• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scheme of negative acoustic radiation force based on a multiple-layered spherical structure

    2024-01-25 07:13:30MenyangGong宮門陽XinXu徐鑫YupeiQiao喬玉配JiehuiLiu劉杰惠AijunHe何愛軍andXiaozhouLiu劉曉宙
    Chinese Physics B 2024年1期
    關(guān)鍵詞:宮門

    Menyang Gong(宮門陽), Xin Xu(徐鑫), Yupei Qiao(喬玉配),Jiehui Liu(劉杰惠), Aijun He(何愛軍), and Xiaozhou Liu(劉曉宙),4,?

    1Key Laboratory of Modern Acoustics,Institute of Acoustics and School of Physics,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550001,China

    3School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    4State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic tweezers,negative acoustic radiation force,particle manipulation

    1.Introduction

    Ashkin proposed the concept of “optical tweezers” to achieve precise manipulation of microscopic particles, and therefore won the Nobel Prize in 2018.To overcome the shortcomings of optical tweezers in terms of scale and thermal effect,[1]Wu proposed “acoustic tweezers” based on acoustic radiation force(ARF).[2]Some ideas for building acoustic tweezers have gradually been proposed.[3–5]The generation of ARF is based on the nonlinear effect of the sound field.Through this effect, the momentum and angular momentum transfer can be realized between the sound field and the particles.Compared with the traditional particle manipulation method,ARF has a very significant advantage: The manipulation process is non-contact.Therefore,the ARF has gained extensive attention and wide application in ultrasound medicine and particle control.The research and investigation of the law of ARF are of great important significance.The ARF of standard particles such as cylindrical particles and spherical particles in the plane wave field or Bessel beams has been studied in detail.[1,2,6–16]The effects of ARF on particles in viscous media have also been included in the investigations.[17]ARFs with normal closed boundaries have been studied.[18,19]The ARF of standard particles in non-diffracted waves has also been investigated.[20]Resonant adhesion structure has been studied to make negative ARF.[21]Based on the angular spectrum and multipole expansion, the calculation methods of acoustic radiation force and moment have been further developed.[22,23]The sound field of the spherical shell structure has been analyzed and proved to be a meaningful attempt.[24–27]Some schemes of manipulating particles are carried out by using acoustic streaming.[28–30]In the field of acoustic manipulations,some of important progress have been made.[31–33]Recently,the influence of cavity and interface on ARF has been evaluated.[34–36]

    The concept of“acoustic tweezers”emphasizes the construction of acoustic potential wells for particle manipulation and trapping.In actual scenes,the sound source is often confined to a small angle relative to the particles.Therefore, it is of great significance to realize the negative ARF based on a unidirectional or small-angle sound beam.However, based on the definition, the negative ARF represents that the structure in the sound field is subjected to a force towards the sound source, which is extraordinary and difficult to achieve by traditional methods.Gonget al.[37]previously proposed a solution to the negative ARF of a single acoustic beam based on non-diffracted waves.In the calculation of the Bessel beam, Marston mentioned that based on the suppression of backscatter,it is possible to realize the negative ARF.[38]The first numerical demonstration of the negative ARF by suppressing the backscattering of non-spherical objects was performed by Gonget al.[39]Therefore, in this work, the design of suppressing the backscattering of the controlled structure is considered to explore the possibility of the negative ARF of the unidirectional sound beam acting on the structure.The sound field analysis of core–shell particles has been analyzed by Leibacheret al.[40]In this paper, the structure is designed to achieve suppression of backscattering.After a lot of parameter verifications and numerical simulations, a structure that exhibits negative ARF effects in a specific frequency spectrum has been successfully found.This demonstrates the feasibility of achieving negative ARF by suppressing backscattering.

    2.Analysis of multi-layered spherical structure

    Due to the limitations of most practical application scenarios,the structure design needs to be as independent as possible from the angle parameter and only related to the radial coordinates.Majid Rajabiet al.achieved acoustic radiation force control by pulsating spherical carriers in 2017,[41]which has been proved as an effective way.Therefore, the use of a multi-layered spherical structure to design the distribution of acoustic parameters is considered.

    Fig.1.Discrete multi-layered spherical structure in sound field.The source is a unidirectional monochromatic wave.

    In the design and implementation process, the multiplelayered structure is generally described in a differential manner.Therefore, in calculations, the multiple-layered structure is discretized into a multiple-layered spherical shell as shown in Fig.1.All kinds of unidirectional sound beams can be expanded into a linear combination of plane waves.Therefore,the incident beam considered in the calculation is a plane wave.Since the multi-layer spherical shell structure subjected to radiation force is a spherical symmetrical structure, the plane wave can be expanded in spherical coordinates.Since ARF calculation will be time-averaged,the frequency domain expression is used.Incident waveΦican be expressed as follows:

    whereΦk0is the incident velocity potential,k0is the wavenumber of the sound wave in the external environment medium,jnis the first kind of spherical Bessel function of ordern,Pnis the Legendre function of ordern.

