• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation?

    2021-03-11 08:33:44JinJinTang湯金金GuiPengLiu劉貴鵬JiaYuSong宋家毓GuiJuanZhao趙桂娟andJianHongYang楊建紅
    Chinese Physics B 2021年2期
    關(guān)鍵詞:金金宋家

    Jin-Jin Tang(湯金金), Gui-Peng Liu(劉貴鵬),2,?, Jia-Yu Song(宋家毓),Gui-Juan Zhao(趙桂娟), and Jian-Hong Yang(楊建紅)

    1School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    2National&Local Joint Engineering Laboratory of Light-conversion Materials and Technology,School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    Keywords: proton irradiation,GaN-based HEMT,two-dimensional electron concentration

    1. Introduction

    Due to the superior material properties such as wide bandgap energy,high thermal and chemical stability,and high displacement threshold energy, GaN-based high electron mobility transistors (HEMTs) exhibit outstanding performance in high power and high frequency applications required in aerospace and military fields. Owing to the spontaneous and piezoelectric polarization in GaN-based HEMT, there is a large interface charge density in this system, which is associated with the formation of the two-dimensional electron gas(2DEG) channel near the AlN/GaN heterointerface. Even in the absence of intentional doping, 2DEG concentration can reach about 1×1013cm?2. In addition, the high mobility of 2DEG gives the GaN-based HEMTs a low on-resistance and perfect high-frequency performance. Inside the earth magnetosphere, there are two Van Allen regions of trapped fast particles, mostly electrons and protons.[1–3]Subjected to the high fluence proton irradiation,the performance of GaN-based HEMTs will degenerate despite its high irradiation tolerance,which has been investigated by many researchers. It has been found that defects produced by proton irradiation can reduce the concentration of 2DEG,[4,5]which in turn causes a shift in threshold voltage and an increase in on-resistance. However,the specific mechanism by which proton irradiation decreases the concentration of 2DEG and affects the band structure of GaN-based HEMTs remains unclear.

    Proton irradiation can cause displacement damage and total ionizing dose(TID)radiation effects.[6–8]TID is typically caused by lattice displacement damage caused by ionizing radiation over the integrated exposure time. When GaN-based HEMTs are in operation, electrons and holes introduced by ionization effects can significantly affect the electrical properties of GaN-based HEMT. However, under the equilibrium condition,electrons and holes caused by ionization effects recombine rapidly and have no significant impact on the concentration of 2DEG, which can be ignored. Moreover, previous studies have demonstrated that the ionization effect have no significant contribution to radiation-induced damage in GaNbased devices.[3,6]The other extremely important effect is the displacement damage,which results from nuclear interactions and can lead to lattice defects, i.e., vacancies. Earlier, researchers concentrated on the role of N vacancies on the degeneration of GaN-based HEMTs,[9]and gradually shifted the focus of their researches to Ga vacancies. Lv et al.[5]conducted 3-MeV proton irradiation on AlGaN/GaN HEMTs at fluences of 4×1013cm?2,6×1013cm?2,and 1×1015cm?2,the results suggest that Ga vacancies introduced by proton irradiation may be the main reason for the degradation of GaNbased HEMTs. Further, the energy of proton irradiation was found to be one of the key factors leading to the degradation of the device. Hu et al.[10]reported the effects of proton irradiation on AlGaN/GaN HEMTs at different energies and found that the degradation of GaN-based HEMTs is very small when the energy of proton is greater than 15 MeV.Most of the studies on the degradation of GaN-based HEMTs by proton irradiation have focused on the link between electrical performance degradation and proton irradiation,in contrast to the few studies on the underlying physical mechanisms.

    In order to elucidate the physical mechanism by which proton irradiation reduces the 2DEG concentration in GaNbased HEMTs, we develop a model to obtain the simulation results of 2DEG concentration for 100 keV,500 keV,1 MeV,1.8 MeV and 3 MeV proton irradiation on devices with fluences ranging from 1×1011cm?2to 1×1015cm?2. The coupled Schr¨oodinger’s and Poisson’s equations are solved to calculate the band structure and 2DEG concentration by selfconsistency method,[11]in which the vacancy data acquired by SRIM are taken into account. We find that 2DEG concentration decreases significantly after irradiation with 100 keV protons at a fluence of 1×1015cm?2.

