• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scheme of negative acoustic radiation force based on a multiple-layered spherical structure

    2024-01-25 07:13:30MenyangGong宮門陽XinXu徐鑫YupeiQiao喬玉配JiehuiLiu劉杰惠AijunHe何愛軍andXiaozhouLiu劉曉宙
    Chinese Physics B 2024年1期
    關(guān)鍵詞:宮門

    Menyang Gong(宮門陽), Xin Xu(徐鑫), Yupei Qiao(喬玉配),Jiehui Liu(劉杰惠), Aijun He(何愛軍), and Xiaozhou Liu(劉曉宙),4,?

    1Key Laboratory of Modern Acoustics,Institute of Acoustics and School of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550001,China

    3School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    4State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic tweezers,negative acoustic radiation force,particle manipulation

    1.Introduction

    Ashkin proposed the concept of “optical tweezers” to achieve precise manipulation of microscopic particles, and therefore won the Nobel Prize in 2018.To overcome the shortcomings of optical tweezers in terms of scale and thermal effect,[1]Wu proposed “acoustic tweezers” based on acoustic radiation force(ARF).[2]Some ideas for building acoustic tweezers have gradually been proposed.[3–5]The generation of ARF is based on the nonlinear effect of the sound field.Through this effect, the momentum and angular momentum transfer can be realized between the sound field and the particles.Compared with the traditional particle manipulation method,ARF has a very significant advantage: The manipulation process is non-contact.Therefore,the ARF has gained extensive attention and wide application in ultrasound medicine and particle control.The research and investigation of the law of ARF are of great important significance.The ARF of standard particles such as cylindrical particles and spherical particles in the plane wave field or Bessel beams has been studied in detail.[1,2,6–16]The effects of ARF on particles in viscous media have also been included in the investigations.[17]ARFs with normal closed boundaries have been studied.[18,19]The ARF of standard particles in non-diffracted waves has also been investigated.[20]Resonant adhesion structure has been studied to make negative ARF.[21]Based on the angular spectrum and multipole expansion, the calculation methods of acoustic radiation force and moment have been further developed.[22,23]The sound field of the spherical shell structure has been analyzed and proved to be a meaningful attempt.[24–27]Some schemes of manipulating particles are carried out by using acoustic streaming.[28–30]In the field of acoustic manipulations,some of important progress have been made.[31–33]Recently,the influence of cavity and interface on ARF has been evaluated.[34–36]

    The concept of“acoustic tweezers”emphasizes the construction of acoustic potential wells for particle manipulation and trapping.In actual scenes,the sound source is often confined to a small angle relative to the particles.Therefore, it is of great significance to realize the negative ARF based on a unidirectional or small-angle sound beam.However, based on the definition, the negative ARF represents that the structure in the sound field is subjected to a force towards the sound source, which is extraordinary and difficult to achieve by traditional methods.Gonget al.[37]previously proposed a solution to the negative ARF of a single acoustic beam based on non-diffracted waves.In the calculation of the Bessel beam, Marston mentioned that based on the suppression of backscatter,it is possible to realize the negative ARF.[38]The first numerical demonstration of the negative ARF by suppressing the backscattering of non-spherical objects was performed by Gonget al.[39]Therefore, in this work, the design of suppressing the backscattering of the controlled structure is considered to explore the possibility of the negative ARF of the unidirectional sound beam acting on the structure.The sound field analysis of core–shell particles has been analyzed by Leibacheret al.[40]In this paper, the structure is designed to achieve suppression of backscattering.After a lot of parameter verifications and numerical simulations, a structure that exhibits negative ARF effects in a specific frequency spectrum has been successfully found.This demonstrates the feasibility of achieving negative ARF by suppressing backscattering.

    2.Analysis of multi-layered spherical structure

    Due to the limitations of most practical application scenarios,the structure design needs to be as independent as possible from the angle parameter and only related to the radial coordinates.Majid Rajabiet al.achieved acoustic radiation force control by pulsating spherical carriers in 2017,[41]which has been proved as an effective way.Therefore, the use of a multi-layered spherical structure to design the distribution of acoustic parameters is considered.

    Fig.1.Discrete multi-layered spherical structure in sound field.The source is a unidirectional monochromatic wave.

    In the design and implementation process, the multiplelayered structure is generally described in a differential manner.Therefore, in calculations, the multiple-layered structure is discretized into a multiple-layered spherical shell as shown in Fig.1.All kinds of unidirectional sound beams can be expanded into a linear combination of plane waves.Therefore,the incident beam considered in the calculation is a plane wave.Since the multi-layer spherical shell structure subjected to radiation force is a spherical symmetrical structure, the plane wave can be expanded in spherical coordinates.Since ARF calculation will be time-averaged,the frequency domain expression is used.Incident waveΦican be expressed as follows:

    whereΦk0is the incident velocity potential,k0is the wavenumber of the sound wave in the external environment medium,jnis the first kind of spherical Bessel function of ordern,Pnis the Legendre function of ordern.

