• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discrete multi-step phase hologram for high frequency acoustic modulation

    2024-01-25 07:13:30MengQingZhou周夢晴ZhaoXiLi李照希YiLi李怡YeChengWang王業(yè)成JuanZhang張娟DongDongChen諶東東YiQuan全熠YinTangYang楊銀堂andChunLongFei費春龍
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張娟東東

    Meng-Qing Zhou(周夢晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王業(yè)成), Juan Zhang(張娟),Dong-Dong Chen(諶東東), Yi Quan(全熠), Yin-Tang Yang(楊銀堂), and Chun-Long Fei(費春龍)

    School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: discrete multi-step phase hologram,econstruction quality,3D printing accuracy,high-fidelity

    1.Introduction

    The strategic modulation of acoustic wavefronts paves the way for the reconstruction of highly diverse acoustic fields and the subsequent retrieval of the essential information that is necessary for wavefront storage.This sophisticated process empowers precision in the manipulation of ultrasound beams to sculpt the acoustic field.[1–4]As a result, it dramatically elevates the quality of ultrasound imaging in the realm of biomedicine.[5–7]Furthermore, this technique is instrumental in facilitating particle manipulation[8–11]in a broad spectrum of ultrasound applications.At present,the acoustic beam is mainly manipulated by phased array ultrasonic transducers,[12–15]self-focusing mechanisms,[16–18]holograms,[19–25]etc.In contrast to conventional techniques,acoustic holography is usually fabricated by the rapidly developing three-dimensional (3D) printing technology, which allows mapping the output of the unitary transducer onto a pre-calculated phase map[19]and creating a high-fidelity ultrasound field.In addition, acoustic holography can be well scaled to higher information content than commercial phasedarray and self-focusing mechanisms.With its high costeffective and high freedom degree of reconstruction,[20,26–28]which makes it widely applicable to various transmitting and reflecting elements.

    The static phase plates or holograms with a large spatial information content enable acoustic fabrication,[29]cell assembly of design patterns,[30]beam steering,[31]and wavefront distortion compensation in transcranial focused ultrasound.[7]Recently, Maet al.[27,32]have generated rewriteable bubble masks through electrolysis or optically induced electrochemical interactions to achieve dynamic modulation of the holographic wavefront.However, this approach may deviate from the desired acoustic field,owing to the instability of the bubbles which is technically challenging.Holograms pursue high-fidelity implementation of complex acoustic fields at high frequencies, where the rise in frequency greatly increases the complexity of the designed static ultrasound fields,and the high precision print size is often accompanied by robust instability and randomly introduced undesirable errors.At the same time,the metrics for the quality of the reconstructed ultrasound fields is still inadequate and imperfect.At present, only the binary amplitude modulation capability of the incident field has been demonstrated,limiting the efficiency of coupling energy to the desired field to 10%.[33]It is fair to state that the majority of acoustic hologram research is still in the low-frequency phase,where the attainable spatial bandwidth product (SWH) is restricted by printer size or the reconstructed beam profile range.This leads to a simpler target acoustic field that can be achieved by holograms,such as common single point focusing.[34–36]The demand for higher resolution patterning capabilities at higher frequencies has escalated,making the implementation of continuous phase acoustic holograms challenging in terms of 3D printing accuracy.Yet, the current 3D printing technology[37]is expensive and time-consuming for precisely achieving high printing accuracy, so the mainstream 3D fast printing cannot realize the production of continuous-phase holographic panels with enough fineness.

    In this study, we introduce an innovative computational approach for acoustic holography.In the inversion process,we numerically divide the continuous phase information of initial plane into discrete phase information with equal spacing,and demonstrate a discrete multistage step phase holographic plate created with 3D printing technology.Concurrently, we introduce the concept of reconstruction similarity, which refines the metric for characterizing the acoustic field.Under equivalent printing conditions, the reconstruction quality of the optimized multi-step phase(four-step or eight-step)holograms aligns closely with conventional phase holograms.It is applicable to the realization of complex acoustic fields at high frequencies,ensuring robust image reconstruction quality,and reasonably reducing the requirement for 3D printing accuracy.In addition,the realization of 20-MHz composite acoustic field has greatly promoted the development of high-frequency holograms,from scientific research to practical applications.

