• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction of an unwetted liquid Li-based capillary porous system with high-density plasma

    2022-11-17 03:00:08YingweiGAO高英瑋ZongbiaoYE葉宗標JianxingLIU劉建星HengxinGUO郭恒鑫ShuweiCHEN陳曙嵬BoCHEN陳波JianjunCHEN陳建軍HongbinWANG王宏彬andFujunGOU芶富均
    Plasma Science and Technology 2022年11期
    關鍵詞:陳建軍陳波

    Yingwei GAO(高英瑋),Zongbiao YE(葉宗標),*,Jianxing LIU(劉建星),Hengxin GUO(郭恒鑫),Shuwei CHEN(陳曙嵬),Bo CHEN(陳波),Jianjun CHEN(陳建軍),Hongbin WANG(王宏彬) and Fujun GOU(芶富均),*

    1 Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,People’s Republic of China

    2 College of Physics,Sichuan University,Chengdu 610064,People’s Republic of China

    Abstract This study examined the effects of plasma irradiation on an unwetted liquid lithium-based capillary porous system(Li-CPS).The Li-CPS was irradiated with high-density Ar plasma using a linear plasma device at Sichuan University for Plasma Surface Interaction.The high-speed camera,Langmuir probe,and multi-channel spectrometer were used to characterize the effects of plasma irradiation.Upon Ar plasma irradiation,liquid Li drops were formed on the surface of the unwetted Li-CPS.Immediately after this irradiation,the drops fractured and were ejected into the plasma within~20 ms scale,which is not observed before to the best of our knowledge.Related results showed that the ejection behavior of Li could effectively cool electron temperature and reduce incident heat flux by~30%and correspondingly matrix temperature~150°C,revealing an enhanced vapor shielding effect.The involved internal mechanism and physical processes deserve further investigations.

    Keywords:unwetted Li-CPS,plasma,liquid Li,vapor shielding effect,drop

    1.Introduction

    Divertor is crucial to meet the regular operation of tokamak devices for future applications of fusion energy.Suffering from the considerable impact of complicated particles irradiation environment on divertor,liquid lithium(Li)has come as an alternative plasma-facing material and has been widely investigated in recent years[1,2]because of its self-healing ability to irradiation and good compatibility with D/T plasma[3,4].At present,experimental studies of liquid Li have been carried out in CDX-U/LTX[4],FTU[5],T-11M[6],NSTX[7],EAST[8],and TJ-Ⅱstellarator[9],and the results verified its feasibility as the first wall of future fusion reactors.

    Owing to the magnetohydrodynamic effect in complex electromagnetic fields[10,11],a capillary porous system(CPS)was introduced onto the surface of liquid Li and restrained its splashing behavior[12,13]through capillarity.Evtikhinet al[14]tested the interaction of magnetized plasma streams with Li-CPS targets in the plasma accelerator QSPA and observed the formation of a dense ionized Li radiation layer(~10-15 mm thick)in front of the target.They found that the Li ionosphere could absorb and radiate most of the incident plasma energy(~97%-99%),thus creating a radiation buffer zone to protect the substrate.Our group[15]also showed that Li vapor can form a shield against the loaded heat carried by incident plasma.However,most reported studies on Li-CPS were investigated under wetted condition(CPS is wetted by liquid Li)before plasma irradiation,little attention was paid to an unwetted Li-CPS,which is common after an extreme plasma event such as edge localized modes(ELMs)[14,16].It is currently unclear whether unwetted Li-CPS-based component could survive under plasma circumstances.

    In this work,unwetted Li-CPS is prepared and irradiated under high-density plasma by the linear plasma device of Sichuan University Plasma Surface Interaction(SCU-PSI)to disclose its corresponding interaction with plasma.Meanwhile,the evolution process of the Li-CPS under plasma irradiation is studied and the underlying mechanism is also discussed.

    2.Experiment

    As shown in figure 1,the Li-CPS consisted of a Mo crucible,a Mo cap(external diameter:55 mm;inner diameter:25 mm),Li,and a tungsten mesh(wire diameter:~60 μm;pore size:~100 μm).The CPS consists of~100 μm capillary holes and can produce sufficient capillary force>10 kPa to support the stabilization of liquid Li.Commercial pure Li(99.99%)was obtained from Ganfeng Lithium Co.,Ltd,China.The tungsten mesh was acquired from Anping Hongyun Metal Products Co.,Ltd,China.The unwetted Li-CPS was prepared through the following steps:pure solid Li tablets were first added to a pre-cleaned hollow Mo crucible and incubated at~200 °C in an Ar-filled glovebox.Then,CPS was installed on the top of the Li-filled Mo crucible to cover the surface and subsequently was anchored with a Mo cap to seal firmly.After the entire system was naturally cooled down to room temperature,Li-CPS was removed from the glovebox for subsequent plasma irradiation experiment.For the preparation of wetted Li-CPS,it is obtained through heating treatment of unwetted Li-CPS at 500 °C under 10-4Pa for 1 h.