    2. Modeling

    2.1. Proton irradiation simulation with SRIM software

    SRIM is a software that simulates the stopping and range of the ions in matter by the Monte Carlo method.[12]As protons pass through the device,they will lose part of their energy,and the lost energy will be transferred to the lattice atoms in the form of non-ionizing energy loss(NIEL),which will displace the atoms from their lattice sites and create charged defect centers, i.e., Ga vacancies (VGa) and N vacancies (VN).VGais an acceptor-like defect, which acts as a compensation center and may be responsible for the carrier removal. For the N vacancies,there have been some research demonstrated that N vacancies as donor-like defects have little effect on the electrical properties of GaN-based HEMTs.[5]Therefore, we only consider VGaas the main factor for the decrease of 2DEG concentration and analyze the physical mechanism behind it.

    The structure of the GaN-based HEMT we studied is shown in Fig.1,which consists of four layers: GaN cap layer,AlGaN layer, AlN layer, GaN layer. Vacancy data will be given after the simulation completed, and Ga vacancies density changes with depth as shown in Fig.2. Since the 2DEG is mainly concentrated in the GaN layer about 5 nm near the AlN/GaN interface (as shown in Fig.3), we only consider the vacancies distribution in the 6 nm range in the GaN layer. The energy and fluences of proton irradiation are set to 100 keV,500 keV,1 MeV,1.8 MeV,3 MeV and 1×1011cm?2,1×1012cm?2,1×1013cm?2,1×1014cm?2,1×1015cm?2,respectively.

    Fig.1. Schematic device structures of GaN-based HEMT.

    Fig.2. Vacancy density vs. proton energy and depth in GaN-based HEMT.The proton fluence is 1×1015 cm?2.

    2.2. Calculation of 2DEG concentration

    To calculate the concentration of 2DEG, we must solve the coupled Schr¨odinger’s and Poisson’s equations. The parameters we used in this work are shown in Table 1. The electrostatic potential in the GaN-based HEMT is related to charge distribution by Poisson’s equation,

    where EFand EAare the Fermi level and acceptor level, respectively; NGais the density of Ga vacancies, and gAis the ground-state degeneracy factor.

    Table 1. Material parameters used for the calculations.[15]

    For free electrons, the enveloped electron wave function of the i-th subband ψ(i) is determined by the Schr¨odinger equation:

    with

    where m?is the effective mass of the electron, and Eiis the eigenenergy of the i-th subband. Among the total potential V(z)are the following terms: a barrier potential VB(z)due to the conduction band offset at the interface; a potential VP(z)resulting from the polarization charge at the interface; a potential VA(z) related to the ionized acceptors; Vel(z) refers to the potential from electrons. Using dichotomy to solve coupled Schr¨odinger’s and Poisson’s equations self-consistently,the conduction band profile,free electron distribution,and the electron eigenstates are obtained. The total concentration of 2DEG is taken in the following form:

    where the Fermi level EFsatisfies the following equation under equilibrium condition:[13]

    where σGaN, σAlGaNand σAlNare the total polarization charge induced by spontaneous and piezoelectric polarization across the GaN/AlGaN, AlGaN/AlN and AlN/GaN interface, respectively; x represents the composition of Al.?EC,GaN/AIGaN(x)is the band offset at GaN/AlGaN heterointerface.?EC,AlGaN/AIN(x)is the band offset at AlGaN/AlN heterointerface. ?EC,AlN/GaN(x) is the band offset at AlN/GaN heterointerface.[14]NA,barrier(z) is approximately equal to the distribution of VGain the GaN cap layer, AlGaN layer, and AlN layer. The direction of z is perpendicular to the interface and extends inward. Here eΦb(x) is Schottky barrier height,which is given by[15]