    Similarly, the scattered waveΦscan also be expanded into a linear combination of spherical waves

    whereAn,sis the coefficient of scattered sound wave,is the Hankle function of the first kind of ordern.

    Therefore,the total sound field sound pressureΦ0in the environmental medium can be expressed as

    For the reason that the sound wave needs to propagate to the interior of the controlled structure, the elastic boundary conditions should be taken between the medium and the structure,and between the middle and layers of the structure.There is mode conversion at the boundary,so the medium particle displacement satisfies the Navier equation

    hereλandμare the Lami coefficient,

    Because the boundary conditions are described by velocity continuity,the internal sound field is also described by velocity potential to unify the expression.Since the sound field will form a stable sound field structure after incident for a period of time,it is only necessary to sort out the general form of velocity potential expression,and obtain the undetermined parameters by boundary conditions in the form of undetermined coefficients.

    For the first layer of medium, the velocity potential of longitudinal wave can be expressed as

    hereΦk0is velocity potential constant, nnis Neumann function,An,1aandAn,1bare pending parameters,k11is the longitudinal wavenumber in the spherical layer 1.

    The transverse wave velocity potential

    Similarly,for the velocity potential in theq-th layer,longitudinal wave velocity potential:

    then transverse wave velocity potential

    whereAn,qa,An,qb,An,qc, andAn,qdare pending parameters,kq1andkq2are the longitudinal wavenumber and transverse wavenumber in theq-th spherical shell individually.If theqth layer is the innermost layer,the Neumann function item returns to zero, and the velocity potential in theq-th spherical shell is given below.

    The longitudinal wave velocity potential can be written as

    The transverse wave velocity potential can be written as

    For the discretized multi-layered spherical structure ofmlayer,there are 4(m?1)+3=4m?1 independent boundary condition equations,and 4m+1?2=4m?1 undetermined coefficients need to be determined.Therefore,this system of equations is mathematically solvable.Then, the boundary conditions of this structure will be analyzed in detail.

    The specific continuity equations and the expansion of the corresponding parameters are given below.

    (i) Boundary conditions between the first layer structure and the external medium

    The normal displacement continuity:

    The normal stress continuity:

    whereΦis the velocity potential of the longitudinal wave andΨis the velocity potential of the transverse wave.

    (ii)Boundary conditions between theq-th layer structure and the(q+1)-th layer structure

    The normal displacement continuity:

    The tangential displacement continuity:

    The normal stress continuity:

    The tangential stress continuity:

    where,ur,qis the radial component of the particle vibration velocity in layerq,uθ,qis the angular component of the particle vibration velocity in layerq,Φqis the longitudinal velocity potential in layerq,Ψqis the transverse velocity potential in layerq.To determine the undetermined coefficients,we organize them into a matrix solution:AN=A1N/A2N.For m-storey structure,both matrices are(4m?1)×(4m?1)matrices.The specific expression of the matrix is shown in the appendix.

    Thus,the velocity potential field information scattered by the multi-layered spherical structure is obtained.Based on definition,the expression of the ARF on the multi-layered spherical structure can be expressed as

    wherezis the propagation direction of the incident sound beam andsis the surface of the geometrical surface of the particles.

    Based on Eqs.(1)–(16),the velocity potential distribution of the entire sound field can be obtained by means of undetermined coefficients.Then the total velocity potentialΦ0in the external medium can be obtained by Eq.(3).The integral in Eq.(17)including the total velocity potentialΦ0in the external medium is implemented by accumulating the discretized velocity potentials.The expression of the total velocity potentialΦ0includes the position coordinates, which could be further simplified based on symmetry during the accumulation process.

    3.Finite element simulation of multi-layered spherical structure

    In Section 2, the analytical expression of the ARF received by the multi-layered spherical structure in a unidirectional sound beam is obtained.After a large number of parameter verifications, we find that the specific multi-layered spherical structure can achieve the negative ARF in the unidirectional sound beam sound field.The following structures shown in Fig.2–7 are aluminum–water–aluminum–water alternating multi-layered spherical structures.To further clarify the physical mechanism,as a control,the structures of copper–water–copper–water multi-layered spherical structure in Fig.8 and 9 and PVC(polyvinyl chloride)–water–PVC–water multilayered spherical structure in Figs.10 and 11 are also verified.The relevant parameters are shown in Table 1.