    Similarly, the scattered waveΦscan also be expanded into a linear combination of spherical waves

    whereAn,sis the coefficient of scattered sound wave,is the Hankle function of the first kind of ordern.

    Therefore,the total sound field sound pressureΦ0in the environmental medium can be expressed as

    For the reason that the sound wave needs to propagate to the interior of the controlled structure, the elastic boundary conditions should be taken between the medium and the structure,and between the middle and layers of the structure.There is mode conversion at the boundary,so the medium particle displacement satisfies the Navier equation

    hereλandμare the Lami coefficient,

    Because the boundary conditions are described by velocity continuity,the internal sound field is also described by velocity potential to unify the expression.Since the sound field will form a stable sound field structure after incident for a period of time,it is only necessary to sort out the general form of velocity potential expression,and obtain the undetermined parameters by boundary conditions in the form of undetermined coefficients.

    For the first layer of medium, the velocity potential of longitudinal wave can be expressed as

    hereΦk0is velocity potential constant, nnis Neumann function,An,1aandAn,1bare pending parameters,k11is the longitudinal wavenumber in the spherical layer 1.

    The transverse wave velocity potential

    Similarly,for the velocity potential in theq-th layer,longitudinal wave velocity potential:

    then transverse wave velocity potential

    whereAn,qa,An,qb,An,qc, andAn,qdare pending parameters,kq1andkq2are the longitudinal wavenumber and transverse wavenumber in theq-th spherical shell individually.If theqth layer is the innermost layer,the Neumann function item returns to zero, and the velocity potential in theq-th spherical shell is given below.

    The longitudinal wave velocity potential can be written as

    The transverse wave velocity potential can be written as

    For the discretized multi-layered spherical structure ofmlayer,there are 4(m?1)+3=4m?1 independent boundary condition equations,and 4m+1?2=4m?1 undetermined coefficients need to be determined.Therefore,this system of equations is mathematically solvable.Then, the boundary conditions of this structure will be analyzed in detail.

    The specific continuity equations and the expansion of the corresponding parameters are given below.

    (i) Boundary conditions between the first layer structure and the external medium

    The normal displacement continuity:

    The normal stress continuity:

    whereΦis the velocity potential of the longitudinal wave andΨis the velocity potential of the transverse wave.

    (ii)Boundary conditions between theq-th layer structure and the(q+1)-th layer structure

    The normal displacement continuity:

    The tangential displacement continuity:

    The normal stress continuity:

    The tangential stress continuity:

    where,ur,qis the radial component of the particle vibration velocity in layerq,uθ,qis the angular component of the particle vibration velocity in layerq,Φqis the longitudinal velocity potential in layerq,Ψqis the transverse velocity potential in layerq.To determine the undetermined coefficients,we organize them into a matrix solution:AN=A1N/A2N.For m-storey structure,both matrices are(4m?1)×(4m?1)matrices.The specific expression of the matrix is shown in the appendix.

    Thus,the velocity potential field information scattered by the multi-layered spherical structure is obtained.Based on definition,the expression of the ARF on the multi-layered spherical structure can be expressed as

    wherezis the propagation direction of the incident sound beam andsis the surface of the geometrical surface of the particles.

    Based on Eqs.(1)–(16),the velocity potential distribution of the entire sound field can be obtained by means of undetermined coefficients.Then the total velocity potentialΦ0in the external medium can be obtained by Eq.(3).The integral in Eq.(17)including the total velocity potentialΦ0in the external medium is implemented by accumulating the discretized velocity potentials.The expression of the total velocity potentialΦ0includes the position coordinates, which could be further simplified based on symmetry during the accumulation process.

    3.Finite element simulation of multi-layered spherical structure

    In Section 2, the analytical expression of the ARF received by the multi-layered spherical structure in a unidirectional sound beam is obtained.After a large number of parameter verifications, we find that the specific multi-layered spherical structure can achieve the negative ARF in the unidirectional sound beam sound field.The following structures shown in Fig.2–7 are aluminum–water–aluminum–water alternating multi-layered spherical structures.To further clarify the physical mechanism,as a control,the structures of copper–water–copper–water multi-layered spherical structure in Fig.8 and 9 and PVC(polyvinyl chloride)–water–PVC–water multilayered spherical structure in Figs.10 and 11 are also verified.The relevant parameters are shown in Table 1.