    So far,we have not considered the distribution of Ga vacancies in the GaN layer. According to the neutrality condition,the ionized Ga vacancies in the quantum well region have little effect on the energy band in the process of self-consistent calculation. Since the Ga vacancy trap electrons in the quantum well, the ionization of the Ga vacancies must lead to a decrease in the 2DEG concentration. The actual 2DEG concentration should be the calculated 2DEG concentration minus the concentration of ionized Ga vacancies, thus nsis denoted as

    where ns,calis the concentration of 2DEG by self-consistence calculation. N?A,GaNis the distribution of ionized Ga vacancies in GaN layer.In our calculation,we find that the concentration of 2DEG can be significantly reduced by Ga vacancies in the GaN layer only when the energy and fluence of proton irradiation are 100 keV and 1×1015cm?2,respectively. The reason is that irradiated by protons with high energy and low fluence,the concentration of Ga vacancies in the GaN layer is so small that the electrons trapped by Ga vacancies are negligible compared to the concentration of 2DEG.The conduction band profile before irradiation obtained by solving Schr¨odinger’s and Poisson’s equations self-consistently is shown in Fig.3. The Fermi level is 0.45 eV above the conduction band bottom and the concentration of 2DEG is up to 2.48×1013cm?2.

    Fig.3. The conduction band profile of GaN-based HEMT before irradiation,i.e.,energy and 2DEG sheet charge concentration versus depth.

    3. Results and discussion

    The conduction band profiles and the concentrations of 2DEG near the AlN/GaN interface in GaN-based HEMT irradiated by protons with different fluences and energy are shown in Figs. 4 and 5, respectively. As shown in Fig.5, no significant decrease of 2DEG concentration is observed after proton irradiation at fluence below 1×1013cm?2. When proton fluence rises to 1×1015cm?2, 2DEG concentration decreases significantly at each irradiation energy. For 100 keV proton irradiation,the 2DEG concentration decreases dramatically when the fluence rises to 1×1014cm?2. As shown in Fig.2, 100 keV proton irradiation introduces much more Ga vacancies than the higher energy proton irradiations. The reason is that the proton with low energy will decelerate rapidly when they collide with the lattice atoms,transferring more energy to lattice atoms in the form of NIEL. Apparently, that will create more Ga vacancies, which may be responsible for the decrease of 2DEG concentration.

    Fig.4. The conduction band profiles of GaN-based HEMT before irradiation and after proton irradiation with different energy at fluence of 1×1015 cm?2.

    Fig.5. The 2DEG concentration vs proton irradiation fluence and energy.

    When Ga vacancies ionize as acceptor-like defects,it will capture the electron and become a negative center after ionization. In the GaN cap layer and AlGaN layer, a great number of Ga vacancies ionize,and electrons are trapped in the energy level introduced by Ga vacancies. Meanwhile, as shown in Fig.4,the formation of negative centers in the barrier will also affect the conduction band structure for the reason that ionized Ga vacancy increases the electric field intensity in the AlGaN layer significantly.

    When the fluences of proton radiation are increased from 1×1011cm?2to 1×1015cm?2,the 2DEG concentration decreases more sharply at 100 keV proton irradiation compared to the higher energy proton irradiation. There are two reasons:(1)Under 100 keV proton irradiation,there will be much more Ga vacancies introduced by proton irradiation in the quantum well area where the 2DEG is located. (2)The Ga vacancies in the barrier increase significantly, affecting the band structure and the relative position of Fermi level(EF)to the ground-state energy level(E0).

    Fig.6. The relative position of the ground-state energy level and the Fermi level(a)before irradiation and(b)after 100 keV proton irradiation at fluence of 1×1015 cm?2.

