• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An equivalent model of discharge instability in the discharge chamber of Kaufman ion thruster

    2022-11-17 02:59:58FengTIAN田豐KanXIE謝侃LongMIAO苗龍FuwenLIANG梁福文JiahuiSONG宋家輝SongBAI白松andNingfeiWANG王寧飛
    Plasma Science and Technology 2022年11期
    關(guān)鍵詞:田豐宋家

    Feng TIAN(田豐),Kan XIE(謝侃),Long MIAO(苗龍),Fuwen LIANG(梁福文),Jiahui SONG(宋家輝),Song BAI(白松)and Ningfei WANG(王寧飛)

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,People’s Republic of China

    Abstract The industrial application of the Kaufman ion thruster in its arc stage is limited owing to the instability of the discharge pulse.Presently,a complete prediction model that can predict the discharge pulse in the high-current stage does not exist.In this study,a complete prediction model for the pulse in the ion thruster is established using the zero-dimensional plasma discharge model and equivalent circuit model.The zero-dimensional plasma discharge model is used to obtain the corresponding plasma parameters by calculating the beam current,discharge current,voltage,and gas flow under actual working conditions.The input parameters of the equivalent circuit model are calculated using empirical formulae to acquire the estimated discharge waveforms.The pulse waveforms obtained using the model are found to be consistent with the experimental results.The model is used to evaluate the process of rapid changes in plasma density.Additionally,this model is employed to predict changes in the pulse waveforms when the volume of the discharge chamber and grid plate transmittance are changed.

    Keywords:Kaufman ion thruster,arc discharge,pulse phenomenon,zero-dimensional plasma discharge model,equivalent circuit model

    1.Introduction

    A hollow cathode discharge is a unique gas discharge form seen in a cathode cavity.Owing to its high working pressure,high electronic density,and low maintenance voltage[1-4],it was first used as a spectral light source for high-resolution spectral analysis.Later,it was used in metal-vapor ion laser systems,electric propulsion,surface treatment,electrodynamic tether,and other applications[5-9].For electric propulsion,it is widely used in ion thrusters and Hall-effect thrusters[10-14].There are usually some discharge instabilities in the discharge process from the discharge chamber of ion thruster,especially under high-current conditions,which significantly affects its industrial application.

    When the ion thruster discharge current is a few hundred mA,it enters the arc discharge stage.Domonkos and Williams[15]measured the pulse phenomenon of annular discharge,and found that the pulse of annular discharge is particularly intense under the conditions of high current,low flow,and high voltage.

    Subsequently,Goebel[16,17]reported the presence of highenergy ions in a large current pulse.The potential of these highenergy ions was higher than the voltage applied by the circuit.As the spatial and discharge conditions of the discharge chamber of ion thruster were different,the amplitude and frequency of the pulse were also different.Concurrently,in an experiment designed to calculate the beam current and discharge loss,Goebel found that the ion engine also exhibits discharge instability.

    Extensive researches have been conducted to determine the cause of high-current discharge instability,and considerable progresses have been made.For example,Williams and Farnell[18]established a probe system to measure the space potential of the discharge chamber of ion thruster under different anode conditions.They found the presence of a visible discharge pulse,which indicates that the discharge pulse is unrelated to the anode condition.Gabriel[19],through an experimental study,suggested that the discharge instability is mainly related to the filling rate of neutral gas.

    Furthermore,Jorns[20]used the average frequency quasilinear model and experiments to study the acoustic potential pulse oscillations of discharge chamber of ion thruster at a current of 100 A.It was proposed that the ion-acoustic potential pulse oscillations are affected by abnormal electron Landau damping,ion Landau damping,and ion collision frequency,in which the first two terms are more significant.Shunsuke[21]examined the discharge-pulse oscillations by studying the three discharge forms of the hollow cathode(plume,spot,and diffuse).It was identified that the discharge current pulse is affected by the discharge forms of the ion thruster.The effects of the gas flow rate,discharge current,and different types of anode discharge chambers on the ion thruster potential pulse have also been studied[10,22,23].The ion thruster discharge is affected by different types of anode discharge chambers.It was also confirmed that the instability of ionization causes ionization-like high-amplitude potential pulses.Space ions play a decisive role in this kind of space potential pulse.Nelson[24]studied the potential pulse caused by ion-acoustic waves.It was experimentally confirmed that potential pulse oscillation should be universal in a high-current working condition.

    The pulse phenomenon of the discharge chamber of ion thruster in the high-current stage is crucial.It exerts a significant influence in practical engineering,but presently,there are no theories that can accurately predict the discharge instability pulse in the arc stage.In this paper,a complete discharge-pulse prediction model is proposed,which combines the equivalent circuit model and the zero-dimensional plasma discharge model,to investigate the discharge-pulse instability in the arc stage.The plasma density and temperature are obtained by using the zero-dimensional model,and then the obtained parameters are brought into the equivalent discharge model to obtain the discharge oscillation curve.The established model is also used to study the effects of different discharge chambers on the pulse characteristics of high-current ion thruster ionization discharge.

