• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media

    2024-01-25 07:13:30ZhiQiangZhao趙志強(qiáng)JinXiaLiu劉金霞JianYuLiu劉建宇andZhiWenCui崔志文
    Chinese Physics B 2024年1期
    關(guān)鍵詞:建宇志強(qiáng)

    Zhi-Qiang Zhao(趙志強(qiáng)), Jin-Xia Liu(劉金霞), Jian-Yu Liu(劉建宇), and Zhi-Wen Cui(崔志文)

    College of Physics,Jilin University,Changchun 130012,China

    Keywords: confining pressure,pore pressure,fluid-saturated porous media,multipole borehole acoustic field

    1.Introduction

    In actual oilfield wells, especially in the reservoir target layers, the medium is a porous medium saturated with fluids.Moreover,in the exploration and development of oil storage,in-situstress is commonly existent.Thein-situstress may arises from prolonged sedimentation or complex geological formations.It could also result from oilfield development activities such as drilling and water injection.[1]Thein-situstress in the reservoir is triggered off partly by the fluid in the pore of the reservoir, called the pore pressure, and partly by the rock skeleton of the reservoir,called the effective stress.[1]The stress in fluid-saturated porous media plays an important role in the realization of safe drilling and efficient reservoir exploitation.During drilling, higher pore pressure can lead to well control accidents, which is one of the major drilling hazards worldwide.And accurate pore pressure prediction is very important for successful drilling operations.[2]Furthermore, gaining an insight into the state ofin-situstress provides a more comprehensive understanding of gas exploration and development,[3–5]enhanced oil recovery techniques,[6,7]wellbore stability,[7,8]and reservoir management.[9,10]

    The elastic wave dynamic theory describing fluidsaturated porous media was initially established by Biot.[11–13]Biot[14]adopted the nonlinear continuum theory to first investigate the acoustoelastic theory for the fluid-saturated porous media and only presented the equations of motion for the fluidsaturated porous media under the initial stress.Grinfeld and Norris[15]proposed general theory of small dynamic motion superimposed upon large static deformation for isotropic fluidfilled poroelastic solids,extending the acoustic–elastic theory applicable to single-phase media to fluid-saturated porous media.Baet al.[16]improved the fluid-saturated porous media theory given by Grinfeld and Norris[15]by considering the nonlinear term of static strain.Wang and Tian[17]utilized the finite deformation theory of continuum and pore elastic theory to give the equation of motion of small disturbance wave field superimposed on nonlinear shape variants caused by static stress in fluid-saturated porous media.Maet al.[18]derived the equation of motion of fluid-saturated porous media,adapted to large static deformation and superimposed disturbance wave field.According to the Pade approximation,Fu B Y and Fu L Y[19]extended the acoustic–elastic theory to the case of higher effective stress,which was verified experiment.Fu B Y and Fu L Y[20]introduced the two-pore model into the traditional acoustic–elastic model of fluid-saturated porous media, and found that the experimental results are better in the case of low effective pore pressure.Quet al.[21]experimentally measured the third-order elastic modulus of fluidfilled porous rocks under uniaxial stress.Kanaun[22]investigated the effect of the pressure of fluid injected into porous media under quasi-static conditions.Liuet al.[23]studied the influence of the nonlinear parameters of fluid-structure coupling on acoustic field in porous media.Liuet al.[24]improved and modified the dynamic equation of static deformation with small perturbations of porous media,with the viscosity term and the dispersion taken into account.The study of acoustic wave propagation in fluid-saturated porous media is of great significance in evaluating reservoir properties by using acoustic logging.Utilizing the Biot theory,Rosenbaum[25]investigated the propagation of acoustic field in boreholes surrounded by porous media, named the Biot–Rosenbaum theory.Wang and Dong[26]rigorously used the theory of elastic waves in porous media to theoretically solve the radiated acoustic field surrounded by fluid-saturated porous media in an open borehole.Schmittet al.[27]and Schmitt[28]studied the formation of radially layered fluid-saturated porous media, where both the elasticity and permeability of the formations exhibit anisotropic characteristics.Zhanget al.[29]employed the Biot two-phase medium model to simulate oil reservoirs and systematically conducted theoretical derivation,mode decomposition analysis, and full-wave computation of the acoustic wavefield excited by multipole sources in the borehole.Zhang and Wang[30]introduced an analytical perturbation method to address the problem of multi-source acoustic well logging in transersely isotropic two-phase media.Building upon the BISQ model, Cuiet al.[31]studied the dispersion and attenuation of elastic waves in non-Newtonian fluidsaturated porous media.Guan and Hu[32]employed the timedomain finite difference algorithm to simulate acoustic well logging responses to horizontally layered porous formations.Heet al.[33,34]employed three-dimensional finite-difference simulations to model inclined layered porous formations and porous elastic formations with anisotropic magnetic permeability.Penget al.[35]analyzed the acoustic wave propagation and wellbore acoustic fields in non-uniform porous media saturated with viscous fluid.

