• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of monthly variability of thermocline in the South China Sea*

    2018-05-07 06:07:00PENGHanbang彭漢幫PANAijun潘愛軍ZHENGQuanan鄭全安HUJianyu胡建宇
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:建宇

    PENG Hanbang (彭漢幫) PAN Aijun (潘愛軍) ZHENG Quan’an (鄭全安) HU Jianyu (胡建宇)

    1 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China

    2 Ocean Dynamics Laboratory, the Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, China 3 Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA

    1 INTRODUCTION

    A thermocline is defined as a transition layer between the warmer mixed water of the upper ocean and the cooler subsurface water below. Its spatiotemporal variations can greatly influence climate change, marine fishery and underwater communication.As a semi-closed basin, the South China Sea (SCS)lies in the East Asian monsoon region (Fig.1) and the study area for this paper is deeper than 200 m.Previous investigators have carried out studies on the spatio-temporal variations of the thermocline, mainly focusing on seasonal variation of the thermocline depth. Liu et al. (2001) found that the thermocline in the central SCS becomes deeper and thinner in winter.Based on the global observational dataset MOODS(Master Observational Oceanographic Data Set) and the Generalized Digital Environmental Model(GDEM), Lan et al. (2006) investigated the thermocline depth in the SCS and found that, in January (winter), the thermocline in the northwestern SCS is deeper than that in the southeast, with two shallower centers located in the northwest of the Luzon Island and the Kalimantan Island, and in April(spring), the thermocline depth is about 30 m almost in the entire SCS. In July and October (summer and autumn), however, the thermocline depth in the northwestern SCS is shallower than that in the southeast. According to the Simple Ocean Data Assimilation (SODA) data in the SCS, Fang et al.(2013) obtained the similar seasonal variation results of the thermocline depth as Lan et al. (2006), indicating that the SODA data, though a global product, are suitable for studying the thermocline in the SCS.

    Fig.1 Topography of the South China Sea

    Regarding the mechanism for the seasonal variation of thermocline depth, Liu et al. (2000), and Zhou and Gao (2001) suggested that local wind stress can affect the thermocline through Ekman pumping. Liu et al.(2001) pointed out that the variation of the thermocline is mainly induced by the seasonal cycle of heat flux and wind stress. Besides, Lan et al. (2006) put forward that the ocean circulation and multi-eddy structure in the SCS have significant effects on the thermocline variability. Hao et al. (2012) regarded the surface buoyancy flux (caused by net heat flux and fresh water flux) and the wind stress as the main mechanisms for the seasonal variability of the thermocline.

    Although the thermocline depth in the SCS in some seasonal months (January, April, July and October)have been investigated, the thermocline depth in the other months remains unclear, which is our motivation to investigate the monthly evolution of the thermocline depth in the SCS. The lower boundary depth (Zlow),the thickness (ΔZ) and the intensity (Tz) of the thermocline in the SCS and the monthly variability of them have rarely been studied. In this study, we use 51-years (1960–2010) monthly seawater temperature data of SODA (Carton et al., 2000a, b, 2005) to calculate the upper boundary depth of thermocline(Zup),Zlow, ΔZandTzin the SCS, focusing on their monthly variability and the mechanisms of monthly variability ofZup. It is clear that this monthly variability study of thermocline in the SCS can be worthwhile,for example, for regional modellers who would like to benchmark their own results against those from a global product. However, in order to avoid too long a text, we only describe the odd-monthly means of the thermocline parameters and the mechanisms.

    The paper is organized as follows: Data and analysis methods are shown in Section 2. Monthly variability of the thermocline in the SCS is presented in Section 3. Mechanisms of the monthly variability ofZupare discussed in Section 4, and the conclusions and discussion are listed in Section 5.

    2 DATA AND METHOD

    2.1 Data

    The monthly seawater temperature, sea surface salinity and wind stress products of SODA (Carton et al., 2000a, b, 2005) are used for calculations of the thermocline, the sea surface buoyancy flux and the wind stress curl, respectively. The ocean data assimilation model is based on observations including virtually all available hydrographic profile data, as well as ocean station data, mooring temperature and salinity time series, surface temperature and salinity observations of various types. The basic temperature and salinity observation sets consist of approximately 7×106profiles over the global ocean, of which two thirds have been obtained from the World Ocean Database 2009 (Giese and Ray, 2011). Output variables are averaged every five days, and then mapped onto a uniform global 0.5°×0.5° horizontal grid (a total of 720×330×40-level grid points),spanning the latitude range from 79.25°S to 89.25°N and the longitude range from 179.75°W to 179.75°E,using the horizontal grid spherical coordinate remapping and interpolation package (Carton and Giese, 2008). We download 50×50 profiles that bounded by 0.25°–24.75°N and 100.25°–124.75°E and use 470 profiles in which the depth in the SCS is deeper than 200 m (Fig.1), and we download the upper 25 vertical layers of the seawater temperature,i.e., 5, 15, 25, 35, 46, 57, 70, 82, 97, 112, 129, 149,171, 198, 229, 268, 317, 381, 465, 579, 729, 918,1 140, 1 378, and 1 625 m. The version of SODA used in our study is SODA v2.2.4 (Giese and Ray,2011) and the variables include ocean temperature(including sea surface temperature (SST)) (°C),salinity, horizontal and vertical ocean velocity (m/s),sea level (m) and wind stress (N/m2).