    2.Experimental system and calculation model

    2.1.Experimental system

    The schematic for experimental measurement of the ion thruster pulse is shown in figure 1.A 6 cm Kaufmann ion thruster is used to study,which consists of four parts:the main cathode,the discharge chamber,the optical system and the neutral cathode,and the specific structural parameters are shown in the figure 1.The emission probe is used in this experiment to measure plasma potential.It is a cylindrical tungsten wire with a diameter of 0.127 mm,and the length of the tungsten wire in contact with the plasma is 4 mm.The vacuum chamber has a stainless-steel body with a diameter of 1.8 m and a total length of 4 m.The pumping speed of the diffusion pump is 5000 l s-1,and the ultimate vacuum degree in the chamber is 5×10-4Pa.

    The optical system adopts double grid structure,which is composed of screen grid and acceleration grid.The structural parameters of the discharge chamber and grid are shown in table 1 and table 2.

    The diagnostic and measuring systems include an emission probe,high-speed camera,current probe(Tektronix TCP0030A),voltage probe(Tektronix TPP1000),the capacitance tester(YTC720,with the range of 2-2000μF)digital oscilloscope(Tektronix DPO4104B,with a measurement accuracy of±1%)and automatic capacitance tester.The emission probe is used to measure the plasma potential,a high-speed camera is employed to capture the discharge forms,and no filter is used when capturing the discharge form.The current and voltage probes are used to measure discharge current and discharge voltage,respectively,and the sampling rate is 100 MHz.

    2.2.Analytical model

    2.2.1.Zero-dimensional plasma discharge model.Goebel[16,17]constructed a zero-dimensional plasma discharge model based on the two basic formulae governing neutral gas density and discharge current conservation along with a series of simplifications of ion thruster discharge.The model can beused to solve for plasma density,temperature,primary electron density and neutral gas density.

    Table 1.Structure parameters of discharge chamber of ion thruster.

    The plasma densityneandTecan be calculated as follows:

    whereIbis the beam current,Asis the screen grid area,Tsis the grid transparency,ni,neare ion and electron densities,respectively,eis electron charge,vais the ion acoustic velocity,kis the Boltzman constant,Teis electron temperature,Mis ion mass.Since the beam current and structural parameters in equation(1)are known,it is only necessary to construct a formula of plasma density and temperature,and then they can be calculated.

    For an unmagnetized plasma,the currentIiflowing out of the plasma in any direction can be obtained from the Bohm current:

    whereAis internal surface area of discharge chamber.Ions in the discharge chamber are produced by both the primary electrons and by the tail of the Maxwellian distribution of the plasma electrons.The total number of ions producedIpin the discharge in particles per second is given by:

    whereIpis the number of ions produced per unit time,n0is the neutral atom density,Vis the discharge chamber volume,σiis the ionization cross section,veis the plasma electron velocity,np,vpare the primary electron density and velocity,andvpis considered the same asve.The terms in the brackets are ionization cross section averaged over the distribution of electron energies,which is usually called the reaction rate coefficient.

    The total ion production rate is equal to the total ion absorption rate:

    Simultaneous equations(1)-(4)can be obtained:

    In the equation(5),〈σive〉 and〈σivp〉 are the functions of plasma temperature and density[17].Ifn0andnpcan be found,or they are represented byneandTe,equation(5)will be only related to plasma density and temperature.

    Table 2.Structure parameters of ion thruster grids.

    The neutral gas density is calculated as follows:

    In the equation,Qoutis the flow rate of neutral gas leaving the discharge chamber,Qinis the gas flow into the discharge chamber.The flow rate of neutral gas leaving the discharge chamber is:

    wherev0is the velocity of neutral atoms,ηcis the Clausing coefficient(in general,ion thruster grids will have Clausing factors on the order of 0.5).The propellant utilizationηmdrefers to the propellant that needs to be consumed to generate a unit beam current,and is a key parameter to measure the performance of the discharge chamber,which is defined as:

    Simultaneous equations(6)-(8)can obtain the expression of neutral gas density as:

    The primary electron density in equation(5)can be evaluated from the total primary electron confinement time in the discharge chamber.The emitted currentIefrom the hollow cathode is:

    whereτtis the total primary confinement time that addresses all of the primary electron thermalization and loss mechanisms.The ballistic confinement time for direct primary loss to t he anode,τp,was given in the following equations:

    whererpis the primary electron Larmor radius,Apis the loss area for the primaries,B0is the magnetic field strength at the tip of the ring,vpis the primary electron velocity,eis the electron charge,andLcis the total length of the magnetic cusps(sum of the length of the cusps).

    It is assumed that the primary electrons have undergone an inelastic collision with the neutral gas and have lost sufficient energy such that they are then rapidly thermalized with the plasma electrons.The mean time for a collision between the primary and a neutral gas atom to occur is given by:

    whereσis the inelastic collision cross section of electrons and neutral particles[16,17],n0is substituted into the above formula,the mean collision time for primary electrons is:

    Finally,primary electrons can also be thermalized by equilibrating with the plasma electrons.The time for primary electrons to slow into a Maxwellian electron population was derived by Spitzer[25]and is given by:

    The function()ωG lfis defined in the appendix of[16],and a curve fit to Spitzer’s tabulated values(in CGS units)for this function is provided.The total primary electron confinement time can be found from:

    The current emitted from the hollow cathode is:

    whereIsis the screen current,Idis the discharge current andIkis the ion current back to the cathode,the primary electron density is derived by the above formulae:

    Assuming that the primary electron loss directly to the anode is negligible,the electron equilibration time is long,and the ion current flowing back to the cathode is small,then the above equation can be written as:

    The plasma density and temperature can be obtained by solving equations(1)and(5).