    To verify the real existence of back suppression in layered structure design, the finite element simulations based on COMSOL Multiphysics 6.1 are carried out.In all finite element simulations,the radiusRof the multiple-layered spherical structure is set to 0.5 mm.The incident background pressure is set to 1 Pa.The maximum grid size is set to 1/6 of the wavelength,so the sound field distribution could be accurate enough.By means of finite element simulation,the velocity potential distribution of the entire sound field is obtained.Based on the definition formula for the calculation of the ARF Eq.(17),the ARF on the structure can be obtained by performing the corresponding integral on the outside of the controlled structure surface.In the actual calculations, the probe tool of the finite element simulation is applied,and the velocity potential containing the position coordinates is uniformly sampled.With sufficiently dense sampling,the integral is calculated by accumulation, and the differential is calculated by difference method.In practice,this process can be further simplified by symmetry.For example, based on the rotational symmetry of the structure, only the component integration of the ARF in the incident direction of the incident acoustic beam is required.The blue square point in Figs.2, 3, 4, 8 and 10 is obtained due to the frequency sweep of finite element analysis, and the black curve is drawn based on the analytical solution in Section 2.The finite element simulations are carried out in three dimensions.Figures 5–7, 9, 11 are sections through the propagation direction.The innermost hierarchical structure is the multiple-layered spherical structure shown in Fig.1.Due to symmetry,all sound pressure distributions have been shown.The outer dark blue layer in Figs.5–7, 9, 11 is the perfectly-matched layer.The perfectly-matching layer is far enough from the controlled structure to perfectly absorb the sound wave without affecting the distribution of the sound field.It can be seen from the figures that the points obtained by finite element analysis basically fall on the curve of analytical solution,which also confirms the correctness of finite element simulation and analytical solution.

    Table 1.Parameters selections.

    Firstly,the four-layer structure of 1:3:1:5 is analyzed,and the parameter values are:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.2.It could be seen that this structure can show obvious negative ARF when subjected to a single sound beam from 0.1 MHz to 3.5 MHz.

    For a comparison,as shown in Fig.3,the four-layer structure of 1:1:1:7 is analyzed, and the parameter values are:Rlayer1=R/10,Rlayer2=R/10,Rlayer3=R/10,the schematic diagram of the variation of ARF with the spectrum is shown in Fig.3.We can see that this structure shows a narrow range negative ARF when subjected to a single acoustic beam from 0.1 MHz to 3.5 MHz.

    Similarly, as shown in Fig.4, the four-layer structure of 1 : 5 : 1 : 3 is analyzed, and the parameter values are:Rlayer1=R/10,Rlayer2=R/2,Rlayer3=R/10, the schematic diagram of the variation of ARF with the spectrum is shown in Fig.4.We can see that this structure does not show negative ARF when subjected to a single sound beam from 0.1 MHz to 3.5 MHz.

    The sound pressure distribution is equivalent to the distribution of the velocity potential.It can be seen from Eq.(17)that the velocity potential is an important factor that directly affects the ARF on the structure.In the previous conjecture proposed by Marston, the negative ARF can be obtained by suppressing backscattering.[38]In Fig.2,this conjecture is realized through a multi-layer spherical structure.In order to illustrate the process of backscattering suppression causing the reversal of ARF more vividly,the sound pressure distribution images based on several key frequency points are drawn.To analyze the mechanism of the generation and disappearance of negative ARF,the multiple-layered spherical structure and its surrounding sound field in the process of frequency scanning are drawn.The sound beam enters from left to right.It can be seen in Fig.5 that when the structure is subjected to negative ARF, a strong scattering region is formed between the inner and outer layers of the structure,and the backscattering is obviously suppressed.Therefore, the structure is subjected to negative ARF.At low frequencies,the formation of this common vibration peak is not obvious, mainly manifested in the positive ARF.At high frequencies, the structure forms multiple scattering peaks,which counteract the effect of producing a scattering region that suppresses the backscattering peaks,and thus also exhibits positive ARFs.

    In the four-layer structure of 1:1:1:7 as shown in Fig.6,the peak region of enhanced backscattering is formed synchronously in the process of forming the peak of inhibiting backscattering, and the inhibitory effect on backscattering is not obvious.Therefore,it only shows a narrow negative ARF range.

    In the 1:5:1:3 four-layer structure as shown in Fig.7,other multiple scattering peaks are generated almost synchronously in the process of forming the peak of restraining backscattering.Therefore,in this case,the particles are always subjected to positive ARF.

    Fig.2.The four-layer structure of 1 : 3 : 1 : 5. Rlayer1 = R/10,Rlayer2 =3R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure is subjected to negative ARF in a specific frequency band.