    The fabricated Li-CPS was placed vertically,facing against the incident plasma in SCU-PSI.Figure 2 shows the schematic illustration of SCU-PSI as we reported before[17].The Ar plasma irradiation parameters were adjusted as follows:averageTe~0.5 eV,ne~2×1019m-3,power flux of 8.23 kW m-2with a diameter of~26 mm(measured by the Langmuir probe)under a magnetic fieldBof 0.2 T.During plasma exposure,the substrate temperature of Li-CPS was tested using thermocouples(thermocouples was set attached below CPS).The real-time optical emission spectrum was monitored in front of Li-CPS by the Avaspec-2048(Avantes OES).In addition,Memrecam ACS-1 high-speed camera was utilized to observe the interactions between plasma and liquid Li.

    Figure 1.(a)Photograph and(b)schematic diagram of Li-CPS.

    Figure 2.Schematic illustration of SCU-PSI.

    3.Results and discussion

    Figure 3 demonstrates the interaction between Ar plasma and Li-CPS with a fluence of 4.5×1021m-2.In addition to the source of particles,the incident Ar plasma also acted as a source of heat load from the right side.Liquid Li could evaporate from the surface of the Li-CPS by the heating function of plasma.At the initial phase,a superficial and shallow bright vapor layer of Li could be observed on both unwetted and wetted surfaces of the Li-CPS.As irradiation continued,it shows gradually enhanced brightness and increased vapor thickness on the surface of wetted Li-CPS.

    Figure 3.Snapshots of the interaction between Li-CPS and plasma.The frame rate is 50 fps with a time resolution of 20 ms.#1,#2 and#3 represent independent eruption process of Li for unwetted Li-CPS,#4 displays typical irradiation process for wetted Li-CPS.

    Meanwhile,it is interesting to find that there are Li drops formed on the surface of CPS during the irradiation process for all unwetted samples as shown in figure 3.The drop gradually swells under unremitting plasma irradiation,gradually the external Li drop enlarges to a hemispherical globule with an obviously enhanced shining surface of Li-CPS.Within only 20 ms,the Li drops fractured suddenly for all unwetted samples and were ejected into the plasma from the surface of the target with a violent burst of light along the jet direction.The entire process of drop formation and ejection from the Li-CPS target occurred within the timeframe of a few seconds.Subsequently,the injection area showed alternating strong and weak vapor layer,which has previously been reported as a typical mode of oscillation[18].Although independent experiments #1,#2,and #3 show varied mildly drop formation behavior with different drop forming sizes and speeds,which might come from the difference in weight of filled Li,the position of Mo crucible,plasma parameters,or even vacuum,the unstable Li drop ejection behaviors are similar for each experiment.For the wetted Li-CPS,there is no Li drop observed on the surface of capillary meshes.The brightness monotonously and persistently increases as time goes by,revealing a stably strengthened Li vapor and its interaction with incident Ar plasma.

    The formation and ejection of liquid Li drops under plasma irradiation for unwetted Li-CPS are not discussed or understood up to now.Based on our experimental results,it appears that the observed phenomenon can be attributed to the unstable capillary force between the CPS and liquid Li.Due to no strong capillary force formed between the liquid Li and porous meshes for unwetted Li-CPS,liquid Li might be constrained by its surface tension and could not withstand instability of thermal equilibrium[19]and volume change,resulting in violent ejection as shown in figure 3.

    Spectrum is an effective method to study the evolution of evaporated Li particles.Figure 4 shows the typically visible spectra of the Li-CPS under irradiation with Ar plasma.Before the ejection of the Li drop,only the Ar signals could be detected because of the limited evaporation of Li.However,after the ejection of the Li drop,the quantity and intensity of the Ar spectrum reduced remarkably,while those of the Li spectrum increased considerably.This change can be ascribed to the strong interaction and energy exchange between the Ar ions and evaporated Li atoms.The Li atoms could move down from an excited state and undergo deexcitation,thereby emitting the characteristic spectrum of Li.As shown in figure 4(b),two noticeable emission lines of Li atoms could be observed at 670.78 nm(3.38 eV)and 812.62 nm(1.9 eV).Moreover,a few Ar emission lines could also be identified within the range from 300 to 900 nm.Therefore,it can be speculated that the bright region observed in figure 3 resulted from the effect of Li evaporation.In addition,it is known that the intensity of the visible emission spectrum of Li atoms is proportional to the density of evaporated Li atoms[15].Therefore,the spectral intensity of the Li_670.78 nm spectrum emitted owing to de-excitation from the first excited state could reveal the time-dependent spatial evolution behavior of Li.