    2.2.2.Equivalent circuit model.Aubertet al[26]made significant contributions to the construction of this equivalentcircuit model in the low-current stage.Based on this model,we propose an equivalent-circuit model of the high-current stage.Figure 2 shows an equivalent circuit model of a highcurrent stage,mainly used to study the ionization-type pulse phenomenon,which is similar to the equivalent model for the low-current stage.The negative electrode of the power supply is at the same potential as ground.The capacitance in the circuit model only depends on the structure of the ion thruster discharge chamber[25],the capacitance tester is used to measure the discharge chamber of ion thruster capacitance,and the measured value is 355 μF.VAis the voltage across the capacitor,V0andRbare the DC power supply voltage and the current limiting resistor,respectively,RP1andRP2are the plasma resistances at different discharge stages,respectively.Since the stray capacitance introduced by the circuit and measurement probe is much smaller than that of the highcurrent hollow cathode,it is ignored.In a discharge pulse,when the voltage is rising,it is regarded as a charging process,and when the voltage is falling,it is regarded as a discharging process.The switchK switches between connecting the charging resistor and the discharging resistor,and the voltage at the switching time is the threshold voltage.When the discharge voltage increases to the maximum(charging process),the switch is connected to RP2,the discharge voltage decreases(discharging process),and when the discharge voltage reaches the minimum,the switch is connected to RP1.The above is one cycle of discharge oscillation.

    Figure 1.Schematic of an ion thruster.

    Figure 2.Charge-discharge model of high-current HCD pulse equivalent circuit.

    Figure 3.The simulated process.

    Figure 4.Comparison of the anode voltage test waveforms and the simulated sinusoidal waveforms.

    Figure 5.Comparison of experimental and simulated anode voltage waveforms.

    The basic node current relationship and loop voltage relationship are easy to obtain:

    According to these two equations,the equivalent circuit model is constructed.The external power supply is represented by a constant voltage source and a currentlimiting resistor.The pulse of the discharge current-voltage observed in the experiment is equivalent to the charging and discharging process of the capacitor in the circuit.

    Scholars initially used a single sinusoidal function to simulate the discharge voltage pulse.The frequency and amplitude of the sinusoidal function were based on the data obtained in the experiment.Thus,the discharge voltage pulse can be represented as the average of discharge voltage plus this sinusoidal function:

    where()A Teis the amplitude related to electronic temperature,and α is a frequency coefficient that determines the discharge pulse.The discharge period can be derived from experimental data and can be expressed as:

    where T is the period of the pulse measured in the experiment.

    The amplitude of the anode voltage is mainly related to the electron temperature,due to its influence on the ionization rate and ionic sound waves.When the electron temperature is high,it promotes the excitation of ionization and the growth of ionic sound waves,leading to the increase of the potential pulse amplitude.When the electron temperature is low,the amplitude of the pulse caused by ionization and ionic sound waves decreases,leading to a decrease in the potential pulse amplitude.In practical experiments,when the discharge is in its plume stage with a low plasma density and high electron temperature,the amplitude of the anode pulse will be relatively large.Conversely,when the discharge form is in its spot stage with a high plasma density and a low electron temperature,the relative pulse amplitude is low.There is an essential relationship between the amplitude of discharge voltage pulse and electron temperature.The results show that there is a linear relationship between the pulse amplitude and the ionization rate[26].Reference[25]shows that the ionization rateTherefore,it can be seen that the expression of the potential pulse amplitude is as follows:

    where the electron temperature Teis in eV,the amplitude A(Te)is in V,and according to the experiment[22],it can be seen thata=0.5.

    When the structure of the hollow cathode is fixed,the equivalent charge-discharge resistance of the discharge chamber of ion thruster can be expressed as:

    where,meis the electron mass,L is the length of discharge chamber,A is the cross-sectional area of discharge chamber(screen grid area),the Ahhas been corrected as As,veiis the collision frequency of electrons and ions,venis the collision frequency of electrons and neutral particles.They can be calculated as follows[16,17]:

    The plasma density is related to the gas flow rate,the discharge current,and the discharge voltage working condition parameters through the zero-dimensional plasma discharge model.Therefore,the equivalent resistance value can be obtained from the working condition parameters.Since the plasma density changes with the changes in discharge voltage,the equivalent plasma resistance can be divided into an equivalent plasma charge resistance and an equivalent plasma discharge resistance.In the specific solution process,for the equivalent charging resistance,the discharge current of the input of the model is taken as the value of the maximum.Contrarily,for the equivalent discharge resistance,we take the value of the minimum.For both,the remaining conditions should be consistent.Thus,we can obtain the equivalent charging and discharging resistances,respectively.