    The above studies did not cover the simulation research of borehole acoustic fields in fluid-saturated porous media under the influence of stress,based on the theory of acoustoelasticity in fluid-saturated porous materials.Therefore, this work primary focuses on the refinement of the existing theory of acoustoelasticity in fluid-saturated porous media and the research of borehole acoustic field in fluid-saturated porous media under reservoir stress conditions.

    The rest of this paper is organized as follows.In Section 2,the equation of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure is derived.In Section 3,numerical results are presented to show the effects of confining pressure and pore pressure on multipole borehole acoustic field in a fluid-saturated porous media.Finally,some conclusions are drawn in Section 4.

    2.Theoretical formula

    In this section,based on the dynamic equations for static deformation of porous media with small perturbations, given by Liuet al.,[24]the motion equations of fluid-saturated porous media under pore pressure and confining pressure are derived and an expression for velocity and stress is given.In the cylindrical coordinate system,the field equations of open hole stimulated by multiple sources in fluid-saturated pore formation under confining pressure and pore pressure are derived.

    2.1.Field equation for fluid-saturated porous media under confining and pore pressure

    This subsection mainly derives the field equations of fluid-saturated porous media under confining pressure and pore pressure.The confining pressure and pore pressure in the media do not change the isotropic properties of the media.This subsection refers to the research work of Liuet al.[24]and gives the field equation under confining pressure and pore pressure as follows:

    whereuis the displacement of solid phase.w=?(uf?u)is the seepage displacement.ufis the average fluid displacement.?is the porosity.τis the stress tensor,Pis the pore fluid pressure,andIis a unit vector.Here,the equivalent elastic moduli are denoted byH',M',C', andG'.According to the work of Liuet al.,[24]one can obtain the equivalent elastic moduli related to stress as follows:

    whereH,M,C, andGare four independent elastic constants of fluid-saturated porous media.H,M,andCcan be expressed as solid bulk modulusKs, pore fluid bulk modulusKf, frame bulk modulusKb,frame shear modulusG,and porosity?.

    The symbols Δ in Eq.(2), respectively, represent the change of porous elastic modulusH,M,C,andG,caused by the confining pressure and pore pressure.

    whereλc=Kb?2/(3G)+α2Mis the parameter of Biot.v'1,v'2,andv'3are the third-order elastic constants of porous elastic media.When there is no fluid in the media, they correspond to the third-order elastic constants in the elastic mediav1,v2andv3.[36]γ2,γ3, andγare the nonlinear constants of the coupling between a fluid and a solid.γ1is a nonlinear constant associated with the fluid phase.es=(Pc+αPp)/Kb,ζs=(Pp+αMes)/Mare the static deformations caused by the confining pressure and pore pressure which satisfy the linear stress–strain relationship.[24]ThePcandPprepresent the confining pressure and pore pressure,respectively.

    The corresponding equation of motion can be written as

    where the superscript refers to the derivative with respect to time,ρis the density of porous media and expressed asρ= (1??)ρs+?ρfwithρsandρfbeing the solid density and pore fluid density,respectively,?being the porosity,?ρ=jη/(ωk(ω))andk(ω)=k0/(1?jωEρfk0/(η?)),withηbeing the dynamic viscosity of pore fluid,kthe permeability,ωthe angular frequency, andEthe tortuosity.Here, the displacementsuandware assumed to vary with time according to e?jωt.By substituting Eq.(1) into Eq.(5), the elastic dynamic equation withuandwas the basic quantities can be obtained as follows:

    Unlike Boit’s kinetic equation,[37]here the elastic moduliH',M',C', andG'depend on confining pressure, pore pressure,and the third-order elastic modulus.A displacement potential is introduced, which is similar to the solution of plane waves in Biot fluid-saturated media[38]

    whereΦandψare the compressional and shear wave displacement potentials, respectively,apandasare both the ratio of seepage displacement(complex)amplitude to solid displacement (complex) amplitude.The subscripts p and s represent P-waves and S-waves, respectively.Let plane solutionΦ=Apej(lx?ωt)andψ=Asej(lx?ωt)whereApandAsare amplitude of compressional wave and shear wave,respectively,ldenotes the wave number.Shear waves(ls=Ssω)and two types of compressional waves(lpf=Spfωandlps=Spsω)can be obtained by substituting Eq.(7)into Eq.(6).Si(i=pf,ps,and s)denotes slowness.

    whereb= (ρM'+ ?ρH'?2ρfC')/(H'M'?C'2).SpfandSpsdenote slowness of the fast and slow P-waves, respectively.Equation (8) is the relationship between the slowness of the fast and the slow P-wave and confining pressure and pore pressure.Shear waves slownessSscan be written as

    Equation (9) is the relationship between the slowness of the S-wave and confining pressure and pore pressure.At the same time,the ratio of seepage displacement amplitudes of the fast and slow P-waves to solid phase displacement amplitudes can be obtained to be

    whereSi(i=pf,ps)is slowness.