    Figure 4.Spectra of unwetted Li-CPS under Ar plasma(a)before and(b)after Li drop ejection.

    Figure 5.Spectral intensity of(a)Li_670.78 nm and(b)Ar_763 nm for unwetted Li-CPS#1,(c)sample temperature of blank CPS,unwetted Li-CPS #1,and wetted Li-CPS under the irradiation of Ar plasma.

    Figure 5 shows the spectral intensity of Ar and Li,and the sample surface temperature of blank CPS,unwetted Li-CPS,and wetted Li-CPS under plasma irradiation along time.For blank sample,the temperature continuously increases to a plateau of~750 °C.After filled with Li,both unwetted Li-CPS and wetted Li-CPS show radiation power from the plasma due to vapor shielding effect and decrease of target temperature.The wetted Li-CPS shows similar temperature variation tendency to that of blank sample with attenuated plateau of~700 °C.At the range of 50-100 s,the phase change of Li(with melting point of 180 °C)slows down the temperature curve.As the surface temperature reached the melting point,the temperature curve started increasing steeply with time.This could be because the heat transfer mode changed from conduction(between porous mesh and solid Li)to convection(within liquid Li).The heat transfer coefficient and thermal conductivity were greatly enhanced because Li is a relatively good heat transfer medium that improves heat transfer effects within the entire target system.

    Correspondingly,the spectral intensity of Li for unwetted Li-CPS increased sharply between 140 and 160 s as shown in figure 5(a),and a rapid increase in temperature(up to 850°C)was also observed.Meanwhile,Li drop fractured and was ejected from the surface of the Li-CPS.This event corresponded to a significant increase in the spectral intensity(spatial diffusion of Li atoms)and a remarkable decrease in temperature(heat loss from phase change).While it is found that,as shown in figure 5(b),the spectral intensity of incident Ar revealed independent variation trend and kept a relatively stable value during the entire irradiation process.Subsequently,the eruptible Li atoms displayed a typical oscillation mode due to the vapor shielding effect,as reported previously[18].The incident plasma brought in particles and heat,and the temperature of Li-CPS would rise then and induce evaporation of Li.The evaporation could take away the energy of substrate and result in a decrease of base temperature.In the meantime,the decreased temperature would weaken the evaporation of liquid Li and further lead to its elevation of temperature of Li-CPS under constant plasma irradiation.During the feedback process,the evaporated Li atoms can be excited and ionized and then de-excited and recombined with radiation of huge energy as discussed before.The above process would be oscillating quickly(the oscillation details could be traced from the bouncing temperature and spectrum curve along time,the intensity of Li,and the temperature of the substrate changed alternately)and reach a thermodynamic equilibrium as shown in figure 5.

    Figure 6 shows the axial variation in the Li_670.78 nm spectral intensity and the corresponding fitting curve.Limited to size of inspection window,the detecting distance is confined in the range of 0-14 mm.As the figure shows,the spectral intensity of Li_670.78 nm receded as the distance from the sample increased.The spectral intensity decreased exponentially with increase in the distance from the crucible along the axis,satisfying the following equation[20]:

    Figure 6.Axial distribution of Li_670.78 nm spectral intensity for unwetted Li-CPS #1.

    Figure 7.Time-varying characteristics of(a)electron temperature,(b)electron density,(c)ion flux,and(d)heat flux on the front of unwetted Li-CPS #1 during Li evaporation.

    wherezis the distance between the monitoring point and the sample target plate,C1andC2are the fitting constants of the curve,and λmfpis the free ionization path of the neutral particles.The best-fitting values of λmfp,C1,andC2were 10.13 mm,4.77,and 0.76,respectively.In contrast to estimation of mean free path of escaped Li atoms by high temperature,λmfp-2=<v>/<σv>izne,in which<v>is the average velocity of the neutral Li,<σv>iz=6.597×10-10cm3s-1is the collision rate coefficient which is available from the ADAS Database,the λmfp-2could be obtained as 1.68×102mm(higher than the observed value).The huge difference could also be attributed to the ejection of liquid Li.The possible reason we attribute to the estimated λmfp-2mainly depends on the surficial temperature,Teandne,and they reveal a limited change in value during the Li eruption process,as shown in figures 7(a)and(b).While for the spectrum intensity of Li,it is greatly affected by the eruption process and increased by several orders of magnitude after Li eruption,as shown in figure 5(a).The significantly enhanced Li vapor would exacerbate the degradation of Li spectral intensity along with axial distribution and induce the mismatched underestimated λmfp.