    Fig.3.The four-layer structure of 1 : 1 : 1 : 7. Rlayer1 = R/10,Rlayer2 =R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows a narrow range negative ARF.

    Fig.4.The four-layer structure of 1 : 5 : 1 : 3. Rlayer1 = R/10,Rlayer2 =R/2,Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows no negative ARF.

    Fig.5.Sound field distribution of multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.6.Sound field distribution of multiple-layered spherical structure with four-layer of 1:1:1:7 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.7.Sound field distribution of multiple-layered spherical structure with four-layer of 1:5:1:3 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    To further clarify the physical mechanism, the structures of copper–water–copper–water multiple-layered spherical structure of 1:3:1:5 is analyzed in Fig.8,and the parameter values are:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.8.It could be seen that this structure shows no negative ARF.

    Similarly, the copper–water–copper–water structure and its surrounding sound field in the process of frequency scanning are drawn in Fig.9.It can be seen that in the interval where the suppression of backscattering should have occurred,the positive peak is generated synchronously.Therefore,only the minimum value of the positive ARF is generated,and there is no reversal of the direction of ARF.

    Fig.8.The four-layer copper–water–copper–water structure of 1:3:1:5. Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows no negative ARF.

    Fig.9.Sound field distribution of copper–water–copper–water multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.10.The four-layer PVC–water–PVC–water structure of 1:3:1:5.Rlayer1 =R/10, Rlayer2 =3R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows insignificant negative ARF effects in a specific interval.

    In addition to metal materials,the structure of organic materials has also been verified.The structures of PVC–water–PVC–water multiple-layered spherical structure of 1:3:1:5 is analyzed in Fig.10, and the parameter value is:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.10.It could be seen that this structure shows insignificant negative ARF effects in the range of 1.5 MHz–2.5 MHz.

    Further,the PVC–water–PVC–water structure and its surrounding sound field in the process of frequency scanning are drawn in Fig.11.Except that the suppression peak and the forward peak of backscattering are formed synchronously,the impedance parameters of organic materials and water have little difference compared with metal materials, the scattering effect is weakened,and the ARF is also reduced.

    To sum up,it can be known that when the structure is reasonably designed to suppress the backscattering of the structure, the designed structure could be subjected to negative ARF,which provides a new idea for particle manipulation and makes the realization of“acoustic tweezers”possible.

    Fig.11.Sound field distribution of PVC–water–PVC–water multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    4.Conclusion

    This paper proposes a prediction of negative ARF based on a multiple-layered spherical structure.The ARF of the multiple-layered spherical structure is calculated and deduced,and the analytical solution is obtained.The physical mechanism of the negative acoustic radiation produced by multiplelayered spherical structure is described.This result is verified by finite element numerical simulations.This design concept is of great significance to the design of real “acoustic tweezers” based on negative ARF and lays a foundation for the design of devices producing negative ARF.This work proves that it is feasible to suppress backscattering to make the structure subject to negative ARF.In the process of designing a multi-layer structure to achieve negative ARF, we should try to choose a structural design that can significantly suppress backscattering, which is also the conjecture proposed by Marston before.[38]In order to better realize this effect, we think that there should be a multiple-layered structure.Through numerical verification,the four-layered spherical structures with specific ratio could have a strong suppression effect on backscattering, thus exhibiting the anomalous characteristic of being subjected to negative acoustic radiation force.The different proportions of the thickness of the fourlayered structure could form different resonant cavities,which can effectively adjust the scattering sound field of the structure, thereby achieving the suppression of backscattering.In the work, these specific scaling parameters are chosen as a result of extensive numerical calculations.In most of the parametric results,the inversion of the ARF does not appear.Further, based on the same mechanism, other structural designs are expected to be proposed.This work has broad application prospects in the fields of medicine, life science, underwater manipulation,and so on.

    Appendix A

    MatrixA1Nand matrixA2Nare expressed in Figs.A1 and A2.

    Fig.A1.Matrix A1N.

    Here, for the boundary from the external medium to the first layer:

    For the boundary from the first layer to the second layer:

    For the boundary from theq-th to theq+1-th layer which is not the innermost layer

    For the boundary from theq-th to theq+1-th layer which is the innermost layer

    General term parameters:

    where,cq+1,1is the longitudinal wave velocity of theq-th layer structure,cq+1,2is the shear wave velocity of theq-th layer structure.γq+1,1is the longitudinal wave absorption coefficient of theq-th layer medium,γq+1,2is the longitudinal wave absorption coefficient of theq-th layer medium.μq+1andλq+1are the density coefficients of theq-th layer.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400),the State Key Program of the National Natural Science Foundation of China (Grant No.11834008), the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No.SKLA202210),the Fund from the Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701), and the Science and Technology Foundation of Guizhou Province, China (Grant No.ZK[2023]249).