    These parameters are closely related to microscopic parameters.However,microscopic parameters are coupled with each other,making it impossible to calculate the microscopic parameters corresponding to working conditions directly.The zero-dimensional plasma discharge model adopts two formulae related to conservation of neutral gas density and discharge current.This can be used to solve for neutral and plasma parameters,corresponding to each specific working condition parameter.The corresponding microscopic parameters are then determined.Thus,the function of obtaining microscopic parameters from working condition data is attained.

    The equivalent-circuit model can estimate the waveforms of the discharge pulse of the discharge chamber of ion thruster in the high-current stage,and the zero-dimensional plasma discharge model provides a method for calculating the microparameters,such as the plasma density and the temperature,from the working condition parameters.It is,therefore,possible to estimate the discharge-pulse waveforms of the high-current stage,when the input of the equivalent circuit model is obtained from the microscopic parameters.The simulated process is shown in figure 3.

    3.Experimental verification and simulation analysis

    3.1.Experimental verification

    The following set of experimental data is used:the discharge current changes in the range of 5 A,the average of it is 5 A,the beam current is 0.3 A,the supply voltage is 25 V,the value of the current-limiting resistance in the experiment is 1.14 Ω,the gas flow rate of the cathode is 10 sccm,and the discharge supply gas is 2 sccm.

    Figure 4 demonstrates the comparison between the experimental measurement waveforms of the discharge voltage pulse and the sinusoidal simulation waveforms.The charging and discharging processes are the same for the sinusoidal simulation,however,this is not aligned with the actual simulation.The increase and decrease in the voltage correspond to the decrease and increase in the internal average potential,respectively.The corresponding physical mechanism is a process of slow accumulation and rapid dissipation of positive ions.Therefore,the times when the anode voltage rises and falls are not equal.However,the simulation of this sinusoidal pulse is highly dependent on the experimental data,and thus,does not have much significance in practical engineering.

    Figure 6.Current frequency variation of the ion thruster.

    Figure 7.Current pulse diagram for changing charge resistance.

    Figure 8.Current pulse diagram for changing discharge resistance.

    Figure 9.Current pulse diagram for changing equivalent capacitance.

    Figure 10.Charging resistance versus discharge current.

    Figure 12.Discharge forms.

    Figure 13.Ion thruster(a)potential and(b)discharge current waveforms.

    Figure 14.Discharge voltage pulse diagram under different discharge chamber volumes.

    Figure 15.Discharge voltage pulse diagram under varying gate plate transmittance.

    The zero-dimensional model and the equivalent circuit model introduced in section 2 are simulated,as a result,the electron temperature is 3 eV,the()A Teis 1.5 V,and the current amplitude can be obtained.Substituting the corresponding current into the resistance prediction formula,the corresponding plasma densities are 5×1017m-3and 1.4×1017m-3,thus,the charge and discharge resistances are 6.3 Ω and 17 Ω,and the equivalent capacitance value is 355 μF.

    In figure 5,the waveforms of the corresponding experimental measurement are compared with those of theoretical simulation.The experimental simulation results fit well with the actual situation,thus addressing the two limitations in the sinusoidal simulation model.

    3.2.Analysis of charge-discharge characteristics

    As shown in figure 6,after the application of the fast Fourier transform,the relationship between the discharge current and pulse frequency is obtained at various discharge currents.The five key points are extracted from figure 6 for later simulation,(13 A,60 kHz),(15 A,75 kHz),(18 A,85 kHz),(20 A,110 kHz),and(25 A,120 kHz).

    When the discharge voltage pulse amplitude,discharge current,current-limiting resistance,and hollow cathode structure parameters are known,the controlled variable method is used by changing only the charging resistance,discharge resistance,and equivalent capacitance.The waveforms are consistent with the frequency measured in the experiment,thereby,revealing the change in the charging resistance,discharging resistance,and frequency of discharge.The simulated results are shown in figures 7-9.

    In three sets of equivalent resistance simulation experiments,figures 7 and 8 illustrate the corresponding frequency by adjusting the charging resistance and the discharging resistance,respectively,while figure 9 shows the same frequency by adjusting the capacitance value.The change in charging resistance and discharging resistance is shown in figure 10.The change in the equivalent capacitance is shown in figure 11.

    From figures 10 and 11,it can be observed that,with an increase in the discharge current,the plasma equivalent resistance decreases.The plasma resistance changes slowly with discharge current from 13 to 15 A,and 20 to 25 A,and rapidly from 15 to 20 A.However,the frequency of the current pulse decreases with the increase in capacitance,and this change is uniform.The recorded discharge forms are shown in figure 12.

    When the discharge current is low,it is in the form of a purple plume.With the further increase in discharge current,the plasma plume grows,reaching a maximum at approximately 15 A.Upon further increasing the discharge current,the plume shrinks to a point near the cathode exit,which is caused by the radial contraction of plasma.When the plasma plume contracts,as seen in figure 12,a bright region is formed between the anode and the cathode.Subsequently,the plasma becomes more compact because the excited ionization region becomes more compact,and when the discharge current increases,the electron temperature decreases rapidly.