    The ratio of seepage displacement amplitudes of the Swaves to solid phase displacement amplitudes can be obtained to be

    2.2.Equations of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure

    Because the fluid-saturated porous media are still isotropic under the action of pore pressure and confining pressure, the acoustic field formula in the borehole under the action of confining pore pressure is similar to the classical fluidsaturated porous formation.[29]The acoustic field in the borehole fluid is expressed as

    wheren=0,1,2 represent monopole,dipole,and quadrupole source, respectively; Inand Knare then-th order modified Bessel function of the first kind and second kind,respectively;kr=(k2z ?k2f)1/2is the radial wave number of the fluid;kzis the axial wave number;kf=ω/Vfis the fluid wave number of borehole;ωis the angular frequency;Vfis the speed of sound in the borehole fluid;εnis the constant related to the sound source in the direct field.When the sound source is a monopole source (n=0),εn=1; when the sound source is multipole (n >0),εn=2.An1(kz,ω) is the reflection coefficient in the reflection field,which is determined by the boundary conditions.The displacement component and stress are expressed as

    In Eqs.(13) and (14), the factoris omitted.The shear wave vectorΨin Eq.(7)can be further written into two terms.The compressional wave potentialΦ, horizontal polarized shear wave (SH wave) potentialχand vertical polarized shear wave(SV wave)potentialΨare introduced for the displacement of fluid-saturated porous media under external confining pressure and pore pressure.

    whereΦpfandΦpsare the fast-wave potential and slow-wave potential,respectively;aps,apf,andasare the ratio of seepage displacement amplitudes in Eqs.(10) and (11).By substituting Eq.(15) into Eq.(6) and expanding it in the cylindrical coordinate system, the solution of displacement potential can be obtained to be

    wherei=pf,ps represent the fast wave and slow wave.vi=are the radial imaginary wave numbers of fast and slow P-waves and S-waves, respectively.Unlike classical Biot fluid-saturated media,[12]here the fast,slow, and shear waves depend on the confining pressure and pore pressure.According to the boundary condition atr=r0of borehole

    we obtain the matrix equation with unknown coefficients in the following form:

    wheremij(i,j=1, 2, 3, 4, 5)are the elements of the matrix,b1,b2,andb3are given in Appendix A.The dispersion equation of the guided waves can be obtained by setting the determinant of the coefficient matrix in Eq.(18)to zero and the excitation intensity can be obtained from the pole residue.The reflection coefficientAn1can be obtained by solving Eq.(18),and the full wave field under confinement and pore pressure can be obtained from Eq.(14) by using the real axis integral and Fourier transform.

    3.Numerical simulation

    In this section, the effect of pore pressure and confining pressure on the multipole borehole acoustic field in a fluid-saturated porous media are analyzed numerically.The model is shown in Fig.1, and the borehole radius is 0.1 m.The parameters of fluid-saturated porous formation used in numerical simulation are listed in Table 1, where the parameters are selected from Fuet al.’s work.[20]The density and speed of the fluid in the borehole are 1000 kg/m3and 1500 m/s, respectively.At the same time, in the selection of stress, considering the experiments conducted by Fu B Y and Fu L Y[20]and Saroutet al.,[39]the confining pressure and pore pressure applied to the fluid-saturated porous media should meet the conditions:the confining pressure is large and the pore pressure difference between the confining pressure and the fluid in the porous media is greater than 30 MPa, so that the numerical simulation of the classical theoretical model can be consistent with the existing experimental results.

    Fig.1.Open hole model,where large grey arrows denote the direction of applied confining pressure and the little red arrow refers to the direction of the applied pore pressure.And in this paper, the confining pressure that compresses into the borehole is defined as negative pressure, and the pore pressure that expands outward in the pore fluid is defined as positive pressure.

    Table 1.Parameters of porous media.

    3.1.Dispersion curve

    In this subsection,the dispersion curve and excitation intensity of the Stoneley wave, pseudo-Rayleigh wave, flexural wave,and screw wave are calculated from Eq.(18),and the response of the dispersion curve and excitation intensity to pore pressure and confining pressure are analyzed.

