜| 18禁裸乳无遮挡动漫免费视频| 91av网站免费观看| 国产在线免费精品| avwww免费| 亚洲精品在线美女| 午夜91福利影院| 高潮久久久久久久久久久不卡| 18禁裸乳无遮挡动漫免费视频| 一级,二级,三级黄色视频| 十八禁网站免费在线| 午夜福利视频在线观看免费| 变态另类成人亚洲欧美熟女 | 久久国产精品大桥未久av| 人妻一区二区av| av在线播放免费不卡| 麻豆乱淫一区二区| 一区二区三区国产精品乱码| 极品人妻少妇av视频| 视频在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产亚洲av高清一级| av线在线观看网站| 女性被躁到高潮视频| 人人妻人人添人人爽欧美一区卜| 色尼玛亚洲综合影院| 大香蕉久久成人网| 五月开心婷婷网| 国产野战对白在线观看| 黄色视频在线播放观看不卡| 色视频在线一区二区三区| 精品午夜福利视频在线观看一区 | 欧美精品一区二区免费开放| 精品福利观看| 国产高清国产精品国产三级| 日本vs欧美在线观看视频| 国产成人影院久久av| videosex国产| 天天影视国产精品| xxxhd国产人妻xxx| 亚洲avbb在线观看| 黄色片一级片一级黄色片| 国产伦人伦偷精品视频| 波多野结衣av一区二区av| 色综合婷婷激情| 久久午夜综合久久蜜桃| 国产一区二区在线观看av| 1024视频免费在线观看| 啪啪无遮挡十八禁网站| 亚洲精品美女久久久久99蜜臀| 亚洲精品中文字幕在线视频| 99国产精品99久久久久| 欧美精品av麻豆av| 别揉我奶头~嗯~啊~动态视频| 久久精品91无色码中文字幕| 99国产综合亚洲精品| 亚洲久久久国产精品| 久久精品aⅴ一区二区三区四区| 一区二区三区激情视频| 大片免费播放器 马上看| 美女扒开内裤让男人捅视频| 午夜精品久久久久久毛片777| 视频在线观看一区二区三区| 亚洲七黄色美女视频| 国产xxxxx性猛交| 99久久人妻综合| 少妇猛男粗大的猛烈进出视频| 啦啦啦中文免费视频观看日本| 男女高潮啪啪啪动态图| 人妻久久中文字幕网| 国产成人免费观看mmmm| 在线观看免费午夜福利视频| 亚洲精品自拍成人| 香蕉丝袜av| 天堂动漫精品| 啦啦啦免费观看视频1| 女人高潮潮喷娇喘18禁视频| 蜜桃国产av成人99| 久久国产精品影院| 一本大道久久a久久精品| 少妇猛男粗大的猛烈进出视频| av天堂久久9| 亚洲国产欧美在线一区| 两人在一起打扑克的视频| 操出白浆在线播放| 中文欧美无线码| 欧美亚洲 丝袜 人妻 在线| 久久久久久久精品吃奶| 一夜夜www| 满18在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 人妻一区二区av| 日韩欧美一区视频在线观看| 无遮挡黄片免费观看| 亚洲 国产 在线| 午夜两性在线视频| 欧美精品亚洲一区二区| 色老头精品视频在线观看| 我要看黄色一级片免费的| 成人精品一区二区免费| 看免费av毛片| 久久久久精品国产欧美久久久| 色尼玛亚洲综合影院| 久久天躁狠狠躁夜夜2o2o| 国产一区二区激情短视频| 91字幕亚洲| 午夜精品国产一区二区电影| 黄色 视频免费看| 变态另类成人亚洲欧美熟女 | 亚洲黑人精品在线| 免费女性裸体啪啪无遮挡网站| 国产三级黄色录像| 捣出白浆h1v1| 亚洲熟妇熟女久久| 久久久久精品人妻al黑| 亚洲久久久国产精品| 日韩成人在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷成人综合色麻豆| 中文亚洲av片在线观看爽 | 99热国产这里只有精品6| 后天国语完整版免费观看| 一夜夜www| 天堂中文最新版在线下载| 黑丝袜美女国产一区| 啦啦啦 在线观看视频| 两个人免费观看高清视频| 精品视频人人做人人爽| 免费观看a级毛片全部| 欧美老熟妇乱子伦牲交| 免费看a级黄色片| 午夜日韩欧美国产| 精品国产国语对白av| 啦啦啦中文免费视频观看日本| 91老司机精品| 一区二区日韩欧美中文字幕| 国产男靠女视频免费网站| 美女视频免费永久观看网站| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区mp4| 成年人午夜在线观看视频| 夫妻午夜视频| 成人国产av品久久久| 久久午夜综合久久蜜桃| 久久久精品94久久精品| √禁漫天堂资源中文www| 国产片内射在线| 91大片在线观看| 伦理电影免费视频| 最新美女视频免费是黄的| 国产单亲对白刺激| 淫妇啪啪啪对白视频| 日日爽夜夜爽网站| 亚洲 欧美一区二区三区| 久久国产亚洲av麻豆专区| netflix在线观看网站| 91九色精品人成在线观看| 欧美性长视频在线观看| 国产精品一区二区精品视频观看| 国产男靠女视频免费网站| 国产野战对白在线观看| 99re在线观看精品视频| 国产高清激情床上av| a级片在线免费高清观看视频| 深夜精品福利| 亚洲国产欧美日韩在线播放| 久久久久久久大尺度免费视频| 免费日韩欧美在线观看| 久久 成人 亚洲| 日韩免费高清中文字幕av| 国产成+人综合+亚洲专区| 窝窝影院91人妻| 少妇猛男粗大的猛烈进出视频| 男男h啪啪无遮挡| 高清欧美精品videossex| av免费在线观看网站| 成人永久免费在线观看视频 | 九色亚洲精品在线播放| 777久久人妻少妇嫩草av网站| 