    The equivalent resistance is inversely proportional to the plasma density.Therefore,when the discharge current increases,the plasma density increases,and thus,the resistance decreases.When the current is between 15 and 18 A,the plasma plume shrinks radially,the plasma density increases rapidly,and thus the resistance changes rapidly.However,the equivalent capacitance depends only on the hollow cathode structure.The change in equivalent capacitance will not change the discharge current and will not cause any change in potential difference.Therefore,changing only the equivalent capacitance will not change the form of the discharge.The capacitance and discharge-pulse frequency will change evenly.

    Some experimental waveforms obtained using the experimental system are shown in figure 13.The spatial potential pulse waveforms are synchronized with the oscillation variation of the cathode current waveforms.This indicates that the discharge oscillation is really related to the change in spatial plasma(ion/electron)density.

    3.3.Effect of discharge volume and gate plate transmittances

    3.3.1.Effect of discharge volume.When other conditions are known,the volume of the discharge chamber is reduced from 47.7 to 10 cm2,the discharge-pulse curve is calculated using the prediction model,and the change of the discharge-pulse curve is shown in figure 14.

    When the volume of the discharge chamber decreases from 4770 to 1000 cm2,the discharge voltage pulse frequency increases from 238 to 463 kHz when other conditions remain unchanged.This is due to the increase in the plasma density when the volume of the discharge chamber decreases.Moreover,when other conditions remain unchanged,the decrease in discharge chamber volume will lead to an increase in the electron temperature and thus an increase in the pulse amplitude of discharge anode voltage.

    3.3.2.Effect of gate plate transmittances.When other conditions are satisfied,the transmittance of the grid plate in the discharge chamber increases from 0.7 to 0.8.The dischargepulse curve is calculated using the predictive model.The changes in the discharge-pulse curve are illustrated in figure 15.

    When the other conditions remain unchanged,and the transmittance of the gate plate increases from 0.75 to 0.85,the pulse frequency of anode voltage decreases from 238 to 206 kHz.This is due to the decrease in the plasma density.Furthermore,the grid plate transmittance has little effect on the electron temperature,thus,the pulse amplitude of the discharge voltage changes slightly.

    4.Conclusion

    A theoretical model for predicting the discharge-pulse waveforms is proposed,which aims at addressing the phenomenon of the ionization discharge pulse in the discharge chamber of ion thruster in the arc phase.The effects of plasma density and temperature on the amplitude and frequency of the pulse waveforms are theoretically analyzed.Parameters,such as discharge current,voltage,and gas flow rate,can be used to estimate the amplitude and frequency of the pulse waveforms.

    The simulation is performed using the established predictive model,and the waveforms obtained from the simulation are consistent with those obtained from the experiment.It was experimentally found that,when the discharge current is between 15 and 18 A,the plume shrinks radially near the cathode outlet,and the plasma density will increase rapidly in this range.The equivalent resistance in the simulation model showed that the turning point of the resistance change was similar to the current corresponding to the rapid change in plasma density.

    The established model is also used to study the effects of different discharge chambers on the pulse characteristics of highcurrent hollow cathode ionization discharge.When the volume of the discharge chamber reduces,while other parameters are unchanged,the plasma density increases,and the temperature rises.Thus,the discharge-pulse frequency and amplitude tend to increase.When the grid plate transmittance increases and other parameters are constant,the plasma density reduces.Thus,the discharge-pulse frequency tends to reduce.

    Acknowledgments

    The authors acknowledge the financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123),the National Key Laboratory of Science and Technology on Vacuum Technology &Physics(No.ZWK1608),the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.LabASP-2018-03).