    Figure 2 shows the curves of (a) dispersion and (b) excitation (b) of Stoneley waves with different confining pressures and pore pressures.In order to show more clearly the response of phase velocity and excitation intensity to pore pressure,the changes in phase velocity and excitation intensity for two different pore pressures at the given confining pressure are shown in Fig.1(c).When the pore pressure and confining pressure are applied with the pressure difference being greater than 30 MPa,the dispersion curve and excitation intensity increase significantly.The group velocity is greater than the phase velocity in the frequency range from 0 kHz to 20 kHz.Under a given confining pressure, the phase velocity, group velocity and excitation intensity decrease as the pore pressure increases.The reason for this phenomenon is that when the pore pressure increases,the strong strain around the compliant pores in porous media greatly reduces the stiffness of the solid phase of porous media.This change induces the nonlinear elastic deformation of the solid phase, which greatly reduces the elastic wave velocity in the solid phase, and leads to the decrease of the guided waves velocity in the porous media.[20]

    Fig.2.(a) Dispersion, (b) excitation intensity, and (c) changes caused by different pore pressure responses of Stoneley waves; CP and PP denote the confining pressure and pore pressure,respectively.Vph and Vg represent the phase velocity and group velocity,respectively.ΔVph and ΔEI refer to the change of phase velocity (Vph) and excitation intensity (EI), caused by different pore pressures (PP=5 MPa and PP=30 MPa) at the given confining pressure(CP=?65 MPa).

    Fig.3.(a)Dispersion,(b)excitation intensity and(c)changes caused by different pore pressure responses of pseudo-Rayleigh waves.The notations in the figure are the same as in Fig.1.

    Figure 3 shows the responses of pseudo-Rayleigh waves with different confining pressures and pore pressures.Under the condition of no stress, the shear wave velocity in the fluid-saturated porous media is 1542 m/s, which is close to the acoustic velocity of 1500 m/s in the borehole fluid.After the pore pressure and confining pressure are applied, the properties of the porous media become the harder formation than before.The pseudo-Rayleigh waves can be excited at low frequencies.The phase velocity and excitation intensity also increase significantly.Under a given confining pressure,the phase velocity decreases with pore pressure increasing.The excitation intensity initially increases in a very small frequency range and then decreases at high frequency.In addition,the phase velocity is more sensitive to pore pressure than the group velocity.

    Figure 4 shows the responses of flexural waves with different confining pressures and pore pressures.Under the condition of no stress,the flexural wave velocity at very low frequency is close to the shear wave velocity.In the range from 2 kHz to 20 kHz,the phase velocity is greater than the group velocity.When confining pressure and pore pressure are applied, the phase velocity is higher than without stress state,and the maximum value of the excitation intensity becomes bigger and moves towards high frequencies.Under a given confining pressure, the phase velocity and group velocity decrease clearly at low frequency with pore pressure increasing.The excitation intensity of the flexural wave increases at low frequency and then decreases at high frequency with pore pressure increasing at a constant confining pressure.

    Figure 5 shows the responses of screw waves with different confining pressures and pore pressures.It can be seen that the response of the dispersion and excitation intensity of the screw waves to the pore pressure are similar to that of the flexural wave.

    Fig.4.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of flexural waves.The notations in the figure are the same as in Fig.1.

    Fig.5.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of screw waves.The notations in the figure are the same as in Fig.1.

    3.2.Full waveforms

    This subsection numerically simulates the full waveforms in the borehole with a sound source at the origin of the cylindrical coordinate system(0,0,0).The receiver is located on the shaft and the distance between the receiver and the source is 5.5 m.The real-axis integration is used to evaluate the waveforms.The different excitation modes of the monopole,dipole and quadrupole source are simulated.And the source pulse functions(t)used in this work is

    wheref0andTcare the center frequency and the pulse width,respectively.

    Figure 6 shows the full waveforms of the borehole excited by a monopole source with a center frequency of 6 kHz.In the absence of stress,the components of full waves include compressional waves,shear waves and Stoneley waves.After confining pressure and pore pressure are applied,the pseudo-Rayleigh waves appear in the whole wave components.In this case,the arrival times of these waves are significantly reduced.The amplitude of the compressional wave decreases and the amplitude of the guided wave increases with confining pressure increasing.When the confining pressure is given,the amplitudes of these waves do not change significantly and the arrival times of these waves increase as the pore pressure increases.Moreover,we find that the arrival times of the pseudo-Rayleigh waves change much more than those of the Stoneley waves with pore pressure increasing.This is consistent with the dispersion curve responses of Stoneley waves and pseudo-Rayleigh waves.

    Fig.6.Full waveform response of monopole source,with inset showing linear amplification of the gray area.The amplified part is the waveform of the compressional waves,where the blue dashed line,red dashed line,and black dashed line are the arrival time of the compressional waves at different confining pressures and pore pressures,respectively.

    Fig.7.Full waveform response of dipole source, normalized by that without stress.

    Fig.8.Full waveform response of quadrupole source, normalized by that without stress.