    Fig.1.(a) General flow of iterative angular spectrum approach of reconstructing the acoustic field, along with a correction diagram from continuous phase to eight-step phase,and(b)ultrasonic transducer combined with the corresponding hologram for acoustic field reconstruction.

    2.Methods

    2.1.Calculation of multi-step phase holograms

    Like optical holograms, acoustic holograms accomplish meticulous control of sound waves via sophisticated holographic projections.In order to keep the accurate phase term during propagation, we use iterative angular spectrum approach (IASA) to optimize the calculation of holograms and generate high-fidelity holograms stably[19](see Fig.1).

    According to IASA, given that the angular spectrum of the holographic plane(z=0)isP(kx,ky,0),the angular spectrum of thezdplane can be calculated by multiplying it by the propagation functionH(kx,ky,zd)as follows:

    where|k|=ω/cis the wavenumber in the liquid medium,ωis the angular frequency,cis the speed of sound in the medium,andk=(kx,ky,kz)is the wave vector.Then the angular spectrum of the target plane,obtained from the forward calculation,is inferred back to the angular spectrum of the 0-plane by the formula

    In this work, we take the ideal region “XDU” with amplitude 1 (others are all 0) as the amplitude constraint in the target plane, and modify the phase information of the holographic plane in the iterative process so that its continuous phase is discretized into an equally spaced multi-step phase distribution,as shown below:

    wheren ∈[1,N],Nis the total number of equally spaced multistep phases andnis then-th order in the multi-step phase.

    To compare the ability of different gradient phases to shape the acoustic field, as shown in Eqs.(5)–(8), we setNto 2, 4, and 8, respectively, to obtain the final phase distribution of the holographic plane shown in the upper right inset in Fig.2(a),respectively.

    By analogy, the equation for the eight-step phase hologram is shown in Eq.(7), while the final equally spaced multi-step phase diagram of any holographic plane can be calculated by expanding Eq.(4).

    According to the final phase diagram of the plane,the initial thicknessT0is used to remove the change amount of the thickness at the pixel position,which causes the phase change ΔT(x,y),and the final acoustic holographic thicknessT(x,y)can be obtained.Since the phase distribution of the original hologram is discretized into multi-step phase information,the acoustic hologram with discrete phase can be calculated from the following equation:

    Fig.2.(a) Thickness distribution and phase distribution (top right inset) of acoustic holograms calculated for discrete multi-step (two-step, four-step, and eight-step) phases and continuous phases, and (b) variations of acoustic holographic thickness T(x,y) with x, corresponding to the black cut-off line (top:two-step and four-step,bottom: eight-step and continuous).

    wherekmis the wave number in the water andkhis the wave number in the 3D printed acoustic hologram.According to the above steps,the map of final printed acoustic holographic thickness is shown in Fig.2.

    With the number of steps increasing, the discrete phase gradually converges to the continuous phase.Considering a variety of factors, such as printing accuracy and manufacturing difficulty, we select four kinds of acoustic holograms for printing in order to better make a comparative choice according to the needs.In addition to three discrete multi-step phase holograms described above,we makeNtend to infinity while obtaining the conventional continuous phase computed acoustic hologram by 3D printing (printing accuracy: 100 μm), as shown in the upper right inset of Fig.2(a).The detailed information about 3D printed holograms is provided in supplemental material S1.We define the same parameters in advance for these four kinds of acoustic holograms,i.e.,design frequency(f=3 MHz), target plane (z=30 mm), and transducer size(R=25 mm).