    In addition,it is indicated that the concentration of the Li vapor shows a typical exponential damping tendency after formation as shown in figure 6.This provides a glimpse into the diffusion behavior of the Li vapor during plasma irradiation process.Combining with the consideration of lost fraction of particles flux,Γloss/Γ=exp(-L/λmfp),whereLrepresents the half height width of the plasma beam(~13 mm).Therefore,theΓloss/?!?.28,which means that more than 20% of the evaporated Li are not redeposited on Li-CPS in consideration of experiment error.

    It is known that the surface temperature of the sample decreases with an increase in the Li vapor concentration.According to the liquid Li evaporation rate formula[21]:

    whereTis the sample temperature,MLiis the molar mass of liquid Li,andfandgare constants(equal to 8.0 and 8143.0 respectively).With an increase in the Li vapor concentration,the shielding effect is enhanced,leading to a reduction in the input heat load and a decrease in temperature through radiation of energetic Li particles[22].For the unwetted Li-CPS in our experiment,a significant amount of Li was injected into the plasma during plasma exposure,creating conditions conducive for the absorption of more incident energy and a lower temperature than that observed in a wetted Li-CPS.To clear up the power handling role of evaporation-condensation and radiation,the evaporation part of energy loss could be evaluated through temperature analysis.The evaporation flux[23]is known asand the evaporation power[24]can be calculated by multiplying the evaporation flux by the latent heat of vaporization and integrating over the target area aswhereNArepresents the Avogadro constant andYthe particle redeposition fraction.ΔHevapis the latent heat of vaporization.T(r)is the surface temperature.Under the redeposition of 72% and steady-state temperature of 700°C,which is significantly reduced in comparison to the temperature of a pre-wetted liquid metal-CPS[2]by about 100 °C,the〈Pevap〉could be obtained by 7.78 W.

    For the part of ions,the variations in the electron temperature,electron density,ion flux,and heat flux near the sample surface at different time points were measured by a fast-reciprocating probe with data collection frequency of 0.2 Hz and detecting position of 25 mm away from the surface of target in the centre of Li-CPS,as shown in figure 7.

    The electron temperature was relatively stable between 0 and 160 s,consistent with the weak spectral intensity of Li.As the drop fractured,the electron temperature dropped dramatically(between 160 and 350 s),and this corresponded to the ejection and oscillation behavior.Because of the low excitation energy of Li atoms,the evaporated neutral Li atoms likely collided with the incident plasma at multiple stages and absorbed the incident energy,thus becoming excited.This resulted in a decrease in the electron temperature of the incident plasma.Between 350 and 400 s,the electron reached a state of thermal equilibrium,corresponding to the stationary phase of the spectrum and substrate temperature.Finally,the electron temperature stabilized at~0.57 eV owing to the vapor shielding effect,with a delicate balance between the evaporation and re-deposition of Li.For electron density and ion flux,they are slightly increased along entire irradiation process,originating from the ionization of Ar to massively evaporated Li.For the heat flux,it can be found that for the unwetted Li-CPS,the steady heat flux decreases from initial~9 to~6 kW m-2,with heat flux shielding efficiency(as shown in figure 5)of>30%,which is rather high than our previous wetted result~12%[15],revealing an enhanced vapor shielding effect due to increased Li concentration in plasma for unwetted Li-CPS.Moreover,in consideration to that radiation of ions would be significant only forTe>10 eV[22],the excitation-de-excitation of Li should play the dominant role in the process of vapor shielding as energy dissipation of evaporation is also very limited.

    4.Conclusions

    The unwetted Li-CPS was irradiated under high-density Ar plasma using SCU-PSI.Drop formation and ejection were observed on the surface of unwetted Li-CPS during plasma irradiation,which significantly decrease incident electron temperature,heat flux,and matrix temperature.Mechanistically,the ejection behavior could be attributed to an unstable capillary force between liquid Li and CPS.Though the unwetted Li-CPS showed better vapor shielding effect than the wetted Li-CPS,it also caused an extra loss of liquid Li from matrix.Nevertheless,further investigations are required to reveal the intrinsic variable nature.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Nos.11875198 and 11905151),China Postdoctoral Science Foundation(No.2019M663487),Sichuan Science and Technology Program(Nos.2021YJ0510 and 2021YFSY0015).