    Figure 7 shows the full waveform of the borehole excited by a dipole source.The center frequency of the sound source is 2 kHz.There is the flexural wave components in the full wave.After applying the confining pressure and pore pressure,flexural wave amplitude increases and arrival time decreases.With given confining pressure,the arrival time of flexural waves increases as the pore pressure increases.

    Figure 8 shows the full waveform of the borehole excited by a quadrupole source, where the center frequency of the sound source is 6 kHz.It can be seen that the response of the screw waves is similar to that of the flexural waves.

    4.Conclusions

    In this work, the effects of confining pressure and pore pressure on the multipole borehole acoustic field in a fluidsaturated porous media are investigated.Firstly, the acoustic field equations of fluid-saturated porous media under confining pressure and pore pressure are derived,and the expressions of velocity and stress in the porous media are given.Combined with the borehole boundary conditions,the acoustic field equations of the borehole in fluid-saturated porous media are derived.The responses of dispersion curves and excitation intensities of guided waves (Stoneley, pseudo-Rayleigh, flexural,and screw waves)to confining pressure and pore pressure are analyzed by numerical simulations.The responses of the full waveforms to the confining pressure and pore pressure by the monopole,dipole,and quadrupole sources are also investigated.The numerical results show that the phase velocity,excitation intensity,and full wave amplitude of the guided waves increase significantly under the confining pressure.The amplitude of the compressional waves decreases rapidly as the confining pressure increases.Furthermore,the arrival time of the full waveforms obviously decreases.For a given confining pressure,increasing pore pressure causes the phase velocity of guided waves to decrease.The excitation intensity of Stoneley waves decreases in the whole frequency range,while other guided waves, except Stoneley waves, increases at low frequency and decreases at high frequency.The response of Stoneley waves to pore pressure is smaller than those of other guided waves.The arrival time of the full waveforms slightly increases with pore pressure increasing.The reason is that pore pressure reduces the equivalent elastic modulus of the saturated porous media with constant confining pressure, which reduces the body wave velocity and thus affects the change of the guided waves velocity.The results show that both confining pressure and pore pressure will have an effect on the propagation of elastic waves.In the actual oil and gas exploration, the reservoir formation is generally porous formation,which leads to the necessity of considering confining pressure and pore pressure in exploration.This work may provide some theoretical guidance for evaluating the reservoir properties by acoustic logging in the future.The relationship between the pressure and the guided wave features (velocity and excitation) is revealed.The physical analysis results would help inversions of pressure by the sonic logging responses.This work only considers the case of fluid-saturated porous media subjected to uniform stress, but the actual formation is very complex and subjected to non-uniform stress.Therefore, the response of multipole borehole acoustic field in fluid-saturated porous media under non-uniform stress needs studying further in the future.

    Appendix A

    The expressions for the matrix elements in Eq.(17)are as follows:

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.42074139) and the Natural Science Foundation of Jilin Province, China (Grant No.20210101140JC).