    Fig.2 Procedures for determining thermocline

    The monthly net long wave radiation, net short wave radiation, sensible heat flux and latent heat flux data (1960–2010, 1.875°×1.875°) used for the sea surface net heat flux calculation are downloaded from the National Centers for Environmental Prediction(NCEP) reanalysis (Kalnay et al., 1996) (ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/). Monthly precipitation (1960–2010,2.5°×2.5°) and evaporation data (1960–2010, 1°×1°)used for the sea surface buoyancy flux calculation are downloaded from the National Oceanic and Atmospheric Administration (NOAA)’s Precipitation Reconstruction (PREC) Dataset (Chen et al., 2002)(http://www.esrl.noaa.gov/psd/data/gridded/data.prec.html)and the Objectively Analyzed air-sea Fluxes (OAFlux)project (Yu et al., 2008) of Woods Hole Oceanographic Institution (WHOI) (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3/monthly/evaporation/), respectively.The oceanic precipitation analysis (PREC/O) is produced by EOF (Empirical Orthogonal Function)reconstruction of historical gauge observations over islands and land areas and the OAFlux project uses the objective analysis to obtain optimal estimates of flux-related surface meteorology and then computes the global fluxes by using the state-of-the-art bulk flux parameterizations.

    2.2 Method

    There are several methods to determine the thermocline, such as using the quasi-step-function approximation (QFA) (Ge et al., 2003), the 20°C isotherm and the vertical temperature gradient criterion (GC) methods. However, the QFA method cannot be applied to the region off the shelf (Hao et al., 2008). The 20°C isotherm method takes the depth of the 20°C isotherm as the thermocline depth. On the other hand, the GC method defines the thermocline to be the layer with the vertical gradient of temperature continuously larger than a given value (Fig.2), which can not only determine the upper boundary depth but also the lower boundary depth of thermocline and is properly used off the shelf (Hao et al., 2012).Therefore, we use the GC method to determine thermocline in this study. The gradient criterion of thermocline is 0.05°C/m (CSBTS, 2008).

    We define thermocline intensityTzas

    whereTupandTloware the temperatures ofZupandZlow,respectively.

    The surface net heat flux is calculated by

    whereQis net heat flux and a positive value means absorption of heat by seawater,Q1,Q2,Q3andQ4are the net short wave radiation, net long wave radiation,latent heat flux and sensible heat flux, respectively.

    The buoyancy fluxB(kg/(m?s3)) is calculated by

    whereBqis the thermal buoyancy due to the net heat flux,Bpis the haline buoyancy due to the net fresh water flux, g is the gravitational acceleration (9.8 m/s2)and Δρis the variation of seawater density,Qis the net heat flux (downward positive; W/m2),ρis the reference water density (1 024 kg/m3) andCpis the specific heat of water (3 986.3 J/(kg?°C)) (Fofonoffand Millard, 1983), α is the thermal coefficient of expansion (1.7×10-4/°C) and β is the coefficient of unit haline contraction (7.5×10-4) (McDougall, 1987),S0,E, andPare surface salinity, evaporation and precipitation, respectively.

    The wind stress curlτc(N/m3) is defined as

    whereτxandτy(N/m2) are zonal and meridional wind stress, respectively.

    3 MONTHLY VARIABILITY OF THE THERMOCLINE

    3.1 Spatial distribution of thermocline parameters

    3.1.1 Upper boundary depth

    The odd-monthly distribution of upper boundary depthZupin the SCS is shown in Fig.3a–f. One can see that in January,Zupin the northwestern SCS is 50–120 m, which is deeper than that in southeast (30–50 m), with two shallower centers (<40 m) located in the northwest of the Luzon Island and the Kalimantan Island, respectively. In March (Fig.3b),Zupbecomes shallower than that in January and continues to shoal in most regions in May (Fig.3c). On the contrary to January,Zupstarts to deepen in July (Fig.3d). It becomes deeper in the southeastern SCS (30–50 m)than that in the northwestern SCS (10–30 m), and continues to deepen in September (Fig.3e). The distribution patterns are the same as that in July with a shallower center (<20 m) located in the east of the Indo-China Peninsula. In November (Fig.3f),Zupbecomes deeper than that in September in the northwestern SCS, but shallower in the southwestern SCS.

    3.1.2 Lower boundary depth

    The odd-monthly distribution of lower boundary depthZlowin the SCS is shown in Fig.3g–l. In January(Fig.3g),Zlowis about 150–190 m in the northwestern SCS and about 150–180 m in the southeastern SCS.In March (Fig.3h),Zlowin western SCS is 160–180 m,which is deeper than that in east (140–160 m). In May(Fig.3i),Zlowis between 150 and 170 m in most areas,showing a homogeneous distribution. In July (Fig.3j),Zlowin the northwestern SCS is 130–160 m, which is shallower than that in the southeastern SCS (160–190 m). In September (Fig.3k),Zlowin the northwestern SCS with a shallower center (120–150 m) east of the Indo-China Peninsula is shallower than that in the southeastern SCS. In November (Fig.3l),Zlowin northwestern SCS becomes deeper than that in September.

    3.1.3 Thickness

    The odd-monthly distribution of thickness ΔZin the SCS is shown in Fig.3m–r. In January (Fig.3m),ΔZis from 120 m to 150 m in the east of the Indo-China Peninsula, while ΔZis smaller than 110 m in most regions. In March (Fig.3n), ΔZincreases about 20 m in the areas between the Indo-China Peninsula and the Luzon Island, and about 10 m in the southern SCS in comparison with that in January. In May(Fig.3o), ΔZis between 140 m and 160 m in most regions, exhibiting a homogeneous distribution feature. In July (Fig.3p), ΔZin the northeastern SCS is 140–160 m, which is a little thicker than that in the southwestern SCS (120–140 m) with a small thinner center (<120 m) west of the Palawan Island. In September (Fig.3q) and November (Fig.3r), ΔZis generally thinner than that in July.