    猜你喜歡
    宮門
    故宮的門
    宮門抄及其研究價值
    一入宮門深似海,宮門是哪扇門?
    旅游世界(2021年12期)2021-05-28 14:06:31
    紫禁城在1918
    這里,藏著600年的歲月
    北京故宮太和殿的匾額為何沒有滿文?
    中華民居(2019年4期)2019-09-23 07:52:10
    故宮太和殿的匾額上為何沒有滿文
    中外文摘(2018年10期)2018-11-21 07:23:44
    2013—2015年圓明園大宮門區(qū)域考古發(fā)掘的主要收獲和初步研究
    中國園林(2018年10期)2018-11-09 03:26:24
    唐詩賞讀
    陳涉世家(節(jié)選)
    视频区图区小说| 久久性视频一级片| 18禁国产床啪视频网站| 三上悠亚av全集在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 2018国产大陆天天弄谢| 大香蕉久久成人网| 天天添夜夜摸| 热99久久久久精品小说推荐| 老熟女久久久| 国产视频一区二区在线看| 一区二区三区乱码不卡18| 亚洲欧洲精品一区二区精品久久久| 国产成人av教育| 在线看a的网站| 亚洲成人国产一区在线观看| 丁香六月天网| 久久久久久免费高清国产稀缺| 欧美人与性动交α欧美软件| 中文字幕高清在线视频| 久久久久久久久免费视频了| 黑人猛操日本美女一级片| 各种免费的搞黄视频| 91国产中文字幕| 狠狠婷婷综合久久久久久88av| 中文字幕人妻丝袜一区二区| 亚洲精品一二三| 巨乳人妻的诱惑在线观看| av天堂在线播放| 亚洲国产欧美日韩在线播放| 97人妻天天添夜夜摸| 色老头精品视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 嫁个100分男人电影在线观看| 欧美在线一区亚洲| 国产精品av久久久久免费| 亚洲精品粉嫩美女一区| 亚洲国产精品999| 一区福利在线观看| 日本91视频免费播放| 精品亚洲乱码少妇综合久久| 欧美亚洲日本最大视频资源| 一边摸一边做爽爽视频免费| 超碰成人久久| 欧美日韩国产mv在线观看视频| 久久国产精品人妻蜜桃| 正在播放国产对白刺激| 正在播放国产对白刺激| 国产区一区二久久| 精品久久久久久电影网| 电影成人av| 51午夜福利影视在线观看| 人人妻人人澡人人爽人人夜夜| 男女床上黄色一级片免费看| 黄片小视频在线播放| 亚洲国产看品久久| 日本欧美视频一区| 国产亚洲精品第一综合不卡| 极品少妇高潮喷水抽搐| 精品国产超薄肉色丝袜足j| 亚洲中文字幕日韩| 亚洲专区国产一区二区| 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| 亚洲欧美精品自产自拍| 国产伦人伦偷精品视频| 精品少妇黑人巨大在线播放| 青春草视频在线免费观看| 精品国产一区二区三区四区第35| av在线app专区| 免费在线观看影片大全网站| 老司机在亚洲福利影院| 国产成+人综合+亚洲专区| 国产免费视频播放在线视频| 中文精品一卡2卡3卡4更新| 黄色片一级片一级黄色片| 亚洲五月婷婷丁香| 国产成人影院久久av| 人成视频在线观看免费观看| 男女之事视频高清在线观看| 亚洲欧美精品自产自拍| 午夜福利免费观看在线| 丝袜美腿诱惑在线| 国产免费现黄频在线看| 亚洲av电影在线进入| 天天添夜夜摸| 亚洲性夜色夜夜综合| 国产av精品麻豆| 少妇裸体淫交视频免费看高清 | 飞空精品影院首页| 九色亚洲精品在线播放| 99九九在线精品视频| 日韩免费高清中文字幕av| av天堂久久9| 午夜福利一区二区在线看| 一本—道久久a久久精品蜜桃钙片| av天堂久久9| 黑人操中国人逼视频| 老司机影院成人| 亚洲精品国产av蜜桃| 女人爽到高潮嗷嗷叫在线视频| 免费久久久久久久精品成人欧美视频| 夜夜夜夜夜久久久久| 免费久久久久久久精品成人欧美视频| 成人国语在线视频| 麻豆国产av国片精品| 亚洲七黄色美女视频| 老司机靠b影院| 欧美亚洲日本最大视频资源| 国产亚洲一区二区精品| 欧美乱码精品一区二区三区| 欧美性长视频在线观看| 女性被躁到高潮视频| 一二三四在线观看免费中文在| a 毛片基地| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 国产老妇伦熟女老妇高清| 91精品伊人久久大香线蕉| 我的亚洲天堂| 亚洲中文日韩欧美视频| 男男h啪啪无遮挡| netflix在线观看网站| 在线 av 中文字幕| 欧美国产精品va在线观看不卡| 高清欧美精品videossex| 一区二区三区乱码不卡18| 夜夜骑夜夜射夜夜干| 又紧又爽又黄一区二区| 婷婷成人精品国产| 老司机靠b影院| 日本91视频免费播放| 久久亚洲精品不卡| 欧美激情 高清一区二区三区| 欧美黑人精品巨大| 美女高潮喷水抽搐中文字幕| 韩国精品一区二区三区| 亚洲 国产 在线| 五月天丁香电影| 男人爽女人下面视频在线观看| 