    猜你喜歡
    陳建軍陳波
    雨中的旋律
    一個失敗的蛋
    老鼠家來了一位大客人
    踔厲奮發(fā)向未來
    浙江人大(2022年4期)2022-04-28 21:37:09
    Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
    小兔蘭琪想要自己的臥室
    完形填空兩篇
    TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES ?
    光影
    大眾攝影(2020年3期)2020-03-13 08:14:37
    男子激情離婚怒討“親子權”
    国产乱来视频区| 亚洲色图av天堂| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱| 黄色配什么色好看| 国产成人freesex在线| 一个人看的www免费观看视频| 高清午夜精品一区二区三区| 在线观看av片永久免费下载| 欧美日韩在线观看h| 国产成人精品婷婷| 亚洲精品久久久久久婷婷小说 | 极品教师在线视频| 国产真实乱freesex| 三级毛片av免费| 国产精品久久久久久久久免| 乱码一卡2卡4卡精品| 国产伦一二天堂av在线观看| 在线a可以看的网站| 中文字幕av成人在线电影| 成人三级黄色视频| 精品久久久久久久久av| 成人漫画全彩无遮挡| 一级毛片我不卡| 中文字幕精品亚洲无线码一区| 亚洲美女搞黄在线观看| 国产探花在线观看一区二区| 可以在线观看毛片的网站| 国产成人精品一,二区| 联通29元200g的流量卡| 极品教师在线视频| 中文字幕制服av| 晚上一个人看的免费电影| 美女cb高潮喷水在线观看| 亚洲av一区综合| 超碰av人人做人人爽久久| 69av精品久久久久久| 亚洲精品国产av成人精品| 三级毛片av免费| 中文字幕免费在线视频6| 十八禁国产超污无遮挡网站| 看片在线看免费视频| 亚洲图色成人| 青春草视频在线免费观看| 亚洲性久久影院| 色网站视频免费| 小说图片视频综合网站| av在线蜜桃| 亚洲精品乱码久久久久久按摩| 精品人妻偷拍中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲欧洲国产日韩| 爱豆传媒免费全集在线观看| 精品久久久噜噜| 男女国产视频网站| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 噜噜噜噜噜久久久久久91| 国产黄片视频在线免费观看| 免费在线观看成人毛片| 国产成人精品一,二区| 三级男女做爰猛烈吃奶摸视频| 欧美日韩在线观看h| 亚洲熟妇中文字幕五十中出| 国产高清国产精品国产三级 | 黑人高潮一二区| 人人妻人人澡欧美一区二区| 精品不卡国产一区二区三区| 亚洲经典国产精华液单| 成人毛片60女人毛片免费| 美女大奶头视频| 五月玫瑰六月丁香| 久久99热这里只频精品6学生 | 亚洲第一区二区三区不卡| 国产极品精品免费视频能看的| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 国产精品一及| 噜噜噜噜噜久久久久久91| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 丝袜美腿在线中文| 最近2019中文字幕mv第一页| 国产精品永久免费网站| 成人午夜精彩视频在线观看| 女人久久www免费人成看片 | 国模一区二区三区四区视频| 水蜜桃什么品种好| 久久久久久久国产电影| 天堂av国产一区二区熟女人妻| h日本视频在线播放| 中文字幕av成人在线电影| 日韩欧美三级三区| 成人av在线播放网站| 久久这里有精品视频免费| 亚洲精品亚洲一区二区| 日日干狠狠操夜夜爽| 国产精品蜜桃在线观看| 熟女电影av网| 久久久精品94久久精品| 99热全是精品| 精品少妇黑人巨大在线播放 | 国产一区有黄有色的免费视频 | 久久久午夜欧美精品| 听说在线观看完整版免费高清| 能在线免费看毛片的网站| 国产精品一二三区在线看| 国产亚洲一区二区精品| 国内精品宾馆在线| 国产黄片视频在线免费观看| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 亚洲成人av在线免费| 婷婷六月久久综合丁香| 久久韩国三级中文字幕| 女人被狂操c到高潮| 午夜免费男女啪啪视频观看| 国产午夜福利久久久久久| 最新中文字幕久久久久| 中文精品一卡2卡3卡4更新| 午夜福利在线观看吧| 日本三级黄在线观看| 网址你懂的国产日韩在线| 欧美日韩在线观看h| 久久精品综合一区二区三区| 听说在线观看完整版免费高清| 最近视频中文字幕2019在线8| 亚洲国产精品成人综合色| 久久久久性生活片| 久久人妻av系列| 亚洲成av人片在线播放无| 精品酒店卫生间| 久久热精品热| 村上凉子中文字幕在线| 五月玫瑰六月丁香| 亚洲五月天丁香| 