人人妻人人添人人爽欧美一区卜| 亚洲午夜理论影院| 变态另类成人亚洲欧美熟女 | 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 欧美亚洲日本最大视频资源| 天天躁夜夜躁狠狠躁躁| 亚洲专区国产一区二区| 无限看片的www在线观看| 免费在线观看黄色视频的| 亚洲免费av在线视频| 亚洲精品国产一区二区精华液| 中文字幕最新亚洲高清| 99国产精品一区二区蜜桃av | 视频区图区小说| 别揉我奶头~嗯~啊~动态视频| 99香蕉大伊视频| 欧美日韩亚洲国产一区二区在线观看 | 成人av一区二区三区在线看| av电影中文网址| 久久精品国产99精品国产亚洲性色 | 激情视频va一区二区三区| 欧美日韩黄片免| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 精品高清国产在线一区| 在线观看舔阴道视频| av电影中文网址| 黄色怎么调成土黄色| 黄片播放在线免费| 中文字幕高清在线视频| 91老司机精品| 亚洲av片天天在线观看| 国产在线免费精品| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久精品吃奶| 久久九九热精品免费| 久久这里只有精品19| 久久久国产一区二区| 两个人看的免费小视频| 精品高清国产在线一区| 国产精品一区二区在线不卡| 日日夜夜操网爽| 国产精品1区2区在线观看. | 国产精品 国内视频| 老鸭窝网址在线观看| 制服诱惑二区| 国产精品亚洲av一区麻豆| 欧美精品av麻豆av| 亚洲av成人一区二区三| 在线观看舔阴道视频| 欧美精品亚洲一区二区| 老司机靠b影院| 国产深夜福利视频在线观看| 久久久国产欧美日韩av| 日韩制服丝袜自拍偷拍| 国产欧美日韩精品亚洲av| 亚洲av美国av| 国产欧美亚洲国产| 51午夜福利影视在线观看| 免费看十八禁软件| 国产欧美日韩一区二区精品| 女人精品久久久久毛片| 青青草视频在线视频观看| 男男h啪啪无遮挡| 亚洲欧美日韩另类电影网站| 男人舔女人的私密视频| 男女无遮挡免费网站观看| 国产一区二区三区综合在线观看| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美在线观看 | 国产欧美日韩一区二区精品| 狂野欧美激情性xxxx| 黄色a级毛片大全视频| 亚洲 欧美一区二区三区| av不卡在线播放| 757午夜福利合集在线观看| 国产日韩欧美亚洲二区| 伊人久久大香线蕉亚洲五| 午夜免费成人在线视频| 人妻 亚洲 视频| 90打野战视频偷拍视频| 久久天躁狠狠躁夜夜2o2o| 欧美黄色淫秽网站| 精品高清国产在线一区| 欧美成人午夜精品| 天天影视国产精品| 大香蕉久久网| 亚洲熟妇熟女久久| 大陆偷拍与自拍| 日本vs欧美在线观看视频| 一级片'在线观看视频| 国产97色在线日韩免费| 亚洲精品国产一区二区精华液| 午夜久久久在线观看| 国产人伦9x9x在线观看| netflix在线观看网站| 老熟妇乱子伦视频在线观看| 中文字幕制服av| av视频免费观看在线观看| 国产成人精品在线电影| 免费观看人在逋| 大码成人一级视频| 色播在线永久视频| 国产精品电影一区二区三区 | 香蕉国产在线看| 久久久久视频综合| 日日爽夜夜爽网站| 少妇 在线观看| 久久狼人影院| 免费在线观看完整版高清| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲综合一区二区三区_| 丝袜人妻中文字幕| 精品午夜福利视频在线观看一区 | 超碰成人久久| 男人舔女人的私密视频| 深夜精品福利| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 久久人人97超碰香蕉20202| 国产精品免费一区二区三区在线 | 水蜜桃什么品种好| 亚洲欧美激情在线| 亚洲精品久久成人aⅴ小说| 99国产综合亚洲精品| 欧美精品一区二区免费开放| 久久久久精品国产欧美久久久| av不卡在线播放| 精品亚洲成a人片在线观看| av有码第一页| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 亚洲午夜理论影院| 不卡一级毛片| 他把我摸到了高潮在线观看 | av国产精品久久久久影院| 不卡一级毛片| 国产主播在线观看一区二区| 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 精品久久蜜臀av无| 一本久久精品| 久久亚洲精品不卡| 亚洲精华国产精华精| 亚洲人成电影观看| av天堂久久9| 在线观看免费高清a一片| 久久国产精品影院| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站 | 搡老熟女国产l中国老女人| 欧美日韩亚洲高清精品| 国产av一区二区精品久久| 纵有疾风起免费观看全集完整版| 少妇的丰满在线观看| 美女福利国产在线| 亚洲美女黄片视频| 老司机影院毛片| 人人妻人人澡人人看| 国产av国产精品国产| 亚洲欧美激情在线| 欧美在线黄色| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人天堂网一区| 欧美日本中文国产一区发布| 欧美亚洲 丝袜 人妻 在线| 