    3.1.4 Intensity

    The odd-monthly distribution of intensityTzin the SCS is shown in Fig.3s–x. In January (Fig.3s), from the continental shelf break of the northern SCS to the central SCS,Tzgradually increases from 0.06 to 0.10°C/m. In comparison to January,Tzgenerally becomes weaker than that in January. In May (Fig.3u),Tzin the northwestern SCS is between 0.08 and 0.09°C/m, which is weaker than that in the southeastern SCS (0.09–0.11°C/m). In July (Fig.3v),Tzis between 0.08 and 0.10°C/m in most regions. In September (Fig.3w),Tzis generally stronger than that in July, especially east of the Indo-China Peninsula.In November (Fig.3x), the values ofTzare widely smaller than that in September.

    3.2 Spatial means of thermocline parameters

    In order to analyze the monthly variability ofZup,Zlow, ΔZandTz, we calculate their spatial means and the standard deviations as shown in Fig.4. One can see thatZupis the deepest in January (about 54 m) and the shallowest in May (about 17 m) (Fig.4a, blue bars). It increases gradually by approximately 5.4 m from May to the January of the following year, and decreases by about 12 m from February to May. On the other hand,Zlowremains 162 m (±2 m) throughout the whole year (Fig.4a, green bars). Monthly variability of ΔZ, shown as light purple bars in Fig.4b,is in antiphase withZup. It is thickest in May (about 148 m) and thinnest in January (about 110 m).

    The spatial mean and the standard deviation of monthlyTzvalues are shown as orange bars in Fig.4b. One can see thatTzis weakest in March(0.07–0.08°C/m) but strongest in September (0.09–0.10°C/m).Tzgradually strengthens from March to September, but weakens from September to the following March.

    Fig.3 Climatologically odd-monthly mean Z up (a to f), Z low (g to l), Δ Z (m to r) and T z (s to x) from January to November To be continued

    Fig.3 Climatologically odd-monthly mean Z up (a to f), Z low (g to l), Δ Z (m to r) and T z (s to x) from January to November

    4 MECHANISMS OF MONTHLY VARIABILITY OF Z up

    4.1 Factors influencing monthly variability of Z up

    In this section, we investigate the physical processes responsible for the monthly variability ofZup. Previous studies have revealed that surface net heat flux and wind stress play important roles in seasonal variation of the thermocline depth. Heat and fresh water flux at the sea surface may change the stability of upper layer stratification, thus aff ectingZup. The sea surface buoyancy consists of the thermal buoyancy (caused by the net heat flux) and the haline buoyancy flux (caused by the fresh water flux). The buoyancy flux, a comprehensive index of thermodynamics, reflects the coherent role of air-sea heat and haline exchanges (Gill, 1982; Schmitt et al.,1989). Wind stress curl also affects the thermocline depth through Ekman pumping. Besides,Zupis inseparable from the lower boundary of mixed layer.Lozovatsky et al. (2005) suggested that the sea surface buoyancy and the wind stress are the main driving mechanisms leading to the mixed layer variation in the North Atlantic Ocean. Based on this analysis we examine connections ofZupto the buoyancy flux and the wind stress curl over the SCS.

    Fig.4 Monthly distributions of spatial means

    Table 1 Correlation coefficients of Z up to B and τ c of monthly spatial mean

    4.2 Relationships of Z up with buoyancy flux and wind stress curl

    According to Eq.3, the variation of the sea surface buoyancy flux (B) depends on the variability of seawater density (Δρ). IfBis positive, i.e., the loss of buoyancy for surface seawater, then the seawater density increases and the seawater will decline, so thatZupwill deepen without regarding to the other outside forces. IfBis negative, the seawater density decreases andZupshoals. In the case ofB=0, the buoyancy flux does not affect the thermocline. On the other hand, the wind stress also drives the movement of seawater. The positive wind stress curl (τc, Eq.4) can generate the cyclonic vorticity on the sea surface and then the upwelling, which can lift the thermocline. On the contrary, the negative wind stress curl can generate the anticyclonic vorticity on the sea surface and then the down welling, which can sink the thermocline. To sum up,Zupdeepens whileBis positive orτcis negative,and shoals whileBis negative orτcis positive.

    4.3 Interpretation of monthly variability of Z up

    4.3.1 Qualitative analysis

    Based on the relationships ofZupwithBandτc, we examine the correlation ofZuptoBandτc. The results indicate thatZuphas positive correlation withBand negative correlation withτc.Zuppresents the best correlation with one-month-advancedBand twomonth-advancedτc, with the correlation coefficient being 0.90 and -0.73 (Table 1), respectively.Accordingly, we conduct a comparative analysis of odd-monthlyZup(January to November, Fig.3a–f)with even-monthlyB(December to the following October, Fig.5a–f) and odd-monthlyτc(November to the following September, Fig.5g–l).

    On the continental shelf break of the northern SCS,Breaches a positive maximum in December (Fig.5a)andτcdemonstrates a larger negative value in November (Fig.5g), causing the deepestZupin January(Fig.3a). As for the two shallower centers northwest of the Luzon Island and the Kalimantan Island, they are mainly resulted from the largest positiveτcand both the negativeBand positiveτc, respectively.