    To verify the real existence of back suppression in layered structure design, the finite element simulations based on COMSOL Multiphysics 6.1 are carried out.In all finite element simulations,the radiusRof the multiple-layered spherical structure is set to 0.5 mm.The incident background pressure is set to 1 Pa.The maximum grid size is set to 1/6 of the wavelength,so the sound field distribution could be accurate enough.By means of finite element simulation,the velocity potential distribution of the entire sound field is obtained.Based on the definition formula for the calculation of the ARF Eq.(17),the ARF on the structure can be obtained by performing the corresponding integral on the outside of the controlled structure surface.In the actual calculations, the probe tool of the finite element simulation is applied,and the velocity potential containing the position coordinates is uniformly sampled.With sufficiently dense sampling,the integral is calculated by accumulation, and the differential is calculated by difference method.In practice,this process can be further simplified by symmetry.For example, based on the rotational symmetry of the structure, only the component integration of the ARF in the incident direction of the incident acoustic beam is required.The blue square point in Figs.2, 3, 4, 8 and 10 is obtained due to the frequency sweep of finite element analysis, and the black curve is drawn based on the analytical solution in Section 2.The finite element simulations are carried out in three dimensions.Figures 5–7, 9, 11 are sections through the propagation direction.The innermost hierarchical structure is the multiple-layered spherical structure shown in Fig.1.Due to symmetry,all sound pressure distributions have been shown.The outer dark blue layer in Figs.5–7, 9, 11 is the perfectly-matched layer.The perfectly-matching layer is far enough from the controlled structure to perfectly absorb the sound wave without affecting the distribution of the sound field.It can be seen from the figures that the points obtained by finite element analysis basically fall on the curve of analytical solution,which also confirms the correctness of finite element simulation and analytical solution.

    Table 1.Parameters selections.

    Firstly,the four-layer structure of 1:3:1:5 is analyzed,and the parameter values are:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.2.It could be seen that this structure can show obvious negative ARF when subjected to a single sound beam from 0.1 MHz to 3.5 MHz.

    For a comparison,as shown in Fig.3,the four-layer structure of 1:1:1:7 is analyzed, and the parameter values are:Rlayer1=R/10,Rlayer2=R/10,Rlayer3=R/10,the schematic diagram of the variation of ARF with the spectrum is shown in Fig.3.We can see that this structure shows a narrow range negative ARF when subjected to a single acoustic beam from 0.1 MHz to 3.5 MHz.

    Similarly, as shown in Fig.4, the four-layer structure of 1 : 5 : 1 : 3 is analyzed, and the parameter values are:Rlayer1=R/10,Rlayer2=R/2,Rlayer3=R/10, the schematic diagram of the variation of ARF with the spectrum is shown in Fig.4.We can see that this structure does not show negative ARF when subjected to a single sound beam from 0.1 MHz to 3.5 MHz.

    The sound pressure distribution is equivalent to the distribution of the velocity potential.It can be seen from Eq.(17)that the velocity potential is an important factor that directly affects the ARF on the structure.In the previous conjecture proposed by Marston, the negative ARF can be obtained by suppressing backscattering.[38]In Fig.2,this conjecture is realized through a multi-layer spherical structure.In order to illustrate the process of backscattering suppression causing the reversal of ARF more vividly,the sound pressure distribution images based on several key frequency points are drawn.To analyze the mechanism of the generation and disappearance of negative ARF,the multiple-layered spherical structure and its surrounding sound field in the process of frequency scanning are drawn.The sound beam enters from left to right.It can be seen in Fig.5 that when the structure is subjected to negative ARF, a strong scattering region is formed between the inner and outer layers of the structure,and the backscattering is obviously suppressed.Therefore, the structure is subjected to negative ARF.At low frequencies,the formation of this common vibration peak is not obvious, mainly manifested in the positive ARF.At high frequencies, the structure forms multiple scattering peaks,which counteract the effect of producing a scattering region that suppresses the backscattering peaks,and thus also exhibits positive ARFs.

    In the four-layer structure of 1:1:1:7 as shown in Fig.6,the peak region of enhanced backscattering is formed synchronously in the process of forming the peak of inhibiting backscattering, and the inhibitory effect on backscattering is not obvious.Therefore,it only shows a narrow negative ARF range.

    In the 1:5:1:3 four-layer structure as shown in Fig.7,other multiple scattering peaks are generated almost synchronously in the process of forming the peak of restraining backscattering.Therefore,in this case,the particles are always subjected to positive ARF.

    Fig.2.The four-layer structure of 1 : 3 : 1 : 5. Rlayer1 = R/10,Rlayer2 =3R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure is subjected to negative ARF in a specific frequency band.

    Fig.3.The four-layer structure of 1 : 1 : 1 : 7. Rlayer1 = R/10,Rlayer2 =R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows a narrow range negative ARF.