    Clearly, if more Ga vacancies are in the area where the 2DEG is located,the 2DEG concentration will decrease more dramatically due to the ionization of Ga vacancies. Based on Eq. (6), the change of relative position of EFto E0will be a crucial factor in the reduction of the 2DEG concentration. As shown in Fig.6, the value of (EF?E0) decreases from 0.1517 eV to 0.1055 eV after 100 keV proton irradiation,which will reduce the 2DEG concentration by about 30%even if we do not consider the Ga vacancies in the GaN layer,based on our calculation. Under the combined effect of the two mechanisms discussed above,ionized Ga vacancies introduced by proton irradiation are the key factor for the reduction of 2DEG concentration.For the same irradiation fluence,a relatively lower proton irradiation energy will introduce more Ga vacancies and thus reduce the 2DEG concentration more significantly. Therefore,when designing irradiation-resistant devices,special attention should be paid to the effect of low energy protons on the device and the protective structure should be designed.

    4. Conclusions

    We have investigated the impact of proton irradiation on the 2DEG concentration in GaN-based HEMTs. Considering the defects introduced by proton irradiation, a model has been developed to calculate the 2DEG concentration. The results reveal that Ga vacancies in the GaN layer can trap twodimensional electrons in the quantum well,while Ga vacancies in the AlGaN layer and the GaN cap layer reduce the 2DEG concentration by affecting the energy band structure and the Fermi level. The Ga vacancies in the AlGaN layer and the GaN cap layer take the dominant contribution to the reduction of 2DEG concentration by affecting the Fermi level and ground-state energy level,which is the key mechanism for the reduction of the 2DEG concentration when the fluence of proton irradiation is relatively low. Our calculations show that low-energy proton irradiation will introduce relatively more Ga vacancies inside the device and the concentration of 2DEG will be significantly reduced through the two mechanisms described above.