    Fig.5 Climatologically monthly means of the buoyancy flux in even months (a to f is December to the following October) and τ c in odd months (g to l is November to the following September)

    In February (Fig.5b),Bis smaller than that in December, with a negative value in most areas, so thatZupin March (Fig.3b) is shallower than that in January.Meanwhile, the two shallower centers ofZupbecome shallower due to the positiveτc(Fig.5h).

    In May,Zup(Fig.3c) is the shallowest throughout the whole year, mainly owing to the larger negativeBin April (Fig.5c), which plays a dominant role in comparison withτcbecause of the small |τc| (Fig.5i).

    In July and September,Zup(Fig.3d, e) in the northwestern SCS is shallower than that in the southeastern SCS. This is becauseBin the northeastern SCS is smaller than that in the southeastern SCS in June and August (Fig.5d, e), whileτcis positive in the northwestern SCS and larger negative in the southeastern SCS in May and July (Fig.5j, k).

    In October, positiveB(Fig.5f) in the northernmost study region results in the deeperZupin November(Fig.3f). In the region between the northwest of the Kalimantan Island and the west of the Luzon Island,τcis positive and a little less than zero (Fig.5l) on either side of that region. All of these values lead to the fact thatZupin the northern and southeastern SCS is deeper than that in the other areas (Fig.3f).

    4.3.2 Quantitative interpretation

    From the above qualitative analyses, the buoyancy flux and the wind stress curl can well account for the monthly variability ofZup. In order to analyze the influence level of the buoyancy flux and the wind stress curl onZup, we explore the relationships ofZupto the buoyancy flux or the wind stress curl without considering the wind stress curl (|τc|<1×10-9N/m3,close to zero) or the buoyancy flux (|B|<1×10-7kg/(m·s3),close to zero), respectively. From the linear regression of their results (Fig.6), it is evident thatZupshows direct proportion to the increasingB, but inverse proportion to the increasingτc. Their empirical relations are given by Eqs.5 and 6, whereZup_BandZup_τcdenote the variations ofZuponly resulted fromBandτc, respectively. From Eq.5,Zupdeepens from 4.2 m to 5.0 m (mean 4.6 m), ifBincreases by 1×10-5kg/(m·s3) without regardingτc. From Eq.6,however,Zupshoals from 1.9 m to 3.1 m (mean 2.5 m),ifτcincreases by 1×10-7N/m3without takingBinto account. In addition,Zupis 45 m without considering eitherBorτcaccording to Eqs.5 and 6, resulting in the linear relationship ofZuptoBandτcas expressed in Eq.7. Figure 7 describes the odd-monthly mean ofZupresulted from Eq.7. The patterns and values (Fig.7a–f)are very similar and close to theZupas shown in Fig.3a–f, expect in May whenZupresulted from Eq.7 is about 25–30 m (Fig.7c), which is larger thanZupresulted from SODA (10–15 m) (Fig.3c) in the northwestern SCS.

    Fig.6 Linear regression of the buoyancy flux ( B) and Z up (a), the wind stress curl ( τ c) and Z up (b)

    Fig.7 The odd-monthly means (January to November) of Z up resulted from Eq.7

    As mentioned above, the factors influencingZupare the buoyancy flux (B) and the wind stress curl (τc). To further explore the relative importance ofBandτconZup, we calculate the contribution ofBandτctoZupusing Eq.8, wherepmeans the contribution from the buoyancy flux and 100% minusprepresents the contribution from the wind stress curl.

    As shown in Fig.8, most of theZupvalues are influenced by both the buoyancy flux and the wind stress curl from December to the following February when the wind stress curl dominates the SCS deep basin. The buoyancy flux controlsZupin most regions from April to November (Fig.8d–k), among whichZupis mainly affected by the buoyancy flux in May and June, while from July to September,Zupin the north of 12°N is mainly influenced by the buoyancy flux with the southern part being dominated by both the buoyancy flux and the wind stress curl.

    5 CONCLUSION AND DISCUSSION

    This study examines variability of the upper and lower boundaries of thermocline (ZupandZlow), its thickness (ΔZ) and intensity (Tz) in the SCS, and explores the mechanisms responsible for the monthly variability ofZup. The major results are summarized as follows.

    Fig.8 Distributions of p, Z up is primarily influenced by the wind stress curl when p <25%, by the buoyancy flux when p >75%,and by both when p >25% and p <75%, (a) to (l) is January to December

    The climatological monthly meanZup,Zlow, ΔZandTzof the SCS are directly or indirectly determined by the vertical temperature GC method from monthly seawater temperature data (1960–2010). The results show that the spatial mean ofZupgradually shoals from February to May and deepens from May to the following January, ΔZis out of phase withZupbecauseZlowremains unchanged all year round.

    This study reveals that both the surface buoyancy flux and the wind stress curl play dominant roles in monthly variability ofZup. The variability of surface buoyancy flux (B) resulting from net heat and fresh water flux variations can lead to mix the surface water and change the thickness of the mixed layer, so as to affect the depth of thermocline. The wind stress curl(τc) has the ability to influenceZupthrough generating upwelling or downwelling. In order to explore howBandτcquantitatively affectZup, we investigate the monthlyBbased on the heat flux and precipitation data from NCEP, the evaporation data provided by the Woods Hole Oceanographic Institution, and theτcaccording to wind stress data from SODA. The results reveal thatZupshows the best correlation to onemonth-advancedBand two-month-advancedτc.