    2.2.Measurement of acoustic pressure field

    The motion scan acquisition system and the experimental setup are schematically shown in Fig.3(a).Figure 3(b)shows the multi-step phase hologram,which is positioned on the surface of the transducer with a central frequency of 3 MHz.Detailed specifications of the transducer can be found in supplemental material S1.The sound pressure fields in thex–yplane of these four multi-step holograms are gauged by using a custom-built,multi-functional ultrasonic testing system.This system is constructed based on LabVIEW software in conjunction with a needle hydrophone(NA1000,PA,UK).

    Fig.3.(a)Schematic diagram of motor control system and equipment to be tested.(b)Experimental setup for testing actual object.(c)Sketch map of partial calculation of image reconstruction efficiency and reconstruction similarity.

    During the test,the ultrasonic dual pulser/receiver is taken in conjunction with a needle hydrophone(NA1000,PA,UK).The ultrasonic dual pulser/receiver (DPR500, JSR Ultrasonics, USA) generates a pulse excitation signal.This signal is subsequently applied to the ultrasonic transducer to produce the ultrasonic pressure field.Finally, the sound pressure field within a rectangular area of 52 mm×52 mm (x–yplane) is measured by using a hydrophone with a precision of 200μm.

    3.Results and discussion

    3.1.Image uniformity evaluation

    In this work,the acoustic field simulation is performed on condition that the acoustic field is augmented by a factor of 4 to minimize the adverse effects of boundary effects.Based on the defined transducer plane diameter of 50 mm, each grid is a square with a size of 200μm(less than half a wavelength),so on the basis of magnification, the effective area is finally selected in the imaging plane, i.e., it contains a structure of 250×250 pixels, as shown in Fig.4.As mentioned above,its phase map is encoded and printed in the hologram,and reconstructed in water with 3-MHz ultrasound.The number of individually accessible pixels in the hologram that creates the acoustic field directly affects the amount of information contained in it.To further describe the image distribution, the concept of image uniformity is proposed.

    The normalized sound pressure amplitude distributions of four phase acoustic holograms are obtained by calculation and experiment as shown in Fig.4.The comparison of simulation calculations with experimental results shows that its distribution has a certain regularity.The absolute sound pressure distribution produced by the two-step phase hologram is relatively dispersed as shown in Figs.4(a) and 4(b),which suggests that the acoustic field is lacking in fine detail and relatively rough.The four-step phase and the eightstep phase holograms produce a finer distribution of sound pressure, mainly concentrated on the letters“XDU”and with higher values.The accuracy of the 3D printed acoustic hologram gradually declines and approaches the complexity of continuous phase printing as the number of phase steps increases(detailed explanation in supplemental material S2),but it is still considerably better than that generated by two-step phase.

    Figures 4(c)–4(g)show the distribution curves of the relationship between the number of pixel points and the generated sound pressure value of the four-step phase simulation and experiments.Here,the sound pressure values are normalized and the range of sound pressure values from 0 to 1 is divided into ten equal intervals.In Figs.4(c) and 4(d), the pixels on the letter“XDU”are mainly distributed between 0.4 and 0.7.The two-step phase has the most pixel distribution when the sound pressure values are at 0.4(experimental value)and 0.5(simulation value).Comparing with the two-step phase,the number of pixels in the four-step phase is gradually distributed evenly,and the hologram of the eight-step phase and the hologram of continuous phase are both mainly concentrated at the sound pressure value 0.6 and gradually approaches 1.Figures 4(f)and 4(g)mainly display the number distributions of pixels outside the letter “XDU” in four cases.Figure 4(g) shows the significantly interfering data in the two-step image, with the undesired fraction concentrated below the 0.2 sound pressure value when the phase is set to four-step phase and eight-step phase.Thus, uniformity and high fidelity similar to that of conventional (ideal) continuous phase can still be achieved.The errors between the experimental results and simulation values for these four holograms in Fig.4(e) are due to the presence of shear waves in the experimental lens as well as acoustic wave attenuation, which are neglected in the present simulation.