    猜你喜歡
    金金宋家
    山西宋家溝功能食品有限公司
    Effect of Weft Binding Structure on Compression Properties of Three-Dimensional Woven Spacer Fabrics and Composites
    Important edge identification in complex networks based on local and global features
    岢嵐縣宋家溝 幸福生活接力跑
    What a Dream!
    長春市寬城區(qū)宋家小學(xué):博雅教育
    被牢牢貼上的標(biāo)簽
    博士風(fēng)采·梅金金博士簡介
    我的“超能力”同桌
    找匣子
    边亲边吃奶的免费视频| 三级国产精品片| 精品一区二区免费观看| 91aial.com中文字幕在线观看| 亚洲精品美女久久久久99蜜臀 | av一本久久久久| 汤姆久久久久久久影院中文字幕| 亚洲第一区二区三区不卡| 日韩电影二区| 欧美日韩国产mv在线观看视频| 香蕉国产在线看| 男女边摸边吃奶| 精品国产一区二区三区四区第35| 在线观看免费高清a一片| 黑人高潮一二区| 日韩人妻精品一区2区三区| 国产成人精品福利久久| 久久精品熟女亚洲av麻豆精品| 内地一区二区视频在线| 国产在视频线精品| 最近中文字幕高清免费大全6| 亚洲国产av新网站| 色网站视频免费| 成年动漫av网址| 欧美亚洲日本最大视频资源| 国语对白做爰xxxⅹ性视频网站| 国产视频首页在线观看| 亚洲av日韩在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本黄色日本黄色录像| 自线自在国产av| 丝袜在线中文字幕| 成人二区视频| 国产精品一二三区在线看| 啦啦啦中文免费视频观看日本| 国产国拍精品亚洲av在线观看| 亚洲一级一片aⅴ在线观看| 69精品国产乱码久久久| 国产成人午夜福利电影在线观看| 热re99久久精品国产66热6| 亚洲,一卡二卡三卡| 免费av中文字幕在线| 各种免费的搞黄视频| 大香蕉久久成人网| 色5月婷婷丁香| 高清在线视频一区二区三区| 欧美日韩av久久| 校园人妻丝袜中文字幕| 丰满迷人的少妇在线观看| 国产激情久久老熟女| 如日韩欧美国产精品一区二区三区| 一级毛片黄色毛片免费观看视频| 人妻一区二区av| 高清在线视频一区二区三区| 久久久久久人妻| 黄色 视频免费看| videossex国产| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 午夜福利网站1000一区二区三区| 欧美日本中文国产一区发布| 久久婷婷青草| 亚洲av在线观看美女高潮| 国产日韩欧美视频二区| 国语对白做爰xxxⅹ性视频网站| 久久精品久久精品一区二区三区| 日韩不卡一区二区三区视频在线| 一级,二级,三级黄色视频| videosex国产| 在线观看人妻少妇| 另类精品久久| av不卡在线播放| 免费观看性生交大片5| 国产亚洲欧美精品永久| 美女主播在线视频| 中文天堂在线官网| 国产精品一区二区在线观看99| 成人午夜精彩视频在线观看| 亚洲伊人色综图| 日韩一区二区三区影片| 亚洲国产最新在线播放| 亚洲内射少妇av| 美女主播在线视频| 最新的欧美精品一区二区| 免费人妻精品一区二区三区视频| 国产精品不卡视频一区二区| 一级爰片在线观看| 三级国产精品片| 国产乱来视频区| 久久人人爽人人片av| 男人爽女人下面视频在线观看| 亚洲精品国产色婷婷电影| 大片电影免费在线观看免费| 亚洲一级一片aⅴ在线观看| 成人国产麻豆网| 欧美人与善性xxx| 国产精品久久久久久精品古装| 色婷婷久久久亚洲欧美| 老司机亚洲免费影院| 国产精品久久久久成人av| 亚洲国产欧美在线一区| 大香蕉久久成人网| 免费观看在线日韩| 亚洲成av片中文字幕在线观看 | 午夜激情久久久久久久| 国产精品国产三级国产av玫瑰| 男人操女人黄网站| 亚洲精品自拍成人| 99视频精品全部免费 在线| 亚洲中文av在线| 日韩熟女老妇一区二区性免费视频| 亚洲在久久综合| 午夜免费男女啪啪视频观看| 亚洲精品中文字幕在线视频| 欧美国产精品va在线观看不卡| 99久久综合免费| 91精品伊人久久大香线蕉| 国产亚洲午夜精品一区二区久久| 在线观看免费日韩欧美大片| 一级片免费观看大全| 亚洲欧美一区二区三区黑人 | 日韩一区二区三区影片| 欧美 亚洲 国产 日韩一| 99九九在线精品视频| √禁漫天堂资源中文www| 最新中文字幕久久久久| 国产精品国产三级专区第一集| 国产高清不卡午夜福利| 国产在线视频一区二区| 久久毛片免费看一区二区三区| 国产亚洲精品第一综合不卡 | 国产av码专区亚洲av| 国产在线视频一区二区| 80岁老熟妇乱子伦牲交| 一级爰片在线观看| 熟妇人妻不卡中文字幕| a级毛色黄片| 成年人午夜在线观看视频| 最后的刺客免费高清国语| 少妇猛男粗大的猛烈进出视频| 