欧美3d第一页| 日本一本二区三区精品| 国产白丝娇喘喷水9色精品| 蜜臀久久99精品久久宅男| 爱豆传媒免费全集在线观看| 69av精品久久久久久| 麻豆乱淫一区二区| 中文字幕久久专区| 精品国产露脸久久av麻豆 | 午夜免费男女啪啪视频观看| 国产黄片美女视频| 国产精品久久久久久av不卡| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 男插女下体视频免费在线播放| 亚洲美女搞黄在线观看| 亚洲色图av天堂| 日韩制服骚丝袜av| 成人无遮挡网站| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 亚洲欧美精品专区久久| 亚洲精品国产成人久久av| 简卡轻食公司| 青春草视频在线免费观看| 国产免费福利视频在线观看| 日日撸夜夜添| 毛片一级片免费看久久久久| 精品99又大又爽又粗少妇毛片| 国产色婷婷99| av天堂中文字幕网| 婷婷色综合大香蕉| 国产精品女同一区二区软件| 能在线免费观看的黄片| 天堂网av新在线| 精品国产一区二区三区久久久樱花 | 一边摸一边抽搐一进一小说| 国产老妇伦熟女老妇高清| 成人综合一区亚洲| 成人亚洲欧美一区二区av| 午夜视频国产福利| 精品99又大又爽又粗少妇毛片| 成人高潮视频无遮挡免费网站| 国产一区二区三区av在线| or卡值多少钱| 岛国在线免费视频观看| 国产三级中文精品| 亚洲国产日韩欧美精品在线观看| 夫妻性生交免费视频一级片| 精品不卡国产一区二区三区| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 国产精品永久免费网站| 特级一级黄色大片| 在线天堂最新版资源| 黑人高潮一二区| 国内精品宾馆在线| 亚洲国产精品国产精品| 国产精品电影一区二区三区| 九草在线视频观看| 久久精品人妻少妇| 一边亲一边摸免费视频| 久久久久网色| 黄色欧美视频在线观看| 亚洲第一区二区三区不卡| 国产成年人精品一区二区| 97热精品久久久久久| 午夜视频国产福利| 深夜a级毛片| 一级二级三级毛片免费看| 国产中年淑女户外野战色| kizo精华| 欧美日韩在线观看h| 亚洲精品国产成人久久av| 婷婷色av中文字幕| 日韩,欧美,国产一区二区三区 | 久久99蜜桃精品久久| 国产精品三级大全| 国产真实乱freesex| 精品久久久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 日韩视频在线欧美| av天堂中文字幕网| 五月伊人婷婷丁香| 国产黄片视频在线免费观看| 久久久国产成人精品二区| 欧美激情国产日韩精品一区| 欧美日韩精品成人综合77777| 亚洲av一区综合| 韩国高清视频一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲午夜精品一区二区久久 | 99热全是精品| 我的老师免费观看完整版| av在线播放精品| 日韩视频在线欧美| 久久久久久久久大av| a级毛色黄片| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 亚洲国产欧洲综合997久久,| 99久久成人亚洲精品观看| 久久99精品国语久久久| 99久久精品国产国产毛片| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 99热精品在线国产| 久久久成人免费电影| 在线免费观看不下载黄p国产| 波野结衣二区三区在线| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 亚洲成色77777| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 美女大奶头视频| 熟女人妻精品中文字幕| 亚洲中文字幕一区二区三区有码在线看| 综合色丁香网| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 国产单亲对白刺激| 汤姆久久久久久久影院中文字幕 | 韩国av在线不卡| 精品午夜福利在线看| 免费在线观看成人毛片| ponron亚洲| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看| 免费观看a级毛片全部| 亚洲欧洲日产国产| 看非洲黑人一级黄片| 卡戴珊不雅视频在线播放| 国产日韩欧美在线精品| 日本免费一区二区三区高清不卡| 日韩三级伦理在线观看| 好男人在线观看高清免费视频| av专区在线播放| 国产亚洲5aaaaa淫片| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av天美| 三级经典国产精品| 男女国产视频网站| 看片在线看免费视频| 国产私拍福利视频在线观看| 99久久成人亚洲精品观看| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类| 