    We have analyzed the effects ofBandτconZupand obtained the regression equation:Zup=4.6(± 0.4)×105B–2.5(± 0.6)×107τc+45, which means thatZuphas positive correlation withBand negative correlation withτc.Zupdeepens from 4.2 m to 5.0 m (mean 4.6 m) whenBincreases by 1×10-5kg/(m·s3) without consideringτc,and shoals from 1.9 m to 3.1 m (mean 2.5 m) whenτcincreases by 1×10-7N/m3regardless ofB. The relative importance of the buoyancy flux and the wind stress curl toZupis also examined, indicating thatZupis mainly controlled by the buoyancy flux throughout the whole year.

    Although the Eq.7, resulting from a linear method,can quantitatively account for the influence ofBandτconZup, there are still some points remaining for discussion. Before using a linear method, the grid points ofZupandB,Zupandτcin the SCS must be the same.Zupandτcwhich are calculated from SODA products with a 0.5°×0.5° horizontal resolution have the same grid points, butBwhich is calculated from NCEP (1.875°×1.875°), NOAA (2.5°×2.5°) and WHOI (1°×1°) products has a much fewer grid points thanZup. Therefore, we use the 2-D interpolation method to makeBa 0.5°×0.5° horizontal resolution before analyzing the relationship betweenBandZup.This may have distorted the Eq.7 somewhat because some grid points ofBare from interpolation which could not represent the observations. Moreover, the wind stress (not the wind stress curl) on the sea surface can generate and maintain turbulence to the upper ocean, which would also influence the depth of mixed layer and thermocline. We will take into account the influence of wind stress onZupin our next step.

    6 ACKNOWLEDGEMENT

    We thank professor John Hodgkiss of the University of Hong Kong for his help with English.

    Carton J A, Chepurin G, Cao X H, Giese B. 2000a. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: methodology.J.Phys.Oceanogr.,30(2):294-309.

    Carton J A, Chepurin G, Cao X H. 2000b. A simple ocean data assimilation analysis of the global upper ocean 1950-95.Part II: results.J.Phys.Oceanogr.,30(2): 311-326.

    Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis.J.Geophys.Res.,110(C9): C09006, https://doi.org/10.1029/2004JC002817.

    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA).Mon.Wea.Rev.,136(8): 2 999-3 017.

    Chen M Y, Xie P P, Janowiak J E, Arkin P A. 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations.J.Hydrometeorol.,3(3): 249-266.

    China State Bureau of Technical Supervision (CSBTS). 2008.GB/T 12763.7-2007 The specifications for oceanographic survey—Part 7: exchange of oceanographic survey data.China Standards Press, Beijing. (in Chinese)

    Fang X J, Wang C X, Xu J J. 2013. Seasenal and interannual variations of the thermocline depth in the South China Sea.Trans.Oceanol.Limnol., (3): 45-55. (in Chinese with English abstract)

    Fofonoff P, Millard Jr R C. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech.Papers in Marine Science 44, UNESCO. 53p.

    Ge R F, Qiao F L, Yu F, Jiang Z X, Guo J S. 2003. A method for calculating thermocline characteristic elements in shelf sea area—Quasi-step function approximation method.Adv.Mar.Sci.,21(4): 393-400. (in Chinese with English abstract)

    Giese B S, Ray S. 2011. El Ni?o variability in simple ocean data assimilation (SODA), 1871-2008.J.Geophys.Res.,116(C2): C02024, https://doi.org/10.1029/2010JC006695.

    Gill A E. 1982. Atmosphere-Ocean Dynamics. Academic Press, San Diego, USA.

    Hao J J, Chen Y L, Wang F, Lin P F. 2012. Seasonal thermocline in the China Seas and northwestern Pacific Ocean.J.Geophys.Res,117(C2): C02022, https://doi.org/10.1029/2011JC007246.

    Hao J J, Chen Y L, Wang F. 2008. A study of thermocline calculations in the China Sea.Mar.Sci.,32(12): 17-24. (in Chinese with English abstract)

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D,Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y,Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W,Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J,Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor. Soc.,77(3): 437-472.

    Lan J, Bao Y, Yu F, Sun S W. 2006. Seasonal variabilities of the circulation and thermocline depth in the South China Sea deep water basin.Adv.Mar.Sci.,24(4): 436-445. (in Chinese with English abstract)

    Liu Q Y, Jia Y L, Liu P H, Wang Q, Chu P C. 2001. Seasonal and intraseasonal thermocline variability in the central South China Sea.Geophys.Res.Lett.,28(23): 4 467-4 470.

    Liu Q Y, Yang H J, Wang Q. 2000. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea.Chin.J.Oceanol.Limnol.,18(2): 104-109.

    Lozovatsky I, Figueroa M, Roget E, Fernando H J S,Shapovalov S. 2005. Observations and scaling of the upper mixed layer in the North Atlantic.J.Geophys.Res.,110(C5): C05013, https://doi.org/10.1029/2004JC002708.

    McDougall T J. 1987. Neutral surfaces.J.Phys.Oceanogr.,17(11): 1 950-1 964.

    Schmitt R W, Bogden P S, Dorman C E. 1989. Evaporation minus precipitation and density fluxes for the North Atlantic.J.Phys.Oceanogr.,19(9): 1 208-1 221.

    Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes(OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables.Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, Woods Hole,Massachusetts, USA. 64p.

    Zhou F X, Gao R Z. 2001. Intraseasonal variability of the subsurface temperature observed in the South China Sea(SCS).Chin.Sci.Bull.,47(4): 337-342.

    猜你喜歡
    建宇
    Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
    Square grid pattern with direction-selective surface discharges in dielectric barrier discharge
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    A study of response of thermocline in the South China Sea to ENSO events*
    含 虛(一石二座)
    寶藏(2018年4期)2018-05-07 01:58:24
    酷蟲學(xué)校
    糾紛的根源
    多悉善感的鹿角蟲
    必勝嗎,狼蛛班長(zhǎng)?
    跳高比賽中的意外
    国产成人91sexporn| 午夜精品国产一区二区电影| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区三区四区免费观看| 一级,二级,三级黄色视频| 久久久久久伊人网av| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看| 欧美日韩精品成人综合77777| 91久久精品国产一区二区三区| av女优亚洲男人天堂| 国产亚洲精品第一综合不卡 | 国产欧美亚洲国产| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 亚洲av免费高清在线观看| 国产爽快片一区二区三区| 高清视频免费观看一区二区| freevideosex欧美| 成人国产av品久久久| 99国产精品免费福利视频| 男女边摸边吃奶| 亚洲内射少妇av| 国产精品久久久久成人av| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品aⅴ在线观看| 黑人高潮一二区| 午夜老司机福利剧场| 亚洲人成网站在线播| 国产精品99久久久久久久久| 最新的欧美精品一区二区| √禁漫天堂资源中文www| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 一级,二级,三级黄色视频| 有码 亚洲区| 久久久久网色| 欧美一级a爱片免费观看看| 一级毛片黄色毛片免费观看视频| 色婷婷av一区二区三区视频| 大片免费播放器 马上看| 中文字幕免费在线视频6| 国产探花极品一区二区| 国产精品偷伦视频观看了| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 精品视频人人做人人爽| 永久免费av网站大全| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 日本91视频免费播放| 久久久久久久久久人人人人人人| 日本wwww免费看| 啦啦啦视频在线资源免费观看| 欧美 日韩 精品 国产| 免费大片黄手机在线观看| 男人操女人黄网站| 久久97久久精品| 久热久热在线精品观看| 国产探花极品一区二区| 久久精品国产自在天天线| 久久97久久精品| 亚洲人成网站在线播| 色94色欧美一区二区| 日韩不卡一区二区三区视频在线| 精品少妇内射三级| 高清毛片免费看| 久久久久久久久久久免费av| 亚洲国产av新网站| 最后的刺客免费高清国语| 日日啪夜夜爽| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 女性被躁到高潮视频| 在线观看免费视频网站a站| 亚洲精品aⅴ在线观看| 精品久久国产蜜桃| 亚洲五月色婷婷综合| 国产精品人妻久久久久久| 亚洲精品亚洲一区二区| xxx大片免费视频| 久久韩国三级中文字幕| 99热全是精品| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| av有码第一页| 日韩成人av中文字幕在线观看| 一级毛片我不卡| 欧美3d第一页| 久久久久久久亚洲中文字幕| 亚洲性久久影院| 狠狠婷婷综合久久久久久88av| 91aial.com中文字幕在线观看| 亚洲伊人久久精品综合| 黑人欧美特级aaaaaa片| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 欧美日韩视频精品一区| 亚洲内射少妇av| 欧美 亚洲 国产 日韩一| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲 | 两个人免费观看高清视频| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 免费播放大片免费观看视频在线观看| 高清av免费在线| 亚洲婷婷狠狠爱综合网| 久久久久国产精品人妻一区二区| 欧美成人午夜免费资源| 亚洲精华国产精华液的使用体验| 狠狠婷婷综合久久久久久88av| av福利片在线| 伦理电影免费视频| av电影中文网址| 午夜精品国产一区二区电影| 国产不卡av网站在线观看| 男女啪啪激烈高潮av片| 有码 亚洲区| 一本一本综合久久| 亚洲av在线观看美女高潮| 国产成人精品福利久久| 制服丝袜香蕉在线| 久久精品久久久久久噜噜老黄| 国产精品人妻久久久影院| 人人澡人人妻人| 女性被躁到高潮视频| 狠狠精品人妻久久久久久综合| 国产精品国产av在线观看| 熟女电影av网| 26uuu在线亚洲综合色| av一本久久久久| 一本大道久久a久久精品| 精品99又大又爽又粗少妇毛片| 考比视频在线观看| 夜夜看夜夜爽夜夜摸| 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂| 91精品国产九色| 国产精品一区二区在线观看99| 久久久久久伊人网av| 久久久久精品性色| 色5月婷婷丁香| 视频区图区小说| 亚洲欧美清纯卡通| 一区二区日韩欧美中文字幕 | 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 国产精品久久久久久久久免| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 黄片播放在线免费| 亚洲综合精品二区| 亚洲第一av免费看| 亚洲成人av在线免费| 日韩不卡一区二区三区视频在线| 