    Fig.4.[(a),(b)]Normalized sound pressure(Norm.p)amplitude distributions in x–y plane(z=30 mm)calculated by IASA and scanned by hydrophone,respectively, showing two-step phase, four-step phase, eight-step phase, and continuous phase from left to right.(c) Simulated and (d) measured pixel distribution on the“XDU”letter area of the target image,(f)simulated and(g)measured pixel distribution in the area other than the“XDU”area corresponding to the four phases.(e)Comparison between simulated and measured numbers of pixels in“XDU”region for four holograms.

    As a result, the quantitative evaluations of visual effects and image homogeneity by the naked eye show that our multiorder phases are able to reduce manufacturing difficulties and that the fourth and higher order phases can simultaneously ensure a homogeneous distribution of images with major sound pressure values above 0.5.

    3.2.Image reconstruction quality evaluation

    Relating the sound power of the target region within the acoustic field to the sound power of the entire image acoustic field[19]enables a better assessment of the effectiveness of the reconstructed image,thus using the overall reconstruction efficiencyηas a representation of the quality of the acoustic field reconstruction.According to the relationship among sound pressure,sound intensity and sound power,the formula for sound power can be finally expressed in terms of sound pressure,as given by

    where(i,j)is the location of each pixel point; Δxand Δyare the sampling distances(pixel size)along thexcoordinate andycoordinate,respectively,in the observation plane.

    The reconstruction efficiency can be expressed as follows:

    where the target regionTis the actual pixel set corresponding to the position where the ideal image is greater than 0 amplitude after 50 iterative calculations.The whole imageIis a set of pixels with all values after calculation.

    However, in general, the quality of acoustic field reconstruction cannot be described solely in terms of sound energy utilization;, and it is also related to reconstruction accuracy.When calculating and analyzing the efficiency, the most important premise is to calculate the sound pressure within the area corresponding to the ideal “XDU”.Therefore, it is necessary to evaluate the reconstruction similarity of the“XDU”letter between the acoustic field of the actual target areaTand the acoustic field of the ideal target areaD.

    The above correction of Eq.(11)leads to the formula for reconstructing similarity

    whereDis the target acoustic field area of non-zero amplitude on the letter“XDU”in the ideal case.

    The schematic diagram of the local calculation of the reconstructed image quality is shown in Fig.3(c).Before comparing its reconstruction efficiency, it is necessary to analyze the reconstruction similarity first,thereby fully characterizing the quality of the whole acoustic field image reconstruction.Table 1 gives the reconstruction similarity for two-step phase,four-step phase,eight-step phase,and continuous phase,as indicated by simulation and experiment.

    Table 1.Reconstruction similarity between multi-step phase and continuous phase.

    Table 2 then shows the reconstruction efficiencies in these four cases.For these four types, it is obvious that the reconstruction similarity between the two-step phase and the fourstep phase is relatively close to each other, but their reconstruction efficiencies are significantly different, which indicates that the two-step phase produces more interference data outside the “XDU” letters and there is obvious scattering of acoustic field.When the phase information is set to the eightstep phase information, the reconstruction similarity and the reconstruction efficiency are almost better than the those of continuous phase.

    This is because the eight-step phase hologram’s complexity makes it difficult to distinguish between the actual step and an erroneous one that is not simply minor in comparison with the step in the best scenario.The C-mode scans of the four holograms are performed by a 100-MHz high-frequency ultrasound transducer, and the mean absolute percentage errors(MAPEs) of 3D printing are verified to be 9.87%, 10.88%,45.51%, and 50.39%, respectively.Details of the four hologram thickness variations are given in supplemental material S2.Therefore, in the case where the 3D printing accuracy cannot meet the higher requirements of continuous phase acoustic holograms, the effect of four-step phase and eightstep phase acoustic holograms are more likely to meet the target requirements.

    Table 2.Reconstruction efficiency between multi-step phase and continuous phase.