亚洲情色 制服丝袜| 大码成人一级视频| 国产国语露脸激情在线看| 一级,二级,三级黄色视频| 精品熟女少妇av免费看| 国产片内射在线| 天天躁夜夜躁狠狠久久av| 午夜福利网站1000一区二区三区| 日韩av在线免费看完整版不卡| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| 久久久久久久大尺度免费视频| 久久久久久人妻| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 国产毛片在线视频| 成人免费观看视频高清| 国产成人精品福利久久| 黄色一级大片看看| 成人亚洲欧美一区二区av| 高清黄色对白视频在线免费看| 视频在线观看一区二区三区| 日韩av不卡免费在线播放| 久久久久精品人妻al黑| 亚洲精品美女久久久久99蜜臀 | 韩国av在线不卡| 国产精品久久久久成人av| 一二三四中文在线观看免费高清| 国产综合精华液| 欧美精品av麻豆av| 在线观看国产h片| 观看美女的网站| 少妇猛男粗大的猛烈进出视频| 午夜福利影视在线免费观看| 老司机亚洲免费影院| 黄色视频在线播放观看不卡| 久久国内精品自在自线图片| 2021少妇久久久久久久久久久| 日韩 亚洲 欧美在线| 国产爽快片一区二区三区| 亚洲第一av免费看| 91成人精品电影| 99热这里只有是精品在线观看| 亚洲人与动物交配视频| 久久99热6这里只有精品| 日韩制服丝袜自拍偷拍| av电影中文网址| 91精品国产国语对白视频| 91精品国产国语对白视频| 一级毛片我不卡| 国产精品久久久久久精品电影小说| 曰老女人黄片| 精品一区二区三区视频在线| 中文乱码字字幕精品一区二区三区| 久久久久国产精品人妻一区二区| 一二三四在线观看免费中文在 | 夜夜骑夜夜射夜夜干| 一级毛片我不卡| 精品国产国语对白av| 最后的刺客免费高清国语| 精品久久久精品久久久| 一区二区三区乱码不卡18| av卡一久久| 午夜91福利影院| 亚洲综合精品二区| 春色校园在线视频观看| 一本大道久久a久久精品| 亚洲av免费高清在线观看| 久久影院123| 日本猛色少妇xxxxx猛交久久| 母亲3免费完整高清在线观看 | 高清欧美精品videossex| 国产免费一区二区三区四区乱码| 男人爽女人下面视频在线观看| 亚洲欧美中文字幕日韩二区| 国产精品熟女久久久久浪| 黄色毛片三级朝国网站| 亚洲av免费高清在线观看| 国产一级毛片在线| 久久久国产欧美日韩av| 男女午夜视频在线观看 | 日本与韩国留学比较| 亚洲国产av新网站| 精品一区在线观看国产| 免费观看性生交大片5| 精品久久蜜臀av无| 国产亚洲午夜精品一区二区久久| 在线观看美女被高潮喷水网站| 精品卡一卡二卡四卡免费| 黄网站色视频无遮挡免费观看| 亚洲国产精品国产精品| 久久精品国产a三级三级三级| 国产亚洲av片在线观看秒播厂| 中文字幕免费在线视频6| 美女视频免费永久观看网站| 精品亚洲乱码少妇综合久久| 亚洲性久久影院| 在线看a的网站| 黄片无遮挡物在线观看| 久久久久久人妻| 精品亚洲成国产av| 国产淫语在线视频| 捣出白浆h1v1| 狠狠婷婷综合久久久久久88av| 中文欧美无线码| 亚洲av福利一区| 日本爱情动作片www.在线观看| 校园人妻丝袜中文字幕| 午夜福利视频精品| 嫩草影院入口| 人妻少妇偷人精品九色| 亚洲美女搞黄在线观看| 男女无遮挡免费网站观看| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| 男女免费视频国产| 天天躁夜夜躁狠狠久久av| 欧美bdsm另类| 久久人人爽人人爽人人片va| 国产精品女同一区二区软件| 一级毛片我不卡| a级毛色黄片| 乱码一卡2卡4卡精品| 日本黄色日本黄色录像| 男女边摸边吃奶| 久久久久视频综合| 国产高清国产精品国产三级| 日韩成人av中文字幕在线观看| 精品少妇内射三级| 老司机亚洲免费影院| 性色av一级| av线在线观看网站| 成人综合一区亚洲| 欧美+日韩+精品| 99视频精品全部免费 在线| 1024视频免费在线观看| 人人妻人人澡人人看| 久久久国产一区二区| 校园人妻丝袜中文字幕| 婷婷色综合www| 青春草国产在线视频| 高清在线视频一区二区三区| 午夜视频国产福利| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看| 这个男人来自地球电影免费观看 | 成人影院久久| 久久韩国三级中文字幕| 免费日韩欧美在线观看| 激情视频va一区二区三区| 欧美精品高潮呻吟av久久| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| 国产免费一级a男人的天堂| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 高清不卡的av网站| 在线 av 中文字幕| 久久久久久人人人人人| 日韩电影二区| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 