    Fig.4.The four-layer structure of 1 : 5 : 1 : 3. Rlayer1 = R/10,Rlayer2 =R/2,Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows no negative ARF.

    Fig.5.Sound field distribution of multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.6.Sound field distribution of multiple-layered spherical structure with four-layer of 1:1:1:7 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.7.Sound field distribution of multiple-layered spherical structure with four-layer of 1:5:1:3 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    To further clarify the physical mechanism, the structures of copper–water–copper–water multiple-layered spherical structure of 1:3:1:5 is analyzed in Fig.8,and the parameter values are:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.8.It could be seen that this structure shows no negative ARF.

    Similarly, the copper–water–copper–water structure and its surrounding sound field in the process of frequency scanning are drawn in Fig.9.It can be seen that in the interval where the suppression of backscattering should have occurred,the positive peak is generated synchronously.Therefore,only the minimum value of the positive ARF is generated,and there is no reversal of the direction of ARF.

    Fig.8.The four-layer copper–water–copper–water structure of 1:3:1:5. Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows no negative ARF.

    Fig.9.Sound field distribution of copper–water–copper–water multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    Fig.10.The four-layer PVC–water–PVC–water structure of 1:3:1:5.Rlayer1 =R/10, Rlayer2 =3R/10, Rlayer3 =R/10.The black solid line is the result of theoretical calculation.The blue point is the result of finite element simulation.The red dotted line is the reference line for the direction change of ARF.The structure shows insignificant negative ARF effects in a specific interval.

    In addition to metal materials,the structure of organic materials has also been verified.The structures of PVC–water–PVC–water multiple-layered spherical structure of 1:3:1:5 is analyzed in Fig.10, and the parameter value is:Rlayer1=R/10,Rlayer2=3R/10,Rlayer3=R/10.the schematic diagram of the variation of ARF with the spectrum is shown in Fig.10.It could be seen that this structure shows insignificant negative ARF effects in the range of 1.5 MHz–2.5 MHz.

    Further,the PVC–water–PVC–water structure and its surrounding sound field in the process of frequency scanning are drawn in Fig.11.Except that the suppression peak and the forward peak of backscattering are formed synchronously,the impedance parameters of organic materials and water have little difference compared with metal materials, the scattering effect is weakened,and the ARF is also reduced.

    To sum up,it can be known that when the structure is reasonably designed to suppress the backscattering of the structure, the designed structure could be subjected to negative ARF,which provides a new idea for particle manipulation and makes the realization of“acoustic tweezers”possible.

    Fig.11.Sound field distribution of PVC–water–PVC–water multiple-layered spherical structure with four-layer of 1:3:1:5 incident by unidirectional monochromatic wave.The frequency points are 1.0 MHz,1.5 MHz,2.0 MHz,2.5 MHz,3.0 MHz,and 3.5 MHz respectively.

    4.Conclusion

    This paper proposes a prediction of negative ARF based on a multiple-layered spherical structure.The ARF of the multiple-layered spherical structure is calculated and deduced,and the analytical solution is obtained.The physical mechanism of the negative acoustic radiation produced by multiplelayered spherical structure is described.This result is verified by finite element numerical simulations.This design concept is of great significance to the design of real “acoustic tweezers” based on negative ARF and lays a foundation for the design of devices producing negative ARF.This work proves that it is feasible to suppress backscattering to make the structure subject to negative ARF.In the process of designing a multi-layer structure to achieve negative ARF, we should try to choose a structural design that can significantly suppress backscattering, which is also the conjecture proposed by Marston before.[38]In order to better realize this effect, we think that there should be a multiple-layered structure.Through numerical verification,the four-layered spherical structures with specific ratio could have a strong suppression effect on backscattering, thus exhibiting the anomalous characteristic of being subjected to negative acoustic radiation force.The different proportions of the thickness of the fourlayered structure could form different resonant cavities,which can effectively adjust the scattering sound field of the structure, thereby achieving the suppression of backscattering.In the work, these specific scaling parameters are chosen as a result of extensive numerical calculations.In most of the parametric results,the inversion of the ARF does not appear.Further, based on the same mechanism, other structural designs are expected to be proposed.This work has broad application prospects in the fields of medicine, life science, underwater manipulation,and so on.

    Appendix A

    MatrixA1Nand matrixA2Nare expressed in Figs.A1 and A2.

    Fig.A1.Matrix A1N.