    Increasing the frequency from 3 MHz to 20 MHz will be more stringent on the accuracy of the printer.The quick creation of high frequency holograms cannot be supported by the 100-μm printing precision being used at present time.In order to simply compare the feasibility of using step phases for their high frequencies, as shown in Fig.5(a), only four-step and continuous-phase high-frequency holograms are generated with only 10-μm printing accuracy.Figures 5(b)and 5(c)show the simulated and measured normalized sound pressure amplitude diagram of four-step phase and continuous phase at a frequency of 20 MHz.In the same printing conditions,the reconstruction similarity and reconstruction efficiency of the four-step hologram,calculated in the experiment(simulation), are 18.03%(simulation: 30.77%)and 41.81%(simulation: 86.27%), and the reconstruction efficiency of continuous holograms are 17.94%(simulation: 33.07%)and 40.71%(simulation: 92.80%), respectively.In order to better characterize the contouring errors occurring in the 3D printing process, C-mode scanning of hologram is performed by a 100-MHz high-frequency ultrasonic transducer,in which the error of the four-step holograms is only 11.77%,whereas the printing error of continuous holograms can even reach more than 20%.The thickness variation of the 20-MHz phase hologram scanned by C-mode is given in supplemental material S2.Like the results in the low-frequency condition,the four-step hologram possesses a better image reconstruction quality.With the development of high frequency in demand,the implementation of multi-step holograms to a certain extent can not only reduce the influence caused by the printing error as much as possible,but also maintains the reconstruction quality of complex acoustic fields.It can be shown that the optimized multistep phase hologram can be better applied to high frequency scenarios when the desired frequency is gradually increased.

    Fig.5.(a)Designed and 3D printed hologram with generated letters“XDU”.(b)and(c)Normalized sound pressure amplitude distribution(left side: simulation, right side: experiment)in x–y plane(z=15 mm)generated by IASA calculations and hydrophone scanning with four-step phase(top row)and continuous phase(bottom row).

    Generally,the ability to store encoded acoustic field information in holograms is constrained by a finite flat aperture in the transmission of sound waves to the target image distance,thereby making it impossible to achieve 100% perfect image reconstruction quality.By comparing with the ideal value,the mean square error can be used to calculate the error of reconstruction similarity.The mean square errors of two-step,fourstep,eight-step,and continuous phase simulations are 3.36%,3.13%, 2.31%, and 2.49%, respectively.In addition, the experimental errors are 4.81%, 4.25%, 4.26%, and 4.39%, owing to the coupling and attenuation of the acoustic waves in the medium,respectively.

    4.Conclusions

    In this work,we presented a computational technique for discrete multi-step phase acoustic holograms, which is based on the optimization of the iterative angular spectrum approach.In the present method the conventional continuous phase is discretized into uniformly spaced multi-step phases, thereby generating corresponding acoustic holograms.We also introduced the concept of reconstruction similarity, an improved measure that can characterize the acoustic field image quality more evenly.

    Under equivalent printing conditions,the unavoidable errors associated with 3D printing lead the image reconstructions for eight-step and continuous phase-based holograms to lower their quality.Furthermore, the hydrophone scanning results for the ultrasound field differ from the simulation results.Our findings indicate that four-step or eight-step holograms can ensure higher reconstruction quality and greater robustness when the accuracy of 3D printing cannot satisfy the more stringent requirements of continuous phase holograms.Additionally, the discrete multi-step phase technique can be adopted in the implementation of complex acoustic fields at 20 MHz,which can greatly promote the development of highfrequency acoustic fields, from scientific exploration to practical applications.

    Data availability statement

    The data that support the findings of the present study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00153.

    Acknowledgements

    Project supported by the China Postdoctoral Science Foundation (Grant No.2023M732745), the National Natural Science Foundations of China (Grant Nos.61974110 and 62104177), the Fundamental Research Funds for the Central Universities, China (Grant Nos.QTZX23022 and JBF211103), and the Cooperation Program of XDU–Chongqing IC Innovation Research Institute (Grant No.CQ IRI-2022CXY-Z07).