    猜你喜歡
    建宇志強(qiáng)
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    A study of response of thermocline in the South China Sea to ENSO events*
    Analysis of monthly variability of thermocline in the South China Sea*
    糾紛的根源
    跳高比賽中的意外
    為榮譽(yù)而戰(zhàn)
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    国产精品偷伦视频观看了| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 久久免费观看电影| 日本一区二区免费在线视频| 国产麻豆69| 国产人伦9x9x在线观看| 9热在线视频观看99| 亚洲美女搞黄在线观看| 1024香蕉在线观看| 日韩大码丰满熟妇| 一级毛片电影观看| 亚洲精品第二区| 国产免费又黄又爽又色| 精品国产乱码久久久久久男人| 99精品久久久久人妻精品| 搡老乐熟女国产| 久久青草综合色| 久久久久人妻精品一区果冻| 亚洲精品自拍成人| 波野结衣二区三区在线| 母亲3免费完整高清在线观看| 日韩人妻精品一区2区三区| 18在线观看网站| 视频在线观看一区二区三区| 国产女主播在线喷水免费视频网站| 美女大奶头黄色视频| 亚洲av男天堂| 一级毛片我不卡| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 天天操日日干夜夜撸| 狂野欧美激情性xxxx| 精品卡一卡二卡四卡免费| 飞空精品影院首页| 在线天堂中文资源库| 最新的欧美精品一区二区| 777米奇影视久久| 午夜日韩欧美国产| 女人高潮潮喷娇喘18禁视频| 亚洲国产日韩一区二区| 如日韩欧美国产精品一区二区三区| 男女边吃奶边做爰视频| 在现免费观看毛片| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 婷婷色综合大香蕉| 日本av手机在线免费观看| 天堂俺去俺来也www色官网| 久久精品aⅴ一区二区三区四区| 成人亚洲欧美一区二区av| 成人免费观看视频高清| 国产精品一区二区在线不卡| 一级,二级,三级黄色视频| 国产免费现黄频在线看| 国产精品久久久人人做人人爽| 在线观看一区二区三区激情| 黄片小视频在线播放| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 99久国产av精品国产电影| 久久久国产欧美日韩av| 国产成人精品无人区| 中文字幕色久视频| 亚洲精品日本国产第一区| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡| 丝瓜视频免费看黄片| 9热在线视频观看99| 欧美日韩精品网址| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 亚洲视频免费观看视频| 国产精品一国产av| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 91精品三级在线观看| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频| 97人妻天天添夜夜摸| 久久国产精品男人的天堂亚洲| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 亚洲欧美中文字幕日韩二区| 伊人久久大香线蕉亚洲五| 国产淫语在线视频| 国产成人一区二区在线| 国产免费又黄又爽又色| 亚洲国产成人一精品久久久| 男人舔女人的私密视频| 精品酒店卫生间| 69精品国产乱码久久久| xxxhd国产人妻xxx| 三上悠亚av全集在线观看| 国产探花极品一区二区| 精品国产一区二区久久| 亚洲国产最新在线播放| 亚洲欧美色中文字幕在线| 丝袜美腿诱惑在线| 一边亲一边摸免费视频| 在线观看www视频免费| kizo精华| 中文字幕人妻熟女乱码| 精品国产国语对白av| 伊人久久大香线蕉亚洲五| 久久久久久久久久久免费av| 日韩av免费高清视频| 日本av手机在线免费观看| 蜜桃国产av成人99| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 超碰成人久久| 亚洲在久久综合| 日本色播在线视频| 人妻人人澡人人爽人人| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 午夜免费鲁丝| 欧美av亚洲av综合av国产av | 精品一区二区三区av网在线观看 | 国产福利在线免费观看视频| 亚洲精品国产一区二区精华液| 在线免费观看不下载黄p国产| kizo精华| 国产麻豆69| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 9热在线视频观看99| 黄片小视频在线播放| 久久精品久久久久久噜噜老黄| 午夜福利视频精品| 成年动漫av网址| 亚洲av中文av极速乱| 两个人看的免费小视频| 国产野战对白在线观看| 国产极品天堂在线| 中文字幕av电影在线播放| 亚洲国产精品国产精品| av网站免费在线观看视频| 亚洲情色 制服丝袜| 欧美日韩精品网址| 丁香六月天网| 这个男人来自地球电影免费观看 | 亚洲国产精品国产精品| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美在线精品| 国产一区二区三区av在线| 日日摸夜夜添夜夜爱| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 黄片播放在线免费| 丁香六月天网| av免费观看日本| 欧美日韩视频高清一区二区三区二| 性色av一级| 国产男女超爽视频在线观看| 熟女少妇亚洲综合色aaa.| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 在线观看国产h片| 婷婷色综合www| 欧美日韩av久久| 国产乱来视频区| 久久鲁丝午夜福利片| av片东京热男人的天堂| 欧美日韩精品网址| 国产精品.