国产高潮美女av| videossex国产| 国产精品99久久久久久久久| av在线天堂中文字幕| 国产探花在线观看一区二区| 中文精品一卡2卡3卡4更新| 国产精品永久免费网站| 日韩中字成人| 极品教师在线视频| 久久99蜜桃精品久久| 亚洲成人久久爱视频| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 人人妻人人看人人澡| 亚洲国产欧洲综合997久久,| 亚洲在线观看片| 日本wwww免费看| 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 久久精品夜色国产| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 卡戴珊不雅视频在线播放| 欧美激情国产日韩精品一区| 日本免费a在线| 中文字幕av在线有码专区| 欧美三级亚洲精品| 97热精品久久久久久| 99久久九九国产精品国产免费| av在线天堂中文字幕| 欧美变态另类bdsm刘玥| 色哟哟·www| 真实男女啪啪啪动态图| 久久99热这里只有精品18| 99久国产av精品| 2021天堂中文幕一二区在线观| 国产黄色视频一区二区在线观看 | 欧美成人一区二区免费高清观看| 夫妻性生交免费视频一级片| 欧美成人一区二区免费高清观看| 国产老妇女一区| 少妇猛男粗大的猛烈进出视频 | 国产激情偷乱视频一区二区| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 免费观看在线日韩| 国产成人精品久久久久久| 91av网一区二区| 一区二区三区免费毛片| 少妇的逼水好多| 国产真实伦视频高清在线观看| 欧美高清成人免费视频www| 人妻制服诱惑在线中文字幕| 搡女人真爽免费视频火全软件| 熟女人妻精品中文字幕| 亚洲四区av| 日韩视频在线欧美| 日韩欧美精品v在线| 91久久精品国产一区二区三区| 在线免费十八禁| 尾随美女入室| 免费av毛片视频| 好男人在线观看高清免费视频| 九草在线视频观看| 国语自产精品视频在线第100页| 国产精品国产三级专区第一集| 欧美zozozo另类| 午夜爱爱视频在线播放| 久久这里有精品视频免费| 国产精品无大码| 欧美性感艳星| 十八禁国产超污无遮挡网站| av国产免费在线观看| 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 亚洲三级黄色毛片| 最新中文字幕久久久久| 最近的中文字幕免费完整| 一个人看的www免费观看视频| 男女边吃奶边做爰视频| 日本三级黄在线观看| 日韩欧美 国产精品| 国产av不卡久久| 国产精品久久久久久久久免| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 成人鲁丝片一二三区免费| 免费无遮挡裸体视频| 久久久精品94久久精品| 日本三级黄在线观看| 91久久精品电影网| 91久久精品国产一区二区三区| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 91精品伊人久久大香线蕉| 看黄色毛片网站| 99久久中文字幕三级久久日本| 男人狂女人下面高潮的视频| 身体一侧抽搐| 男女视频在线观看网站免费| 亚洲精华国产精华液的使用体验| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| 床上黄色一级片| 日韩一区二区视频免费看| 久久久久久国产a免费观看| 人人妻人人看人人澡| 我要看日韩黄色一级片| 久久精品国产亚洲av涩爱| 两个人视频免费观看高清| 久久鲁丝午夜福利片| 小蜜桃在线观看免费完整版高清| 97在线视频观看| 欧美变态另类bdsm刘玥| 久久综合国产亚洲精品| 搞女人的毛片| 国产成人a∨麻豆精品| 日韩国内少妇激情av| 国产黄a三级三级三级人| 国产 一区 欧美 日韩| 精品午夜福利在线看| 天堂网av新在线| 有码 亚洲区| 99久久精品一区二区三区| 淫秽高清视频在线观看| 欧美激情国产日韩精品一区| 91精品伊人久久大香线蕉| 在线观看66精品国产| 国语对白做爰xxxⅹ性视频网站| av.在线天堂| 久久久国产成人免费| 亚洲激情五月婷婷啪啪| 欧美丝袜亚洲另类| eeuss影院久久| 内地一区二区视频在线| 国产精品一及| 免费人成在线观看视频色| 成人特级av手机在线观看| 国产亚洲精品av在线| 日本爱情动作片www.