    Here, for the boundary from the external medium to the first layer:

    For the boundary from the first layer to the second layer:

    For the boundary from theq-th to theq+1-th layer which is not the innermost layer

    For the boundary from theq-th to theq+1-th layer which is the innermost layer

    General term parameters:

    where,cq+1,1is the longitudinal wave velocity of theq-th layer structure,cq+1,2is the shear wave velocity of theq-th layer structure.γq+1,1is the longitudinal wave absorption coefficient of theq-th layer medium,γq+1,2is the longitudinal wave absorption coefficient of theq-th layer medium.μq+1andλq+1are the density coefficients of theq-th layer.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400),the State Key Program of the National Natural Science Foundation of China (Grant No.11834008), the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No.SKLA202210),the Fund from the Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701), and the Science and Technology Foundation of Guizhou Province, China (Grant No.ZK[2023]249).

    猜你喜歡
    宮門
    故宮的門
    宮門抄及其研究價值
    一入宮門深似海,宮門是哪扇門?
    旅游世界(2021年12期)2021-05-28 14:06:31
    紫禁城在1918
    這里,藏著600年的歲月
    北京故宮太和殿的匾額為何沒有滿文?
    中華民居(2019年4期)2019-09-23 07:52:10
    故宮太和殿的匾額上為何沒有滿文
    中外文摘(2018年10期)2018-11-21 07:23:44
    2013—2015年圓明園大宮門區(qū)域考古發(fā)掘的主要收獲和初步研究
    中國園林(2018年10期)2018-11-09 03:26:24
    唐詩賞讀
    陳涉世家(節(jié)選)
    中文欧美无线码| 亚洲在久久综合| 在线亚洲精品国产二区图片欧美 | 日本欧美国产在线视频| xxx大片免费视频| 日韩av在线免费看完整版不卡| av福利片在线观看| 成年女人在线观看亚洲视频| 亚洲欧美一区二区三区国产| 嫩草影院入口| 日韩成人av中文字幕在线观看| 国产在线男女| 观看免费一级毛片| 成人二区视频| 日韩欧美精品免费久久| 黑人猛操日本美女一级片| 国产一区二区在线观看日韩| 成人毛片a级毛片在线播放| 99视频精品全部免费 在线| 免费人成在线观看视频色| 亚洲美女搞黄在线观看| 下体分泌物呈黄色| 亚洲欧美日韩卡通动漫| 成人国产麻豆网| 日韩人妻高清精品专区| 天堂中文最新版在线下载| 亚洲,欧美,日韩| 一级av片app| 在线 av 中文字幕| 一区二区三区四区激情视频| 日本wwww免费看| 国产免费一级a男人的天堂| 国产黄片美女视频| 秋霞伦理黄片| 国产高清三级在线| 深爱激情五月婷婷| 日韩三级伦理在线观看| 成人黄色视频免费在线看| 中文天堂在线官网| 精品国产露脸久久av麻豆| 看免费成人av毛片| 久久鲁丝午夜福利片| 亚洲人成网站在线观看播放| 99热这里只有是精品50| 国产高潮美女av| 久久毛片免费看一区二区三区| 一个人免费看片子| 亚洲精华国产精华液的使用体验| 国产精品99久久久久久久久| 熟妇人妻不卡中文字幕| 免费在线观看成人毛片| 国产精品久久久久成人av| 天美传媒精品一区二区| 国产一区亚洲一区在线观看| 国产爱豆传媒在线观看| 大话2 男鬼变身卡| 国产有黄有色有爽视频| 熟女电影av网| 精品国产一区二区三区久久久樱花 | 97在线视频观看| 高清av免费在线| 亚洲真实伦在线观看| 日韩av不卡免费在线播放| 日韩一本色道免费dvd| 搡老乐熟女国产| 欧美xxⅹ黑人| 欧美日韩综合久久久久久| 国产精品一区二区三区四区免费观看| 欧美xxⅹ黑人| 中文天堂在线官网| 看十八女毛片水多多多| 国产成人freesex在线| 熟女电影av网| 国内少妇人妻偷人精品xxx网站| 久久热精品热| 自拍偷自拍亚洲精品老妇| 精品国产露脸久久av麻豆| 日本-黄色视频高清免费观看| 成人毛片60女人毛片免费| 成人毛片a级毛片在线播放| 亚洲欧美精品专区久久| 亚洲国产精品专区欧美| 国产亚洲最大av| 色婷婷av一区二区三区视频| 国产一区二区三区av在线| 天天躁夜夜躁狠狠久久av| 久久久久久九九精品二区国产| 在线天堂最新版资源| 午夜日本视频在线| 欧美三级亚洲精品| 亚洲第一区二区三区不卡| 久久热精品热| 亚洲成色77777| 亚洲第一区二区三区不卡| 网址你懂的国产日韩在线| 美女视频免费永久观看网站| 男男h啪啪无遮挡| 国产精品精品国产色婷婷| 亚洲精品国产成人久久av| 精品久久久久久电影网| 亚洲国产精品专区欧美| 日韩大片免费观看网站| www.