久久久| 亚洲美女视频黄频| 日韩欧美精品免费久久| 久久天堂一区二区三区四区| 亚洲精品,欧美精品| 午夜福利视频精品| 国产日韩欧美在线精品| 男女之事视频高清在线观看 | 成人免费观看视频高清| 日本午夜av视频| 精品少妇内射三级| 搡老岳熟女国产| 中文欧美无线码| 天美传媒精品一区二区| 在线观看一区二区三区激情| 美女大奶头黄色视频| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 成人午夜精彩视频在线观看| 国产极品粉嫩免费观看在线| 亚洲综合精品二区| 赤兔流量卡办理| av福利片在线| 日韩免费高清中文字幕av| 国产成人系列免费观看| 欧美亚洲 丝袜 人妻 在线| 美女福利国产在线| 丁香六月天网| 丝袜人妻中文字幕| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| 天天躁夜夜躁狠狠久久av| 成人影院久久| 亚洲精品在线美女| 国产精品av久久久久免费| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 国产又色又爽无遮挡免| 99香蕉大伊视频| 国产成人免费无遮挡视频| 老司机深夜福利视频在线观看 | 精品久久久精品久久久| tube8黄色片| 一区在线观看完整版| 91精品国产国语对白视频| av线在线观看网站| 男女下面插进去视频免费观看| 丰满乱子伦码专区| 亚洲图色成人| 视频在线观看一区二区三区| xxxhd国产人妻xxx| 搡老岳熟女国产| a级毛片在线看网站| 男男h啪啪无遮挡| a级毛片黄视频| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 男女高潮啪啪啪动态图| 免费观看a级毛片全部| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 欧美激情高清一区二区三区 | 久热这里只有精品99| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 日韩免费高清中文字幕av| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 激情视频va一区二区三区| 伦理电影大哥的女人| 久久ye,这里只有精品| 国产日韩欧美视频二区| 日韩电影二区| 各种免费的搞黄视频| 久久久久精品性色| 天堂中文最新版在线下载| 一边亲一边摸免费视频| 伊人久久大香线蕉亚洲五| 国产极品天堂在线| 亚洲综合精品二区| 欧美激情极品国产一区二区三区| 桃花免费在线播放| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 777米奇影视久久| 蜜桃国产av成人99| 人成视频在线观看免费观看| 黄片播放在线免费| 两个人免费观看高清视频| 两性夫妻黄色片| 久久精品亚洲熟妇少妇任你| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 最近手机中文字幕大全| 久久毛片免费看一区二区三区| 国产欧美日韩综合在线一区二区| 国产片特级美女逼逼视频| 一本一本久久a久久精品综合妖精| 看非洲黑人一级黄片| 不卡av一区二区三区| 18禁国产床啪视频网站| 大码成人一级视频| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 久久久精品94久久精品| 一个人免费看片子| 日韩av不卡免费在线播放| 国产精品久久久久成人av| 国产成人一区二区在线| 成人三级做爰电影| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 丰满乱子伦码专区| 国产乱人偷精品视频| 亚洲精品视频女| 好男人视频免费观看在线| 日本91视频免费播放| 18在线观看网站| 丰满少妇做爰视频| 亚洲欧美成人精品一区二区| 久久久精品国产亚洲av高清涩受| 啦啦啦啦在线视频资源| 在线看a的网站| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 成人手机av| 久久精品国产综合久久久| 人妻一区二区av| 777米奇影视久久| 亚洲精品中文字幕在线视频| 精品国产一区二区三区久久久樱花| 天美传媒精品一区二区| 国产探花极品一区二区| 国产激情久久老熟女| videos熟女内射| 国产精品久久久久久人妻精品电影 | 亚洲av成人精品一二三区| 韩国av在线不卡| 国产精品久久久久久人妻精品电影 | 午夜激情av网站| 性高湖久久久久久久久免费观看| 男女高潮啪啪啪动态图| 国产淫语在线视频| 成人国产av品久久久| 国产欧美亚洲国产| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 桃花免费在线播放| 亚洲精品国产av蜜桃| 大香蕉久久成人网| 亚洲欧美中文字幕日韩二区| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 午夜福利乱码中文字幕| 性少妇av在线| 久久久久久久国产电影| 天天躁夜夜躁狠狠久久av| 欧美日韩国产mv在线观看视频| 欧美变态另类bdsm刘玥| 中文字幕最新亚洲高清| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 亚洲伊人色综图| 成人手机av| 免费在线观看视频国产中文字幕亚洲 | 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 亚洲精品成人av观看孕妇| 美女大奶头黄色视频| 99九九在线精品视频| 老汉色av国产亚洲站长工具| 欧美少妇被猛烈插入视频| 久久狼人影院| 狂野欧美激情性xxxx| 丝袜喷水一区| 如日韩欧美国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产中文字幕在线视频| 一个人免费看片子| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 成人亚洲欧美一区二区av| 丰满迷人的少妇在线观看| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| e午夜精品久久久久久久| 亚洲成人一二三区av| 欧美日韩成人在线一区二区| av女优亚洲男人天堂| 五月开心婷婷网| 天美传媒精品一区二区| 一区二区日韩欧美中文字幕| av片东京热男人的天堂| 久久久久久人妻| 看非洲黑人一级黄片| 国产日韩欧美视频二区| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 天天添夜夜摸| 我的亚洲天堂| 考比视频在线观看| 国产亚洲欧美精品永久| 美女午夜性视频免费| 亚洲av成人精品一二三区| 天堂俺去俺来也www色官网| 亚洲国产精品一区二区三区在线| 精品久久久精品久久久| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 午夜免费男女啪啪视频观看| av天堂久久9| h视频一区二区三区| 国产成人免费观看mmmm| 只有这里有精品99| 啦啦啦啦在线视频资源| bbb黄色大片| 999久久久国产精品视频| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 