老司机亚洲免费影院| 老司机深夜福利视频在线观看 | 日韩电影二区| avwww免费| 人人妻人人爽人人添夜夜欢视频| 午夜福利一区二区在线看| 人妻一区二区av| 久久久欧美国产精品| 亚洲中文av在线| 国产精品香港三级国产av潘金莲| 无遮挡黄片免费观看| 亚洲欧美色中文字幕在线| 考比视频在线观看| 国产免费av片在线观看野外av| 免费黄频网站在线观看国产| 国产一区有黄有色的免费视频| 精品亚洲成a人片在线观看| 国产深夜福利视频在线观看| 少妇精品久久久久久久| 他把我摸到了高潮在线观看 | 久久久久国产精品人妻一区二区| 国产精品久久久久久精品电影小说| 国产在视频线精品| 啦啦啦在线免费观看视频4| 在线观看舔阴道视频| 老司机影院成人| 亚洲欧美激情在线| 悠悠久久av| 韩国精品一区二区三区| 在线观看人妻少妇| 国产精品影院久久| 欧美av亚洲av综合av国产av| h视频一区二区三区| 十八禁网站网址无遮挡| 免费观看人在逋| 国产国语露脸激情在线看| 久久久久国产一级毛片高清牌| 国产黄色免费在线视频| 国产免费福利视频在线观看| 亚洲一码二码三码区别大吗| 亚洲激情五月婷婷啪啪| 久久香蕉激情| 色综合欧美亚洲国产小说| www.熟女人妻精品国产| 黄色毛片三级朝国网站| 午夜激情av网站| 久久人人97超碰香蕉20202| 国产日韩欧美在线精品| 国产亚洲av片在线观看秒播厂| av在线app专区| 日本91视频免费播放| 久久精品aⅴ一区二区三区四区| 国产又色又爽无遮挡免| 99re6热这里在线精品视频| 亚洲成av片中文字幕在线观看| 大香蕉久久网| 男女下面插进去视频免费观看| 男女午夜视频在线观看| 亚洲国产成人一精品久久久| 亚洲国产成人一精品久久久| 欧美+亚洲+日韩+国产| 国产又爽黄色视频| 女人久久www免费人成看片| 99精国产麻豆久久婷婷| 美女脱内裤让男人舔精品视频| 性色av乱码一区二区三区2| 两性夫妻黄色片| 夜夜夜夜夜久久久久| 国产日韩一区二区三区精品不卡| 亚洲国产精品一区三区| 日日摸夜夜添夜夜添小说| 亚洲欧美清纯卡通| 亚洲精品在线美女| 在线观看一区二区三区激情| 国产一区有黄有色的免费视频| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 99精国产麻豆久久婷婷| 黄频高清免费视频| 中亚洲国语对白在线视频| 人成视频在线观看免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美成人综合另类久久久| av片东京热男人的天堂| 法律面前人人平等表现在哪些方面 | 国产男女内射视频| 国产男女内射视频| 欧美精品av麻豆av| 中文字幕精品免费在线观看视频| 天天躁日日躁夜夜躁夜夜| 少妇 在线观看| 性色av一级| 成人av一区二区三区在线看 | 亚洲精华国产精华精| 一区二区av电影网| 三级毛片av免费| 欧美国产精品一级二级三级| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 又紧又爽又黄一区二区| 蜜桃国产av成人99| 日韩视频在线欧美| 1024香蕉在线观看| 成在线人永久免费视频| 又大又爽又粗| 各种免费的搞黄视频| 欧美另类一区| 一级毛片精品| 日韩熟女老妇一区二区性免费视频| 欧美黑人精品巨大| 国产欧美亚洲国产| videosex国产| 亚洲精品自拍成人| 中国美女看黄片| 日本wwww免费看| 成人三级做爰电影| 免费一级毛片在线播放高清视频 | 免费高清在线观看日韩| 老鸭窝网址在线观看| av片东京热男人的天堂| 国产日韩一区二区三区精品不卡| 丝袜美足系列| 亚洲国产精品成人久久小说| 午夜两性在线视频| 91成人精品电影| 欧美激情 高清一区二区三区| 久久国产精品大桥未久av| 青草久久国产| 欧美国产精品一级二级三级| 欧美乱码精品一区二区三区| 一级a爱视频在线免费观看| 亚洲精品一区蜜桃| 午夜福利乱码中文字幕| 亚洲黑人精品在线| 性少妇av在线| 亚洲av片天天在线观看| 极品少妇高潮喷水抽搐| avwww免费| 国产免费现黄频在线看| 中亚洲国语对白在线视频| 一本—道久久a久久精品蜜桃钙片| 久久热在线av| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 久久狼人影院| 狠狠狠狠99中文字幕| 精品一区二区三区四区五区乱码| 爱豆传媒免费全集在线观看| 国产精品一区二区在线不卡| 99久久综合免费| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 悠悠久久av| 久久精品aⅴ一区二区三区四区| 19禁男女啪啪无遮挡网站| 免费人妻精品一区二区三区视频| 99久久精品国产亚洲精品| 制服人妻中文乱码| 岛国在线观看网站| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 成人免费观看视频高清| 免费高清在线观看视频在线观看| 最新在线观看一区二区三区| 