两个人看的免费小视频| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠躁躁| 中国美白少妇内射xxxbb| 日韩人妻精品一区2区三区| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| 五月天丁香电影| 国产精品蜜桃在线观看| 国产午夜精品一二区理论片| 成人毛片60女人毛片免费| 国产一区二区在线观看av| 毛片一级片免费看久久久久| 久久久精品区二区三区| 天天影视国产精品| 人妻一区二区av| 男女免费视频国产| 亚洲激情五月婷婷啪啪| 中国三级夫妇交换| 亚洲av电影在线观看一区二区三区| 少妇 在线观看| 国产淫语在线视频| 免费观看av网站的网址| 视频在线观看一区二区三区| 亚洲国产精品专区欧美| 大片免费播放器 马上看| 久久99热6这里只有精品| 精品一区二区三卡| 插逼视频在线观看| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 丰满饥渴人妻一区二区三| 丁香六月天网| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 男女国产视频网站| 美女内射精品一级片tv| 99热6这里只有精品| 日韩电影二区| 久久人妻熟女aⅴ| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 亚洲精品一二三| 美女大奶头黄色视频| 欧美精品国产亚洲| www日本在线高清视频| 丁香六月天网| 波野结衣二区三区在线| 婷婷色麻豆天堂久久| 黄色 视频免费看| 午夜福利视频在线观看免费| 99re6热这里在线精品视频| 精品人妻偷拍中文字幕| 亚洲精品乱久久久久久| 午夜福利视频精品| 婷婷成人精品国产| 亚洲精品一二三| 永久免费av网站大全| 少妇人妻 视频| 黑人欧美特级aaaaaa片| 999精品在线视频| 伦理电影大哥的女人| 视频区图区小说| 国产精品久久久久久av不卡| 另类精品久久| 免费看光身美女| 男女边摸边吃奶| 日韩三级伦理在线观看| 丰满少妇做爰视频| 久久精品国产a三级三级三级| 国产白丝娇喘喷水9色精品| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 蜜臀久久99精品久久宅男| 美女xxoo啪啪120秒动态图| a级毛色黄片| 性高湖久久久久久久久免费观看| 99久久中文字幕三级久久日本| 久久久久精品性色| kizo精华| 看非洲黑人一级黄片| 久久 成人 亚洲| 精品99又大又爽又粗少妇毛片| 国产成人精品福利久久| av福利片在线| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 看非洲黑人一级黄片| 在现免费观看毛片| 美女中出高潮动态图| 国产女主播在线喷水免费视频网站| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 黄色配什么色好看| 成人国产av品久久久| 国产成人91sexporn| 国产av国产精品国产| 老熟女久久久| 亚洲av欧美aⅴ国产| 久久午夜综合久久蜜桃| 久久久久精品性色| 亚洲美女搞黄在线观看| 色5月婷婷丁香| 亚洲在久久综合| 国产一区二区在线观看av| 成人影院久久| 亚洲精品国产av成人精品| 欧美亚洲日本最大视频资源| 中文字幕精品免费在线观看视频 | 黑人高潮一二区| 伦理电影免费视频| 下体分泌物呈黄色| 国产又爽黄色视频| 亚洲性久久影院| 国产免费福利视频在线观看| 纵有疾风起免费观看全集完整版| 美女主播在线视频| 一本色道久久久久久精品综合| 我的女老师完整版在线观看| 丝袜美足系列| 飞空精品影院首页| 赤兔流量卡办理| 国产成人精品久久久久久| 看非洲黑人一级黄片| 成人漫画全彩无遮挡| 九色亚洲精品在线播放| 亚洲国产精品国产精品| 国产免费现黄频在线看| 人成视频在线观看免费观看| 久久久久久伊人网av| 久久久久人妻精品一区果冻| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 亚洲精品美女久久久久99蜜臀 | 黑人欧美特级aaaaaa片| 午夜91福利影院| 久久精品国产亚洲av天美| 久久鲁丝午夜福利片| 汤姆久久久久久久影院中文字幕| 日韩不卡一区二区三区视频在线| 欧美日韩视频高清一区二区三区二| 日韩一区二区三区影片| 免费看光身美女| 日韩中文字幕视频在线看片| 我要看黄色一级片免费的| 国产高清三级在线| 国产伦理片在线播放av一区| 久久人妻熟女aⅴ| av片东京热男人的天堂| 午夜91福利影院| 国产亚洲av片在线观看秒播厂| 国产熟女欧美一区二区| 另类亚洲欧美激情| 亚洲,欧美,日韩| 国产 一区精品| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| www.av在线官网国产| 久久99精品国语久久久| 