日韩制服骚丝袜av| 亚洲专区中文字幕在线 | 久久久久久久大尺度免费视频| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 晚上一个人看的免费电影| 国产伦人伦偷精品视频| 久久久精品94久久精品| 国产乱来视频区| 黄片小视频在线播放| 香蕉国产在线看| 久久久久网色| 1024香蕉在线观看| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 国产不卡av网站在线观看| 国产一区二区三区av在线| 观看美女的网站| 亚洲少妇的诱惑av| 亚洲人成电影观看| 美女福利国产在线| 男女无遮挡免费网站观看| 亚洲精品自拍成人| 久久人人爽av亚洲精品天堂| 777久久人妻少妇嫩草av网站| 欧美老熟妇乱子伦牲交| 久久精品亚洲av国产电影网| 久久 成人 亚洲| 乱人伦中国视频| 欧美日韩亚洲综合一区二区三区_| 爱豆传媒免费全集在线观看| av不卡在线播放| 亚洲美女搞黄在线观看| 国产精品 国内视频| 久久热在线av| 国产一级毛片在线| 国产在线视频一区二区| 国产一区二区 视频在线| 午夜免费男女啪啪视频观看| 国产亚洲最大av| 日韩电影二区| 国产亚洲最大av| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 日本欧美视频一区| 精品午夜福利在线看| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 亚洲第一av免费看| 午夜久久久在线观看| kizo精华| 久久综合国产亚洲精品| 日韩熟女老妇一区二区性免费视频| 亚洲国产最新在线播放| 美女脱内裤让男人舔精品视频| a级毛片黄视频| 满18在线观看网站| 国产乱来视频区| 日韩大码丰满熟妇| 韩国高清视频一区二区三区| 亚洲国产av新网站| 亚洲少妇的诱惑av| 久久久精品94久久精品| 久久亚洲国产成人精品v| 亚洲,一卡二卡三卡| 老汉色av国产亚洲站长工具| 女人爽到高潮嗷嗷叫在线视频| 免费人妻精品一区二区三区视频| 日韩av免费高清视频| 超碰97精品在线观看| 青草久久国产| 久久久久网色| 色网站视频免费| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区四区第35| 99香蕉大伊视频| 国产免费一区二区三区四区乱码| 熟女av电影| 可以免费在线观看a视频的电影网站 | 哪个播放器可以免费观看大片| 久久久久网色| 精品免费久久久久久久清纯 | 久久久久久人人人人人| 国产精品久久久久久人妻精品电影 | 男女免费视频国产| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 久久久久国产精品人妻一区二区| 中文字幕人妻熟女乱码| 国产在线一区二区三区精| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 青春草亚洲视频在线观看| 国产一区二区激情短视频 | 精品久久久久久电影网| 91精品伊人久久大香线蕉| 国产免费现黄频在线看| 嫩草影院入口| 成人亚洲精品一区在线观看| 99九九在线精品视频| 成年美女黄网站色视频大全免费| 五月天丁香电影| 大话2 男鬼变身卡| 中文字幕精品免费在线观看视频| 亚洲成人av在线免费| 黄色毛片三级朝国网站| videosex国产| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 最近中文字幕高清免费大全6| 男女床上黄色一级片免费看| 国产精品三级大全| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 中文字幕人妻熟女乱码| 黄色毛片三级朝国网站| 国产成人精品福利久久| 中文字幕色久视频| 免费少妇av软件| 女人精品久久久久毛片| 伊人久久国产一区二区| a级毛片在线看网站| 在现免费观看毛片| 欧美精品一区二区大全| 99九九在线精品视频| 亚洲精品一二三| svipshipincom国产片| 亚洲欧美色中文字幕在线| 亚洲伊人久久精品综合| 99久久人妻综合| 别揉我奶头~嗯~啊~动态视频 | 亚洲av成人精品一二三区| 免费日韩欧美在线观看| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 成人国语在线视频| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 亚洲成人手机| 欧美人与善性xxx| 一区二区av电影网| 妹子高潮喷水视频| 日韩一本色道免费dvd| 日本欧美国产在线视频| 亚洲精品一二三| 国产精品 欧美亚洲| 国产野战对白在线观看| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 九草在线视频观看| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 久久av网站| 国产日韩一区二区三区精品不卡| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 香蕉国产在线看| 乱人伦中国视频| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 日韩视频在线欧美| 激情五月婷婷亚洲| 精品国产一区二区三区久久久樱花| av女优亚洲男人天堂| 在线观看免费午夜福利视频| 在线观看人妻少妇| av国产精品久久久久影院| 肉色欧美久久久久久久蜜桃| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| 久久人人97超碰香蕉20202| 国产视频首页在线观看| 亚洲国产日韩一区二区| 亚洲国产最新在线播放| 久久99一区二区三区| 老司机靠b影院| 可以免费在线观看a视频的电影网站 | 丝袜喷水一区| 久久青草综合色| 亚洲七黄色美女视频| 国产精品国产三级国产专区5o| 亚洲av成人精品一二三区| 免费在线观看完整版高清| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 巨乳人妻的诱惑在线观看| 又粗又硬又长又爽又黄的视频| 男女床上黄色一级片免费看| av女优亚洲男人天堂| 最黄视频免费看| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 国产一区二区三区av在线| 欧美亚洲日本最大视频资源| 日韩av免费高清视频| 天天添夜夜摸| 如何舔出高潮| 久久久国产一区二区| 欧美日韩综合久久久久久| 国产精品免费视频内射| 各种免费的搞黄视频| 国产一区二区激情短视频 | 观看av在线不卡| 久久毛片免费看一区二区三区|