黑人欧美特级aaaaaa片| 免费日韩欧美在线观看| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 国产成人精品久久久久久| 51国产日韩欧美| 国产色婷婷99| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 亚洲高清免费不卡视频| 成人二区视频| 日韩在线高清观看一区二区三区| 亚洲精品亚洲一区二区| 国产亚洲午夜精品一区二区久久| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 97精品久久久久久久久久精品| 成年女人在线观看亚洲视频| 国产 一区精品| 婷婷色综合www| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 欧美精品国产亚洲| 国产精品秋霞免费鲁丝片| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 免费久久久久久久精品成人欧美视频 | 亚洲av中文av极速乱| 国产黄片视频在线免费观看| 在线观看一区二区三区激情| 成人手机av| 99九九在线精品视频| freevideosex欧美| 久久韩国三级中文字幕| 精品久久久噜噜| 如日韩欧美国产精品一区二区三区 | 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 日本爱情动作片www.在线观看| 国产欧美日韩一区二区三区在线 | 中文字幕av电影在线播放| 特大巨黑吊av在线直播| 日本黄色日本黄色录像| 国产午夜精品久久久久久一区二区三区| 18禁在线播放成人免费| 成人二区视频| 精品少妇黑人巨大在线播放| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| a级毛片黄视频| 欧美97在线视频| 成年美女黄网站色视频大全免费 | 亚洲图色成人| 国产白丝娇喘喷水9色精品| 男人操女人黄网站| 久久久久久久精品精品| 青春草国产在线视频| 国产精品人妻久久久久久| 这个男人来自地球电影免费观看 | 我要看黄色一级片免费的| av在线老鸭窝| 成人毛片60女人毛片免费| 啦啦啦中文免费视频观看日本| 久久狼人影院| 视频区图区小说| 97精品久久久久久久久久精品| 麻豆成人av视频| 精品午夜福利在线看| 91精品国产九色| 亚洲av欧美aⅴ国产| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 草草在线视频免费看| 51国产日韩欧美| 99视频精品全部免费 在线| 成人18禁高潮啪啪吃奶动态图 | 久久精品久久久久久噜噜老黄| 最近2019中文字幕mv第一页| 美女脱内裤让男人舔精品视频| 18禁在线播放成人免费| 日韩精品免费视频一区二区三区 | 欧美国产精品一级二级三级| 中文字幕人妻熟人妻熟丝袜美| 国产精品偷伦视频观看了| 亚洲四区av| 九草在线视频观看| 欧美少妇被猛烈插入视频| 国产深夜福利视频在线观看| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 看免费成人av毛片| 中文字幕最新亚洲高清| 黄色欧美视频在线观看| 又大又黄又爽视频免费| 三级国产精品片| 在线看a的网站| 亚洲成人手机| 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 亚洲av在线观看美女高潮| 亚洲精品视频女| 亚洲综合精品二区| 女人久久www免费人成看片| 搡老乐熟女国产| 少妇精品久久久久久久| 国产一区二区三区av在线| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 国产av国产精品国产| 赤兔流量卡办理| 各种免费的搞黄视频| 中文字幕制服av| 国产极品天堂在线| 亚洲国产精品成人久久小说| 日本免费在线观看一区| 卡戴珊不雅视频在线播放| 热99久久久久精品小说推荐| 午夜激情久久久久久久| av黄色大香蕉| 3wmmmm亚洲av在线观看| 99热全是精品| 成年美女黄网站色视频大全免费 | 午夜福利,免费看| 欧美日韩在线观看h| av国产久精品久网站免费入址| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 大香蕉97超碰在线| 日本黄色日本黄色录像| xxx大片免费视频| 纯流量卡能插随身wifi吗| 91久久精品电影网| 亚洲情色 制服丝袜| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 高清av免费在线| 91精品国产九色| 久久久久久久久久人人人人人人| 亚洲内射少妇av| 热re99久久精品国产66热6| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 免费观看无遮挡的男女| 乱人伦中国视频| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 免费观看在线日韩| 在线观看国产h片| 少妇熟女欧美另类| 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 成人免费观看视频高清| 最黄视频免费看| 丝袜美足系列| 国产色婷婷99| 交换朋友夫妻互换小说| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 国产 一区精品| a 毛片基地| 最近中文字幕2019免费版| 校园人妻丝袜中文字幕| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 99热国产这里只有精品6| 亚洲熟女精品中文字幕| av不卡在线播放| 国产成人午夜福利电影在线观看| 亚洲av国产av综合av卡| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人 | 亚洲国产av新网站| 免费av中文字幕在线| 麻豆乱淫一区二区| 另类亚洲欧美激情| 成人毛片a级毛片在线播放| 国产精品免费大片| 国产无遮挡羞羞视频在线观看| 欧美人与善性xxx| av免费观看日本| 精品国产国语对白av| 三上悠亚av全集在线观看| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 插阴视频在线观看视频| 国产淫语在线视频| 国产精品无大码| 一级毛片我不卡| 少妇被粗大的猛进出69影院 | 99久久精品一区二区三区| 最黄视频免费看| 欧美精品亚洲一区二区| 插逼视频在线观看| 夜夜骑夜夜射夜夜干| 大陆偷拍与自拍| 能在线免费看毛片的网站| 看十八女毛片水多多多| 国产成人免费无遮挡视频| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 久久久久久伊人网av| 男女国产视频网站| 免费黄频网站在线观看国产| 最黄视频免费看| 亚洲精品日本国产第一区| 国产免费现黄频在线看| 国产精品欧美亚洲77777| 中文字幕人妻熟人妻熟丝袜美| av播播在线观看一区| 在现免费观看毛片| 熟女av电影| 国产成人91sexporn| 青春草国产在线视频| 免费观看在线日韩| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区 | 国产在线免费精品| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| 亚洲av中文av极速乱| av不卡在线播放| 国产精品.