色视频.com| 久久久久久伊人网av| 国产成人免费观看mmmm| 爱豆传媒免费全集在线观看| av免费在线看不卡| 亚洲伊人久久精品综合| 一本—道久久a久久精品蜜桃钙片| 十分钟在线观看高清视频www | 国产淫片久久久久久久久| 亚洲欧美一区二区三区国产| a级毛色黄片| 欧美高清性xxxxhd video| 亚洲av在线观看美女高潮| 精品人妻一区二区三区麻豆| 一级爰片在线观看| 国产淫语在线视频| 久久99蜜桃精品久久| 伦精品一区二区三区| 岛国毛片在线播放| 国产熟女欧美一区二区| 老女人水多毛片| 99热这里只有是精品50| 99久久精品一区二区三区| 欧美日本视频| 成人高潮视频无遮挡免费网站| .国产精品久久| 色网站视频免费| 午夜福利网站1000一区二区三区| 在线天堂最新版资源| 最近中文字幕2019免费版| 国产高潮美女av| 亚洲欧美精品专区久久| 我要看黄色一级片免费的| 精品久久久精品久久久| 夜夜骑夜夜射夜夜干| 最近2019中文字幕mv第一页| 国产精品久久久久久精品古装| 亚洲人成网站在线播| 国产乱人偷精品视频| 国产在线一区二区三区精| 久久久欧美国产精品| 成人免费观看视频高清| 夜夜看夜夜爽夜夜摸| 日韩人妻高清精品专区| 亚洲精品,欧美精品| 亚洲欧美精品专区久久| 亚洲熟女精品中文字幕| 久久久成人免费电影| 亚洲内射少妇av| 丰满迷人的少妇在线观看| 嫩草影院入口| 2021少妇久久久久久久久久久| 乱系列少妇在线播放| 国产无遮挡羞羞视频在线观看| 九九爱精品视频在线观看| 成人综合一区亚洲| 伦精品一区二区三区| .国产精品久久| 欧美xxⅹ黑人| 一级毛片黄色毛片免费观看视频| 日本欧美视频一区| 国产视频首页在线观看| a级一级毛片免费在线观看| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 人妻少妇偷人精品九色| 国产无遮挡羞羞视频在线观看| 丝瓜视频免费看黄片| 精品久久久噜噜| 国产毛片在线视频| 免费大片黄手机在线观看| 九九在线视频观看精品| 老司机影院毛片| 亚洲av日韩在线播放| 2022亚洲国产成人精品| 天天躁夜夜躁狠狠久久av| 国产一区二区在线观看日韩| 国产精品国产三级国产av玫瑰| 国产成人精品婷婷| 校园人妻丝袜中文字幕| 91精品伊人久久大香线蕉| 国产老妇伦熟女老妇高清| 三级国产精品片| 国产日韩欧美亚洲二区| 亚洲在久久综合| 精品酒店卫生间| 波野结衣二区三区在线| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 国产无遮挡羞羞视频在线观看| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 3wmmmm亚洲av在线观看| 国产成人91sexporn| 一级片'在线观看视频| 色视频在线一区二区三区| 中文字幕精品免费在线观看视频 | 久久精品久久精品一区二区三区| 亚洲成人手机| 免费观看的影片在线观看| 亚洲精品第二区| 欧美zozozo另类| 久久久成人免费电影| 五月玫瑰六月丁香| 国产亚洲5aaaaa淫片| 永久网站在线| 在线看a的网站| 精品国产露脸久久av麻豆| 男的添女的下面高潮视频| 欧美精品一区二区大全| 精品人妻视频免费看| 国产一区二区在线观看日韩| 大码成人一级视频| 欧美日韩视频高清一区二区三区二| 嫩草影院入口| 亚洲欧美中文字幕日韩二区| 蜜桃亚洲精品一区二区三区| 久久精品国产鲁丝片午夜精品| 大又大粗又爽又黄少妇毛片口| 伊人久久精品亚洲午夜| 我的老师免费观看完整版| 精品久久久久久久久亚洲| 免费久久久久久久精品成人欧美视频 | 欧美成人午夜免费资源| 少妇精品久久久久久久| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 久久国产乱子免费精品| 大片电影免费在线观看免费| 在线观看免费高清a一片| 街头女战士在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 亚洲国产最新在线播放| 在线免费观看不下载黄p国产| 国产亚洲av片在线观看秒播厂| 久久鲁丝午夜福利片| 国产爱豆传媒在线观看| 最近最新中文字幕免费大全7| 久久6这里有精品| 一边亲一边摸免费视频| 91午夜精品亚洲一区二区三区| 视频区图区小说| 多毛熟女@视频| 国模一区二区三区四区视频| 久久久午夜欧美精品| 三级国产精品欧美在线观看| 免费高清在线观看视频在线观看| 高清日韩中文字幕在线| 天美传媒精品一区二区| av女优亚洲男人天堂| 欧美日韩亚洲高清精品| 极品少妇高潮喷水抽搐| 97超碰精品成人国产| av网站免费在线观看视频| 久久久久精品久久久久真实原创| av一本久久久久| 久久久色成人| 极品少妇高潮喷水抽搐| 国产精品一区二区三区四区免费观看| 亚洲av欧美aⅴ国产| 国产有黄有色有爽视频| 国产精品无大码| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 