久久热在线av| 国产一区二区三区视频了| 韩国精品一区二区三区| 欧美人与性动交α欧美软件| 嫩草影视91久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品自产拍在线观看55亚洲 | 怎么达到女性高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 色婷婷久久久亚洲欧美| 波多野结衣av一区二区av| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 欧美另类亚洲清纯唯美| av免费在线观看网站| 黄网站色视频无遮挡免费观看| 亚洲视频免费观看视频| 在线观看免费视频网站a站| 国产成人精品久久二区二区91| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 99精品欧美一区二区三区四区| 国产成人精品无人区| 婷婷丁香在线五月| 免费在线观看视频国产中文字幕亚洲| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 2018国产大陆天天弄谢| 9热在线视频观看99| 人妻 亚洲 视频| 最新的欧美精品一区二区| 精品国产乱码久久久久久小说| 亚洲成人手机| 黄色成人免费大全| 另类亚洲欧美激情| 大香蕉久久成人网| 丁香六月欧美| 999久久久精品免费观看国产| 在线天堂中文资源库| 亚洲国产av新网站| 亚洲自偷自拍图片 自拍| 国产不卡一卡二| 高清毛片免费观看视频网站 | 午夜福利,免费看| 大型av网站在线播放| 免费久久久久久久精品成人欧美视频| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 夜夜夜夜夜久久久久| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| 久久 成人 亚洲| 久久精品国产综合久久久| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 啦啦啦中文免费视频观看日本| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 香蕉久久夜色| 国产在线视频一区二区| 我的亚洲天堂| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区精品视频观看| 大陆偷拍与自拍| 最新美女视频免费是黄的| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| www日本在线高清视频| 一个人免费在线观看的高清视频| 久久热在线av| 一区福利在线观看| 精品久久久久久电影网| 婷婷成人精品国产| 汤姆久久久久久久影院中文字幕| 757午夜福利合集在线观看| 国产精品九九99| av天堂久久9| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 啦啦啦中文免费视频观看日本| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 韩国精品一区二区三区| 亚洲av欧美aⅴ国产| 久久青草综合色| a级片在线免费高清观看视频| 精品福利永久在线观看| 大片电影免费在线观看免费| 妹子高潮喷水视频| 天天添夜夜摸| 久久午夜综合久久蜜桃| 777久久人妻少妇嫩草av网站| 啦啦啦 在线观看视频| 国产单亲对白刺激| 天堂俺去俺来也www色官网| 国产av精品麻豆| 高清在线国产一区| 12—13女人毛片做爰片一| 中文字幕人妻丝袜制服| 久久人妻av系列| 亚洲少妇的诱惑av| 日韩大码丰满熟妇| 国产亚洲精品一区二区www | 高清av免费在线| 国产欧美日韩一区二区三区在线| 黄片大片在线免费观看| 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 久久精品亚洲av国产电影网| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 两个人免费观看高清视频| 夜夜爽天天搞| 亚洲欧洲日产国产| 变态另类成人亚洲欧美熟女 | 中文字幕精品免费在线观看视频| 女人高潮潮喷娇喘18禁视频| 日韩视频一区二区在线观看| 国产一区二区在线观看av| 91九色精品人成在线观看| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| av又黄又爽大尺度在线免费看| 少妇 在线观看| 热99久久久久精品小说推荐| 一边摸一边抽搐一进一小说 | 飞空精品影院首页| 国产午夜精品久久久久久| 女人精品久久久久毛片| 老司机靠b影院| 日韩欧美免费精品| 怎么达到女性高潮| 亚洲专区国产一区二区| 精品国产一区二区三区久久久樱花| 精品久久久久久久毛片微露脸| 国产欧美日韩综合在线一区二区| 亚洲五月色婷婷综合| 国产午夜精品久久久久久| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 怎么达到女性高潮| 日本黄色日本黄色录像| 黄色丝袜av网址大全| 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区|