国产成人av激情在线播放| 香蕉精品网在线| av有码第一页| 国产 一区精品| 人人澡人人妻人| 亚洲四区av| 国产在线视频一区二区| 草草在线视频免费看| 亚洲综合精品二区| 侵犯人妻中文字幕一二三四区| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 久久97久久精品| tube8黄色片| 日本av免费视频播放| 国产精品女同一区二区软件| 亚洲精品国产av蜜桃| 少妇高潮的动态图| 美女国产视频在线观看| 免费观看无遮挡的男女| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 视频中文字幕在线观看| 国产成人欧美| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 男女无遮挡免费网站观看| 天堂中文最新版在线下载| 国产男女内射视频| 下体分泌物呈黄色| 男人爽女人下面视频在线观看| 少妇精品久久久久久久| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 亚洲成人一二三区av| 人妻 亚洲 视频| 寂寞人妻少妇视频99o| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 久久婷婷青草| 1024视频免费在线观看| 高清av免费在线| 日韩 亚洲 欧美在线| 国产毛片在线视频| 国产永久视频网站| 一二三四中文在线观看免费高清| 自线自在国产av| 欧美日韩一区二区视频在线观看视频在线| 一本—道久久a久久精品蜜桃钙片| 中文字幕精品免费在线观看视频 | 久久久久精品人妻al黑| av播播在线观看一区| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 久久99一区二区三区| 国产精品三级大全| 三级国产精品片| 不卡视频在线观看欧美| 亚洲欧洲国产日韩| 午夜福利影视在线免费观看| 日韩一区二区视频免费看| 免费av不卡在线播放| 99热国产这里只有精品6| 精品少妇久久久久久888优播| 亚洲精品国产av蜜桃| 深夜精品福利| 免费av中文字幕在线| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 国产免费一级a男人的天堂| 天堂8中文在线网| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 99久久综合免费| 久久久久精品人妻al黑| 免费不卡的大黄色大毛片视频在线观看| 中文字幕精品免费在线观看视频 | 尾随美女入室| 国产熟女午夜一区二区三区| 国产亚洲精品久久久com| 国产一区二区三区综合在线观看 | 另类亚洲欧美激情| 国产成人免费观看mmmm| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 午夜福利视频精品| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 一边摸一边做爽爽视频免费| 日韩人妻精品一区2区三区| 亚洲,一卡二卡三卡| 午夜影院在线不卡| 纵有疾风起免费观看全集完整版| 国产片内射在线| 三上悠亚av全集在线观看| 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂| 另类亚洲欧美激情| 日本wwww免费看| 欧美日韩av久久| 国产免费现黄频在线看| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| 99久久综合免费| 赤兔流量卡办理| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 人体艺术视频欧美日本| 成人影院久久| 男人添女人高潮全过程视频| 日韩中文字幕视频在线看片| 久热久热在线精品观看| 午夜福利在线观看免费完整高清在| 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 超色免费av| 一本久久精品| 91精品三级在线观看| 26uuu在线亚洲综合色| 欧美日韩亚洲高清精品| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 免费少妇av软件| 2022亚洲国产成人精品| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 香蕉国产在线看| 男人爽女人下面视频在线观看| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 性色avwww在线观看| 亚洲婷婷狠狠爱综合网| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| 国产毛片在线视频| 国产男女内射视频| 亚洲国产看品久久| 日本av免费视频播放| 最后的刺客免费高清国语| 熟女av电影|