韩国av在线不卡| av在线app专区| 国产成人一区二区在线| 永久免费av网站大全| 国产一区二区三区av在线| 日韩av免费高清视频| 亚洲aⅴ乱码一区二区在线播放| 搡老乐熟女国产| 午夜福利视频精品| 日本黄色片子视频| 日韩欧美一区视频在线观看 | 精品亚洲成国产av| 国产伦理片在线播放av一区| 99视频精品全部免费 在线| 亚洲av欧美aⅴ国产| 国产伦精品一区二区三区视频9| av一本久久久久| 毛片女人毛片| 亚洲av不卡在线观看| 午夜免费观看性视频| 看免费成人av毛片| 免费高清在线观看视频在线观看| 免费久久久久久久精品成人欧美视频 | 嫩草影院新地址| 在线观看美女被高潮喷水网站| 老司机影院成人| 久热久热在线精品观看| 免费少妇av软件| 看免费成人av毛片| av在线蜜桃| 黄片wwwwww| 国产亚洲最大av| 日韩亚洲欧美综合| 国产在线一区二区三区精| 少妇高潮的动态图| 黄色一级大片看看| 亚洲天堂av无毛| 搡老乐熟女国产| 狂野欧美激情性bbbbbb| 建设人人有责人人尽责人人享有的 | 噜噜噜噜噜久久久久久91| 国产成人a∨麻豆精品| 最近手机中文字幕大全| 搡女人真爽免费视频火全软件| 一级a做视频免费观看| 日本av手机在线免费观看| 久久久久性生活片| h视频一区二区三区| 黄色日韩在线| 日本与韩国留学比较| 国产精品人妻久久久影院| 男男h啪啪无遮挡| 亚洲成人一二三区av| kizo精华| 国产爱豆传媒在线观看| 少妇人妻 视频| 国产女主播在线喷水免费视频网站| 国产亚洲5aaaaa淫片| 国产亚洲欧美精品永久| 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| 亚洲国产精品国产精品| 欧美高清成人免费视频www| av在线蜜桃| 亚洲伊人久久精品综合| 高清不卡的av网站| 中文字幕制服av| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 成人漫画全彩无遮挡| 久久97久久精品| 嘟嘟电影网在线观看| 亚洲欧美日韩东京热| 街头女战士在线观看网站| 视频中文字幕在线观看| 国产爽快片一区二区三区| h视频一区二区三区| 国产永久视频网站| 欧美bdsm另类| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 蜜桃久久精品国产亚洲av| 五月开心婷婷网| 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 国产精品一二三区在线看| 中文字幕制服av| 大香蕉久久网| 一区二区av电影网| 国模一区二区三区四区视频| 老熟女久久久| 最近中文字幕2019免费版| 亚洲伊人久久精品综合| 人体艺术视频欧美日本| 日韩伦理黄色片| 91精品伊人久久大香线蕉| 中文字幕免费在线视频6| 老司机影院毛片| xxx大片免费视频| 欧美精品亚洲一区二区| 国产日韩欧美亚洲二区| 国产av码专区亚洲av| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 久久久精品94久久精品| 国产精品久久久久久精品电影小说 | 亚洲在久久综合| 亚洲精品色激情综合| 亚洲精品中文字幕在线视频 | 乱码一卡2卡4卡精品| 亚洲精品aⅴ在线观看| 国产免费福利视频在线观看| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 深爱激情五月婷婷| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| 搡老乐熟女国产| 国产欧美日韩一区二区三区在线 | 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3| 国产女主播在线喷水免费视频网站| a级毛片免费高清观看在线播放| 国产精品久久久久久精品古装| 伦理电影大哥的女人| 国产av精品麻豆| 97超视频在线观看视频| 久久久久国产精品人妻一区二区| 中文资源天堂在线| 少妇人妻 视频| 在线免费十八禁| 免费看光身美女| 五月玫瑰六月丁香| 欧美丝袜亚洲另类| 国产成人freesex在线| 中国三级夫妇交换| 欧美精品亚洲一区二区| 久久鲁丝午夜福利片| xxx大片免费视频| 国产69精品久久久久777片| 国产男女超爽视频在线观看| 五月玫瑰六月丁香| a级毛色黄片| 久久久久久久久久久免费av| 在线观看三级黄色| 免费看av在线观看网站| 亚洲成色77777| 老司机影院成人| 麻豆乱淫一区二区| 亚洲欧美日韩东京热| 亚洲自偷自拍三级| 99热这里只有精品一区| 久久久久久九九精品二区国产| 99九九线精品视频在线观看视频| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 久久人人爽人人爽人人片va| 天堂俺去俺来也www色官网| 亚洲色图av天堂| a级毛片免费高清观看在线播放| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久| 日本与韩国留学比较| 欧美日韩国产mv在线观看视频 | 国产一区二区在线观看日韩| 精品一区在线观看国产| 在线天堂最新版资源| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 日韩人妻高清精品专区| 亚洲精品久久午夜乱码| 欧美一级a爱片免费观看看| freevideosex欧美| 亚洲国产最新在线播放| 日日摸夜夜添夜夜添av毛片| 国产国拍精品亚洲av在线观看| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 欧美一区二区亚洲| av线在线观看网站| 国内少妇人妻偷人精品xxx网站| 国产免费视频播放在线视频| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 下体分泌物呈黄色| 国产探花极品一区二区| 国产精品三级大全| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| www.