    ORCID iDs

    猜你喜歡
    田豐宋家
    山西宋家溝功能食品有限公司
    Important edge identification in complex networks based on local and global features
    岢嵐縣宋家溝 幸福生活接力跑
    Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation?
    假期對工人和公司都有好處
    行走的機(jī)器人
    長春市寬城區(qū)宋家小學(xué):博雅教育
    仿生建筑學(xué)在景觀橋梁設(shè)計(jì)中的應(yīng)用與展望
    找匣子
    Swept-Volume Display System Based on Cylindrical Space Projection and Curved Reflectors
    日韩亚洲欧美综合| 91成人精品电影| 一级毛片我不卡| 色哟哟·www| 亚洲一级一片aⅴ在线观看| 亚洲国产精品一区二区三区在线| 国产毛片在线视频| 精品视频人人做人人爽| 成年av动漫网址| 亚洲精品中文字幕在线视频| 亚洲欧美日韩另类电影网站| 18禁在线无遮挡免费观看视频| 99久久人妻综合| 中文字幕精品免费在线观看视频 | 久久人妻熟女aⅴ| 少妇被粗大的猛进出69影院 | 国产成人精品无人区| 成人免费观看视频高清| 国产成人午夜福利电影在线观看| 久久久久久久久久久丰满| 97精品久久久久久久久久精品| 日日摸夜夜添夜夜爱| 男女国产视频网站| 国产国语露脸激情在线看| 国产精品国产三级专区第一集| 成年人免费黄色播放视频| 久久国产精品男人的天堂亚洲 | 国产精品久久久久成人av| 一级二级三级毛片免费看| 菩萨蛮人人尽说江南好唐韦庄| 男人操女人黄网站| 欧美精品人与动牲交sv欧美| 国产免费现黄频在线看| kizo精华| 黄色欧美视频在线观看| 免费黄网站久久成人精品| 丰满饥渴人妻一区二区三| 亚洲欧美中文字幕日韩二区| 高清不卡的av网站| 91久久精品国产一区二区三区| 色吧在线观看| 一区二区三区精品91| 日本免费在线观看一区| 亚洲中文av在线| 岛国毛片在线播放| 人人妻人人爽人人添夜夜欢视频| 日韩精品免费视频一区二区三区 | 久久久久国产精品人妻一区二区| 少妇猛男粗大的猛烈进出视频| 国产亚洲午夜精品一区二区久久| 制服诱惑二区| 成人毛片a级毛片在线播放| av有码第一页| 欧美老熟妇乱子伦牲交| 中文字幕久久专区| 99热这里只有精品一区| 黄色视频在线播放观看不卡| 日本av手机在线免费观看| 91久久精品国产一区二区三区| 精品午夜福利在线看| 极品人妻少妇av视频| 日本与韩国留学比较| 国产成人精品一,二区| 亚洲精品日本国产第一区| 国国产精品蜜臀av免费| 国产高清不卡午夜福利| 亚洲国产毛片av蜜桃av| 蜜桃国产av成人99| 简卡轻食公司| 欧美日韩国产mv在线观看视频| 精品一区在线观看国产| 亚洲av男天堂| 国产极品粉嫩免费观看在线 | 日韩三级伦理在线观看| 日本vs欧美在线观看视频| 亚洲国产精品专区欧美| 又大又黄又爽视频免费| 成人手机av| 国产黄色免费在线视频| 欧美日韩一区二区视频在线观看视频在线| 91精品三级在线观看| kizo精华| 久久这里有精品视频免费| 精品久久久噜噜| 一本一本综合久久| 女的被弄到高潮叫床怎么办| 人妻系列 视频| av女优亚洲男人天堂| 三级国产精品片| 丁香六月天网| 高清毛片免费看| 丝瓜视频免费看黄片| 免费黄频网站在线观看国产| 秋霞伦理黄片| 久久狼人影院| 国产精品不卡视频一区二区| 国产精品不卡视频一区二区| 亚洲在久久综合| 看十八女毛片水多多多| 高清午夜精品一区二区三区| 边亲边吃奶的免费视频| 久久久亚洲精品成人影院| 只有这里有精品99| 最黄视频免费看| 美女国产视频在线观看| 爱豆传媒免费全集在线观看| 精品久久久久久久久av| 国产精品女同一区二区软件| 91久久精品国产一区二区成人| 久久午夜福利片| 久久久久网色| 午夜激情av网站| 日韩一区二区三区影片| 97在线人人人人妻| 久久狼人影院| 欧美人与善性xxx| 国产探花极品一区二区| 亚洲国产日韩一区二区| 亚洲精品美女久久av网站| 人体艺术视频欧美日本| 成人毛片60女人毛片免费| 汤姆久久久久久久影院中文字幕| 大香蕉久久成人网| 美女主播在线视频| 国产国语露脸激情在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品欧美亚洲77777| 18禁在线播放成人免费| 校园人妻丝袜中文字幕| 国模一区二区三区四区视频| av国产久精品久网站免费入址| 一级毛片我不卡| 99热6这里只有精品| 香蕉精品网在线| 久久久久国产精品人妻一区二区| 国产亚洲一区二区精品| 午夜影院在线不卡| 91成人精品电影| h视频一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲,欧美,日韩| 国产成人一区二区在线| 精品少妇黑人巨大在线播放| 免费大片黄手机在线观看| 亚洲在久久综合| 成年人免费黄色播放视频| 在线精品无人区一区二区三| 在线播放无遮挡| 亚洲久久久国产精品| 91精品三级在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热re99久久精品国产66热6| 秋霞在线观看毛片| 免费黄色在线免费观看| 国产69精品久久久久777片| 亚洲av综合色区一区| 麻豆乱淫一区二区| av不卡在线播放| 高清欧美精品videossex| 日本欧美国产在线视频| 99久久精品国产国产毛片| 免费观看的影片在线观看| 一本久久精品| 午夜91福利影院| 观看av在线不卡| 亚洲美女黄色视频免费看| 超色免费av| 免费播放大片免费观看视频在线观看| 久久久久精品久久久久真实原创| www.