丝袜美足系列| 成人国产一区最新在线观看| 日韩三级视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 国产真人三级小视频在线观看| 大香蕉久久网| 亚洲人成电影免费在线| 人人澡人人妻人| 一级黄色大片毛片| av欧美777| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 91字幕亚洲| 日本黄色日本黄色录像| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 97精品久久久久久久久久精品| 日韩制服丝袜自拍偷拍| 91麻豆精品激情在线观看国产 | 日韩,欧美,国产一区二区三区| 91av网站免费观看| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 成人av一区二区三区在线看 | 一本色道久久久久久精品综合| 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 搡老岳熟女国产| 国产av精品麻豆| 久久久精品国产亚洲av高清涩受| 制服人妻中文乱码| 午夜两性在线视频| 国产一卡二卡三卡精品| a级毛片在线看网站| av一本久久久久| 色婷婷久久久亚洲欧美| 亚洲精品国产区一区二| 十八禁网站网址无遮挡| 麻豆av在线久日| 国产成人啪精品午夜网站| a级毛片黄视频| 午夜免费观看性视频| 少妇裸体淫交视频免费看高清 | 99久久综合免费| 成人av一区二区三区在线看 | 多毛熟女@视频| 亚洲午夜精品一区,二区,三区| 涩涩av久久男人的天堂| 国产精品九九99| 视频区图区小说| 亚洲国产中文字幕在线视频| www日本在线高清视频| 亚洲国产毛片av蜜桃av| 久久中文字幕一级| 99热网站在线观看| 久久精品国产综合久久久| av在线老鸭窝| 久久人妻熟女aⅴ| 夫妻午夜视频| 美国免费a级毛片| 精品人妻一区二区三区麻豆| 午夜福利免费观看在线| 性少妇av在线| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 啪啪无遮挡十八禁网站| 黑人猛操日本美女一级片| 亚洲成人免费电影在线观看| 精品人妻熟女毛片av久久网站| 久久精品成人免费网站| 男女高潮啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久精品人妻al黑| 国产成人av教育| 国产成人精品久久二区二区免费| 国产成人欧美| 19禁男女啪啪无遮挡网站| 性少妇av在线| 亚洲自偷自拍图片 自拍| avwww免费| 大香蕉久久成人网| 一级毛片女人18水好多| 黑人巨大精品欧美一区二区蜜桃| 两个人免费观看高清视频| 最黄视频免费看| 色婷婷久久久亚洲欧美| 亚洲国产成人一精品久久久| 日韩三级视频一区二区三区| 亚洲国产av影院在线观看| 一级毛片精品| 涩涩av久久男人的天堂| 俄罗斯特黄特色一大片| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| 蜜桃在线观看..| 精品熟女少妇八av免费久了| 大片免费播放器 马上看| www.自偷自拍.com| 视频区欧美日本亚洲| 久久久久久亚洲精品国产蜜桃av| 丝袜美足系列| 国产一区有黄有色的免费视频| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 久久人人爽人人片av| 欧美激情 高清一区二区三区| a级毛片在线看网站| 国产高清国产精品国产三级| 少妇粗大呻吟视频| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 国产精品一二三区在线看| 日本黄色日本黄色录像| 日韩大片免费观看网站| 国产成+人综合+亚洲专区| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 看免费av毛片| videos熟女内射| 国产成人精品无人区| 欧美精品av麻豆av| 天天躁夜夜躁狠狠躁躁| 满18在线观看网站| 国产精品欧美亚洲77777| 国产亚洲一区二区精品| 久久av网站| 男人操女人黄网站| 美国免费a级毛片| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频 | 日韩电影二区| 色精品久久人妻99蜜桃| 91老司机精品| 丝瓜视频免费看黄片| 免费女性裸体啪啪无遮挡网站| 人妻久久中文字幕网| 性色av一级| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦视频在线资源免费观看| 精品亚洲乱码少妇综合久久| 欧美xxⅹ黑人| av网站在线播放免费| 国产精品免费视频内射| 日韩三级视频一区二区三区| 91麻豆av在线| 久久久久久免费高清国产稀缺| 女人久久www免费人成看片| 视频区图区小说| 亚洲专区字幕在线| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 大片电影免费在线观看免费| 一级片'在线观看视频| 色视频在线一区二区三区| av网站在线播放免费| 黄片播放在线免费| 国产精品一二三区在线看| 97人妻天天添夜夜摸| 亚洲精品美女久久久久99蜜臀| 免费人妻精品一区二区三区视频| 一级毛片女人18水好多| 搡老岳熟女国产| 国产欧美日韩一区二区精品| 国产精品久久久久成人av| 亚洲,欧美精品.