久久久| 制服人妻中文乱码| 午夜影院在线不卡| 视频区图区小说| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 插阴视频在线观看视频| 国产成人精品福利久久| 久久午夜福利片| 国产有黄有色有爽视频| av女优亚洲男人天堂| 男女边摸边吃奶| 丰满饥渴人妻一区二区三| 国产精品一国产av| 国产深夜福利视频在线观看| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看 | 乱人伦中国视频| 中国三级夫妇交换| 精品一区二区三卡| 一级毛片电影观看| 在线精品无人区一区二区三| 一区二区三区四区激情视频| 大陆偷拍与自拍| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区欧美精品| 亚洲国产欧美日韩在线播放| 亚洲伊人久久精品综合| 精品视频人人做人人爽| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱| 男男h啪啪无遮挡| 夜夜看夜夜爽夜夜摸| 久久久久精品性色| 大香蕉久久成人网| 亚洲美女搞黄在线观看| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 久久久久久久精品精品| 99精国产麻豆久久婷婷| av女优亚洲男人天堂| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 桃花免费在线播放| av专区在线播放| 免费大片18禁| 国产高清不卡午夜福利| 美女国产高潮福利片在线看| 91国产中文字幕| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 伦精品一区二区三区| 国产精品久久久久久av不卡| 国产女主播在线喷水免费视频网站| 人妻系列 视频| 精品国产乱码久久久久久小说| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 国产毛片在线视频| av国产久精品久网站免费入址| 久久99一区二区三区| 最近的中文字幕免费完整| 欧美日韩在线观看h| 18禁观看日本| 亚洲精品乱久久久久久| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲四区av| 亚洲精品久久久久久婷婷小说| 女的被弄到高潮叫床怎么办| 精品久久蜜臀av无| 人妻一区二区av| 中文乱码字字幕精品一区二区三区| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 美女内射精品一级片tv| 边亲边吃奶的免费视频| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 亚洲丝袜综合中文字幕| 久久97久久精品| 天堂中文最新版在线下载| 人妻系列 视频| 国产伦精品一区二区三区视频9| 青春草视频在线免费观看| 国产综合精华液| 美女脱内裤让男人舔精品视频| 国产黄色视频一区二区在线观看| 国产欧美日韩综合在线一区二区| 美女中出高潮动态图| 国产精品女同一区二区软件| 国产有黄有色有爽视频| 99热这里只有是精品在线观看| 国产伦精品一区二区三区视频9| 亚洲丝袜综合中文字幕| 日日爽夜夜爽网站| 久久久久国产网址| 午夜免费鲁丝| 黄色配什么色好看| 免费播放大片免费观看视频在线观看| 丰满乱子伦码专区| 男女无遮挡免费网站观看| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 女人精品久久久久毛片| 亚洲图色成人| 看非洲黑人一级黄片| 欧美亚洲日本最大视频资源| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 国产午夜精品久久久久久一区二区三区| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 只有这里有精品99| 啦啦啦啦在线视频资源| 国产 一区精品| 18禁观看日本| 精品一区二区免费观看| 国产在线一区二区三区精| 美女国产视频在线观看| 新久久久久国产一级毛片| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 在线播放无遮挡| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 下体分泌物呈黄色| 亚洲欧美成人综合另类久久久| 久久婷婷青草| 精品少妇内射三级| 18在线观看网站| 乱码一卡2卡4卡精品| 国产日韩一区二区三区精品不卡 | 色吧在线观看| 高清视频免费观看一区二区| 在现免费观看毛片| 看非洲黑人一级黄片| h视频一区二区三区| 高清不卡的av网站| 男女啪啪激烈高潮av片| 十八禁高潮呻吟视频| 亚洲av电影在线观看一区二区三区| 精品国产露脸久久av麻豆| 在线观看www视频免费| av又黄又爽大尺度在线免费看| 伊人久久精品亚洲午夜| 国产精品一区www在线观看| 一区二区av电影网| 在线播放无遮挡| 99久久精品国产国产毛片| 日本午夜av视频| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 大香蕉久久成人网| 精品久久久噜噜| 久久国产亚洲av麻豆专区| 亚洲精品日韩在线中文字幕| 久久久国产欧美日韩av| 亚洲国产精品一区三区| 国产成人精品福利久久| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 国产69精品久久久久777片| 久久人妻熟女aⅴ| 美女国产高潮福利片在线看| av在线app专区| 色哟哟·www| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 亚洲国产精品999| 免费高清在线观看视频在线观看| a级毛色黄片| 亚洲怡红院男人天堂| 成人午夜精彩视频在线观看| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 国产亚洲一区二区精品| 草草在线视频免费看| 80岁老熟妇乱子伦牲交| 卡戴珊不雅视频在线播放| 国产女主播在线喷水免费视频网站| 99热6这里只有精品| 一区二区av电影网| 国产色婷婷99| 9色porny在线观看| 大陆偷拍与自拍| 狂野欧美白嫩少妇大欣赏| 国产极品粉嫩免费观看在线 | 亚洲中文av在线| 中文字幕av电影在线播放| 精品熟女少妇av免费看| 国产精品99久久99久久久不卡 | 中文字幕最新亚洲高清| 岛国毛片在线播放| 婷婷色综合www| 18在线观看网站| 内地一区二区视频在线| 黑人高潮一二区| 亚洲无线观看免费| 亚洲成人手机| 天天操日日干夜夜撸|