色视频.com| 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 99热这里只有是精品50| 国产精品无大码| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| 一级毛片久久久久久久久女| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 色5月婷婷丁香| 午夜激情久久久久久久| 欧美高清性xxxxhd video| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图 | 欧美变态另类bdsm刘玥| 18禁裸乳无遮挡动漫免费视频| 女的被弄到高潮叫床怎么办| 亚洲久久久国产精品| 亚洲精品亚洲一区二区| 伦理电影免费视频| 欧美丝袜亚洲另类| 亚洲,欧美,日韩| 91午夜精品亚洲一区二区三区| 免费人成在线观看视频色| 午夜日本视频在线| 啦啦啦中文免费视频观看日本| a级一级毛片免费在线观看| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 国产一区二区三区av在线| 国产av国产精品国产| 免费在线观看成人毛片| 在现免费观看毛片| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 欧美少妇被猛烈插入视频| 成人美女网站在线观看视频| 精品久久久久久电影网| 精品99又大又爽又粗少妇毛片| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 亚洲av二区三区四区| av在线播放精品| 中国美白少妇内射xxxbb| 亚洲精品国产色婷婷电影| av线在线观看网站| 一区在线观看完整版| 美女高潮的动态| 午夜福利在线在线| 久久国内精品自在自线图片| 婷婷色av中文字幕| 亚洲性久久影院| 国产精品伦人一区二区| 全区人妻精品视频| 一区二区三区免费毛片| 亚洲人成网站在线播| 亚洲av国产av综合av卡| 亚洲精品国产成人久久av| 国产午夜精品一二区理论片| 又大又黄又爽视频免费| 在线免费十八禁| 成年美女黄网站色视频大全免费 | 老女人水多毛片| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 亚洲精品日本国产第一区| 日本免费在线观看一区| a级毛片免费高清观看在线播放| 日本黄色片子视频| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一av免费看| av在线观看视频网站免费| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 黑人猛操日本美女一级片| 国产高清三级在线| av免费在线看不卡| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 精品久久久久久久末码| 91精品一卡2卡3卡4卡| 七月丁香在线播放| av国产精品久久久久影院| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 日韩中文字幕视频在线看片 | 国产美女午夜福利| 国产乱人视频| 欧美日韩视频高清一区二区三区二| 午夜免费男女啪啪视频观看| 色婷婷av一区二区三区视频| 国产精品伦人一区二区| 欧美日韩一区二区视频在线观看视频在线| 春色校园在线视频观看| 国产有黄有色有爽视频| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| h日本视频在线播放| 汤姆久久久久久久影院中文字幕| 国产乱来视频区| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 国产成人午夜福利电影在线观看| 亚洲国产欧美人成| 精品99又大又爽又粗少妇毛片| 国内揄拍国产精品人妻在线| 亚洲国产色片| 国产爱豆传媒在线观看| 性色avwww在线观看| 欧美日韩综合久久久久久| 午夜免费鲁丝| 尤物成人国产欧美一区二区三区| 国产成人免费观看mmmm| 国产视频内射| 日本色播在线视频| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 国产精品99久久99久久久不卡 | 国产精品av视频在线免费观看| 一级黄片播放器| 国产男女超爽视频在线观看| 亚洲综合精品二区| 尾随美女入室| 久久人人爽av亚洲精品天堂 | 亚洲美女黄色视频免费看| 亚洲国产最新在线播放| 日本免费在线观看一区| 少妇裸体淫交视频免费看高清| 色综合色国产| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频 | 中文字幕久久专区| a级毛片免费高清观看在线播放| 新久久久久国产一级毛片|