| 桃花免费在线播放| 99热全是精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 妹子高潮喷水视频| 国产成人精品久久二区二区91| 国产精品 欧美亚洲| 人人妻,人人澡人人爽秒播| av网站免费在线观看视频| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 男女免费视频国产| 久久 成人 亚洲| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 女性被躁到高潮视频| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费| 成人影院久久| 无遮挡黄片免费观看| 中文欧美无线码| 国产免费一区二区三区四区乱码| 久久天堂一区二区三区四区| av片东京热男人的天堂| 99热全是精品| 香蕉丝袜av| 一区二区三区四区激情视频| 精品一区二区三卡| 亚洲人成电影观看| 黄色毛片三级朝国网站| 在线永久观看黄色视频| 两人在一起打扑克的视频| 亚洲三区欧美一区| 大型av网站在线播放| 丝袜美足系列| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| av天堂在线播放| 如日韩欧美国产精品一区二区三区| 不卡av一区二区三区| 国产三级黄色录像| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 亚洲国产av新网站| 天堂俺去俺来也www色官网| 成人亚洲精品一区在线观看| av天堂久久9| 国产xxxxx性猛交| 老司机午夜十八禁免费视频| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 午夜福利一区二区在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区 | 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 女人久久www免费人成看片| 亚洲第一欧美日韩一区二区三区 | 一级毛片精品| 黄色视频不卡| 日本av手机在线免费观看| 国产欧美日韩一区二区三 | 大片免费播放器 马上看| 另类亚洲欧美激情| 十分钟在线观看高清视频www| 中文字幕制服av| 男人操女人黄网站| 美女视频免费永久观看网站| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 黄频高清免费视频| 中文字幕高清在线视频| 99re6热这里在线精品视频| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院| 男女高潮啪啪啪动态图| 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 精品亚洲成国产av| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 日韩制服骚丝袜av| 日韩欧美国产一区二区入口| 三级毛片av免费| 人人妻,人人澡人人爽秒播| 日本wwww免费看| 飞空精品影院首页| 久久精品久久久久久噜噜老黄| 一区二区三区激情视频| 一区二区三区精品91| 9热在线视频观看99| av网站免费在线观看视频| www日本在线高清视频| 亚洲黑人精品在线| 秋霞在线观看毛片| 国产色视频综合| 国产高清视频在线播放一区 | 91九色精品人成在线观看| 免费高清在线观看日韩| av电影中文网址| 亚洲欧美一区二区三区黑人| 岛国在线观看网站| 亚洲av欧美aⅴ国产| 不卡av一区二区三区| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 黄片大片在线免费观看| 性色av一级| 男女边摸边吃奶| 9热在线视频观看99| 最近中文字幕2019免费版| 丰满人妻熟妇乱又伦精品不卡| 欧美 日韩 精品 国产| 国产三级黄色录像| 青青草视频在线视频观看| 考比视频在线观看| 国产成人免费观看mmmm| 欧美+亚洲+日韩+国产| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 黄色 视频免费看| 久久久国产成人免费| 一区二区三区激情视频| 亚洲天堂av无毛| 国产精品99久久99久久久不卡| 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图|