色视频.com| 亚洲av.av天堂| 少妇被粗大猛烈的视频| 日本色播在线视频| 免费av中文字幕在线| 久久精品久久精品一区二区三区| 毛片一级片免费看久久久久| 国产老妇伦熟女老妇高清| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 超碰97精品在线观看| 大又大粗又爽又黄少妇毛片口| 日韩,欧美,国产一区二区三区| videosex国产| 久久国产精品大桥未久av| 大话2 男鬼变身卡| 久久久久精品久久久久真实原创| 久久久久视频综合| 国产黄片视频在线免费观看| 2021少妇久久久久久久久久久| 日韩一区二区三区影片| 乱人伦中国视频| 丁香六月天网| 国产精品一区二区三区四区免费观看| 永久网站在线| 日本色播在线视频| 亚洲国产av新网站| 日本猛色少妇xxxxx猛交久久| 中文字幕av电影在线播放| av卡一久久| 亚洲高清免费不卡视频| 亚洲四区av| 国产乱来视频区| 精品一品国产午夜福利视频| 国产精品一区二区三区四区免费观看| 只有这里有精品99| 久久久久久久精品精品| 精品99又大又爽又粗少妇毛片| 在线观看人妻少妇| 日本欧美视频一区| 欧美激情 高清一区二区三区| 91精品三级在线观看| 国产免费现黄频在线看| 色94色欧美一区二区| 在线看a的网站| 91aial.com中文字幕在线观看| 黑人猛操日本美女一级片| 久久精品国产亚洲网站| av在线老鸭窝| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 国产在线视频一区二区| 久久99精品国语久久久| 午夜免费鲁丝| 亚洲av不卡在线观看| 国产精品不卡视频一区二区| 性高湖久久久久久久久免费观看| 黑丝袜美女国产一区| 人成视频在线观看免费观看| 国产精品 国内视频| 91久久精品电影网| 天天躁夜夜躁狠狠久久av| 国产精品无大码| 国产成人91sexporn| 亚洲国产欧美在线一区| 桃花免费在线播放| 国产精品免费大片| xxxhd国产人妻xxx| 日本av手机在线免费观看| 欧美性感艳星| av天堂久久9| 日本vs欧美在线观看视频| 91aial.com中文字幕在线观看| 免费观看a级毛片全部| 久久久午夜欧美精品| 亚洲精品日韩在线中文字幕| 久久久午夜欧美精品| 久久人人爽人人爽人人片va| 啦啦啦视频在线资源免费观看| 香蕉精品网在线| 国产欧美亚洲国产| 中文欧美无线码| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 免费黄频网站在线观看国产| www.av在线官网国产| 亚洲天堂av无毛| 青青草视频在线视频观看| 蜜桃国产av成人99| 老熟女久久久| 久久精品人人爽人人爽视色| 免费播放大片免费观看视频在线观看| 青青草视频在线视频观看| a级毛色黄片| 麻豆成人av视频| 亚洲天堂av无毛| 免费观看性生交大片5| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 亚洲成色77777| 国产一区二区三区av在线| 桃花免费在线播放| 亚洲欧美日韩卡通动漫| 一级黄片播放器| 99久久人妻综合| 国产在线视频一区二区| 日韩欧美一区视频在线观看| 亚洲久久久国产精品| 久久99蜜桃精品久久| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 国产成人精品在线电影| 国产黄频视频在线观看| 91精品伊人久久大香线蕉| 成人二区视频| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| 久久人人爽人人爽人人片va| 少妇 在线观看| 亚洲在久久综合| 超色免费av| 2018国产大陆天天弄谢| 中文字幕av电影在线播放| 一级黄片播放器| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 亚洲美女视频黄频| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区国产| 中文字幕久久专区| 国产精品.久久久| 街头女战士在线观看网站| 在线观看三级黄色| 成人无遮挡网站| 国产成人aa在线观看| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 日本色播在线视频| 人人澡人人妻人| 欧美日韩亚洲高清精品| 国产在线免费精品| 国产精品成人在线| 免费观看性生交大片5| 欧美 日韩 精品 国产| 欧美人与善性xxx| 母亲3免费完整高清在线观看 | 国产一级毛片在线| 欧美成人精品欧美一级黄| 纯流量卡能插随身wifi吗| videos熟女内射| 老女人水多毛片| 亚洲少妇的诱惑av| 亚洲美女搞黄在线观看| 十八禁高潮呻吟视频| 丝瓜视频免费看黄片| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av天美| 亚洲精品国产av蜜桃| 久久久久久久国产电影| 精品人妻一区二区三区麻豆| 国产亚洲av片在线观看秒播厂| 一级爰片在线观看| 成年女人在线观看亚洲视频| 亚洲国产日韩一区二区| 一区在线观看完整版| 9色porny在线观看| 中文字幕制服av| 99国产综合亚洲精品| 五月玫瑰六月丁香| 美女cb高潮喷水在线观看| 久久久国产欧美日韩av| 肉色欧美久久久久久久蜜桃| av免费在线看不卡| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲 | 欧美老熟妇乱子伦牲交| 18在线观看网站| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 精品国产国语对白av| 国产色婷婷99| 人体艺术视频欧美日本| 一级毛片 在线播放| 久久国内精品自在自线图片| 国产一区有黄有色的免费视频| 你懂的网址亚洲精品在线观看| 精品一区二区免费观看| 日日爽夜夜爽网站| av线在线观看网站| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看| 丰满少妇做爰视频| 国产亚洲av片在线观看秒播厂| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 热99国产精品久久久久久7| 国产成人精品一,二区| 天天操日日干夜夜撸| 国产精品欧美亚洲77777| 久热久热在线精品观看| 插逼视频在线观看| 一级片'在线观看视频| 蜜桃久久精品国产亚洲av| av在线老鸭窝| 午夜免费男女啪啪视频观看| 国产亚洲精品第一综合不卡 | 成人手机av| 亚洲av免费高清在线观看| 亚洲性久久影院| av一本久久久久| 黄色欧美视频在线观看| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 亚洲成人av在线免费| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 精品一品国产午夜福利视频| 日本与韩国留学比较| 2021少妇久久久久久久久久久| 精品人妻熟女毛片av久久网站| 午夜福利,免费看| 久久久久久久久久久久大奶| 午夜福利网站1000一区二区三区| 只有这里有精品99| 国精品久久久久久国模美| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 男女边吃奶边做爰视频| 欧美3d第一页| 成人亚洲精品一区在线观看| 日韩精品有码人妻一区| 插阴视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看 | 亚洲国产精品一区三区| 特大巨黑吊av在线直播| 99精国产麻豆久久婷婷| 日韩av免费高清视频| 99热这里只有是精品在线观看| 黄色一级大片看看| 七月丁香在线播放| 欧美日韩av久久| 久久久欧美国产精品| 26uuu在线亚洲综合色| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看| 亚洲熟女精品中文字幕| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 大香蕉久久成人网| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 日韩av不卡免费在线播放| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 国产精品人妻久久久久久| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 熟妇人妻不卡中文字幕| 美女大奶头黄色视频| 99久久综合免费| 欧美人与善性xxx| 中文精品一卡2卡3卡4更新| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 一级片'在线观看视频| 国产精品99久久99久久久不卡 | 亚洲精品乱码久久久v下载方式| 国产女主播在线喷水免费视频网站| xxx大片免费视频| 欧美3d第一页| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 美女中出高潮动态图| 成人黄色视频免费在线看| 夜夜骑夜夜射夜夜干| 大陆偷拍与自拍| 国产在线免费精品| 男女高潮啪啪啪动态图| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 99热这里只有是精品在线观看| 制服丝袜香蕉在线| 午夜91福利影院| 欧美日本中文国产一区发布| 在线观看三级黄色| 另类精品久久| 亚洲成色77777| 99九九线精品视频在线观看视频| 国产日韩欧美亚洲二区| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 看免费成人av毛片| 日韩av免费高清视频| 飞空精品影院首页| 两个人的视频大全免费| av在线播放精品| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 99视频精品全部免费 在线| 综合色丁香网| 男女无遮挡免费网站观看| 亚洲精品日韩av片在线观看| 欧美 亚洲 国产 日韩一| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 97在线人人人人妻| 亚洲精品日韩av片在线观看| 男人爽女人下面视频在线观看| 大香蕉久久网| 久久精品国产自在天天线| 亚洲人与动物交配视频| 中文字幕人妻丝袜制服| 卡戴珊不雅视频在线播放| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| 精品亚洲成国产av| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 免费高清在线观看视频在线观看| 老司机影院成人| .国产精品久久| 青青草视频在线视频观看| 久久婷婷青草| 女人精品久久久久毛片| 亚洲不卡免费看| 一区在线观看完整版| 秋霞在线观看毛片| 欧美精品一区二区大全| 成人无遮挡网站| 免费大片黄手机在线观看| 9色porny在线观看| 国产伦理片在线播放av一区| 亚洲精华国产精华液的使用体验| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 亚洲一区二区三区欧美精品| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 亚洲精品av麻豆狂野| 亚洲性久久影院| 99九九线精品视频在线观看视频| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| 免费观看a级毛片全部| 人妻系列 视频| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 插逼视频在线观看| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 久久97久久精品| 国产伦理片在线播放av一区| 精品久久久久久久久av| 亚洲第一av免费看| 亚洲伊人久久精品综合| 中文字幕制服av| 国产精品偷伦视频观看了| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 久久精品久久精品一区二区三区| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 人妻 亚洲 视频| 男女边吃奶边做爰视频| 成年女人在线观看亚洲视频| 最近最新中文字幕免费大全7| 亚洲美女搞黄在线观看| 如日韩欧美国产精品一区二区三区 | 日韩电影二区| 大码成人一级视频| 日本91视频免费播放| 亚洲伊人久久精品综合| 精品99又大又爽又粗少妇毛片| 午夜av观看不卡| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 99久久综合免费| 久久久国产精品麻豆| av国产精品久久久久影院| 麻豆成人av视频| 亚洲国产精品一区三区| 久久毛片免费看一区二区三区| 九色成人免费人妻av| 中文字幕久久专区| 亚洲av福利一区| 天天影视国产精品| 大码成人一级视频| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 一本色道久久久久久精品综合| 国产在线一区二区三区精| 精品国产一区二区久久| 亚洲人成网站在线播| 欧美日韩精品成人综合77777| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕 | 国产精品国产三级国产av玫瑰| 亚洲精品一区蜜桃| 精品一区二区免费观看| 久久精品国产亚洲av天美| 视频区图区小说| 三上悠亚av全集在线观看| 26uuu在线亚洲综合色| 午夜精品国产一区二区电影| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线 | 亚洲精品第二区| 久久久午夜欧美精品| 99热这里只有是精品在线观看| 久久99精品国语久久久| 久久久精品区二区三区| 国产精品成人在线| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 一级毛片 在线播放| 国产一区有黄有色的免费视频| 欧美精品国产亚洲| 一级毛片aaaaaa免费看小|