在线观看| 99久久九九国产精品国产免费| 久久午夜福利片| 欧美三级亚洲精品| 欧美xxxx性猛交bbbb| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 欧美不卡视频在线免费观看| 亚洲精品国产av成人精品| 麻豆久久精品国产亚洲av| 久99久视频精品免费| 婷婷色麻豆天堂久久 | 亚洲综合色惰| 国产精品电影一区二区三区| 欧美性感艳星| 亚洲成色77777| 亚洲最大成人手机在线| 亚洲精品自拍成人| 欧美极品一区二区三区四区| 国产欧美另类精品又又久久亚洲欧美| 国产精品人妻久久久久久| 少妇裸体淫交视频免费看高清| 大香蕉久久网| 久久久色成人| 国产三级在线视频| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 国产美女午夜福利| 国内精品美女久久久久久| 国产精品一二三区在线看| 又粗又爽又猛毛片免费看| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 国产精品久久久久久精品电影小说 | 亚洲精品一区蜜桃| 国产 一区精品| 99热全是精品| 人妻夜夜爽99麻豆av| 春色校园在线视频观看| 久久亚洲国产成人精品v| 国国产精品蜜臀av免费| 国产高清三级在线| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 免费无遮挡裸体视频| 视频中文字幕在线观看| 国产精品野战在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲色图av天堂| 亚洲最大成人av| 麻豆一二三区av精品| 国产av不卡久久| 欧美一级a爱片免费观看看| 黑人高潮一二区| 国产色婷婷99| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 亚洲美女视频黄频| 啦啦啦观看免费观看视频高清| 一级二级三级毛片免费看| 国产高清不卡午夜福利| 中文字幕精品亚洲无线码一区| 日韩精品有码人妻一区| 一级毛片aaaaaa免费看小| 69人妻影院| 国产免费福利视频在线观看| 久久精品国产99精品国产亚洲性色| 我的女老师完整版在线观看| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲成人av在线免费| 最近2019中文字幕mv第一页| 午夜a级毛片| 中文字幕久久专区| 国产高清有码在线观看视频| 国产免费一级a男人的天堂| 日韩一区二区三区影片| 国产成人免费观看mmmm| 国产伦理片在线播放av一区| 国产在视频线精品| 国产亚洲5aaaaa淫片| 日韩欧美国产在线观看| 最近视频中文字幕2019在线8| 免费无遮挡裸体视频| 精品人妻熟女av久视频| 搡女人真爽免费视频火全软件| 日韩一区二区视频免费看| 丝袜美腿在线中文| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| 日本一本二区三区精品| 搡老妇女老女人老熟妇| 1000部很黄的大片| 中文字幕制服av| 变态另类丝袜制服| 久久久久久久久久久免费av| 国产成人aa在线观看| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看| 国产爱豆传媒在线观看| av线在线观看网站| 激情 狠狠 欧美| 99视频精品全部免费 在线| 日本黄色片子视频| 亚洲国产欧洲综合997久久,| 国产毛片a区久久久久| 日韩 亚洲 欧美在线| 久久久成人免费电影| 日韩成人伦理影院| 日本欧美国产在线视频| 欧美bdsm另类| 中文字幕av在线有码专区| 日韩高清综合在线| 亚洲欧美精品专区久久| 国产免费又黄又爽又色| 色播亚洲综合网| 久久久亚洲精品成人影院| 亚洲久久久久久中文字幕| 国产成年人精品一区二区| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 日韩欧美精品免费久久| 亚洲人成网站在线播| 国产成年人精品一区二区| 中文字幕av在线有码专区| 日日干狠狠操夜夜爽| 欧美日韩一区二区视频在线观看视频在线 | 韩国高清视频一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 男女那种视频在线观看| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 亚洲欧美清纯卡通| 午夜日本视频在线| 欧美另类亚洲清纯唯美| 国产欧美另类精品又又久久亚洲欧美| 久久久欧美国产精品| 卡戴珊不雅视频在线播放| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 国产一区有黄有色的免费视频 | 插逼视频在线观看| 久久久久网色| 自拍偷自拍亚洲精品老妇| 欧美极品一区二区三区四区| 亚洲av.av天堂| 免费一级毛片在线播放高清视频| 激情 狠狠 欧美| 女人久久www免费人成看片 | 欧美日韩综合久久久久久| 日韩高清综合在线| 天天躁夜夜躁狠狠久久av| 国产单亲对白刺激| 久久久久久伊人网av| 国产精品野战在线观看| 国产黄片视频在线免费观看| 熟女电影av网| 热99re8久久精品国产| 3wmmmm亚洲av在线观看| 午夜精品一区二区三区免费看| 免费观看人在逋| 免费观看在线日韩| a级毛色黄片| 久久99热这里只有精品18|