    猜你喜歡
    張娟東東
    Clinical study of warm needling moxibustion combined with entecavir in the treatment of compensated cirrhosis due to chronic hepatitis B
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    夢寐以求的生日禮物
    Digital synthesis of programmable photonic integrated circuits
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    Critically discuss current and likely future developments relating to metadata
    卷宗(2014年1期)2014-03-20 01:28:52
    精品午夜福利视频在线观看一区| 亚洲精品国产精品久久久不卡| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 亚洲欧洲精品一区二区精品久久久| 啦啦啦 在线观看视频| 国产亚洲av高清不卡| 最新在线观看一区二区三区| 国产高清激情床上av| 99精品在免费线老司机午夜| 欧美色欧美亚洲另类二区 | av网站免费在线观看视频| 麻豆av在线久日| 日韩大码丰满熟妇| 亚洲人成电影观看| 国产av又大| 在线观看免费日韩欧美大片| 男人的好看免费观看在线视频 | 午夜福利18| av欧美777| 在线免费观看的www视频| 老汉色av国产亚洲站长工具| 欧美日本中文国产一区发布| 亚洲第一青青草原| 搡老岳熟女国产| 一区福利在线观看| 日本欧美视频一区| 丰满的人妻完整版| 久热这里只有精品99| 美女免费视频网站| 99re在线观看精品视频| 亚洲男人天堂网一区| 99re在线观看精品视频| 久久精品aⅴ一区二区三区四区| 国产精品久久久人人做人人爽| 国产私拍福利视频在线观看| 免费高清视频大片| 国产精品自产拍在线观看55亚洲| 国产伦人伦偷精品视频| 最近最新免费中文字幕在线| 丝袜人妻中文字幕| a在线观看视频网站| 一进一出抽搐动态| 亚洲久久久国产精品| 美女午夜性视频免费| 国产精品二区激情视频| 亚洲精品美女久久久久99蜜臀| 国产精品av久久久久免费| 高清黄色对白视频在线免费看| 在线观看午夜福利视频| tocl精华| 制服诱惑二区| 久久精品成人免费网站| 国产精华一区二区三区| 69精品国产乱码久久久| 国产成人欧美在线观看| 国产精品久久电影中文字幕| av天堂久久9| 啦啦啦韩国在线观看视频| 搡老熟女国产l中国老女人| 一本大道久久a久久精品| netflix在线观看网站| 91在线观看av| 亚洲午夜精品一区,二区,三区| 久久精品91蜜桃| 激情视频va一区二区三区| 亚洲国产高清在线一区二区三 | 日本在线视频免费播放| 老司机福利观看| 欧美久久黑人一区二区| 啦啦啦韩国在线观看视频| 一本综合久久免费| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 少妇粗大呻吟视频| 啦啦啦免费观看视频1| 男女做爰动态图高潮gif福利片 | 大香蕉久久成人网| 成人国语在线视频| 欧美色欧美亚洲另类二区 | 亚洲国产精品sss在线观看| www.自偷自拍.com| 国产精品久久久av美女十八| av视频免费观看在线观看| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 亚洲七黄色美女视频| 亚洲欧美激情在线| 亚洲电影在线观看av| 女人爽到高潮嗷嗷叫在线视频| 欧美色视频一区免费| 在线观看日韩欧美| 女人被狂操c到高潮| 亚洲国产精品久久男人天堂| 免费在线观看亚洲国产| 免费在线观看亚洲国产| 中文字幕人妻熟女乱码| 中文字幕人妻熟女乱码| 91麻豆av在线| 少妇的丰满在线观看| 国内精品久久久久精免费| 老熟妇乱子伦视频在线观看| 欧美亚洲日本最大视频资源| 美女午夜性视频免费| 中文字幕人妻丝袜一区二区| 亚洲九九香蕉| 日韩高清综合在线| 日本一区二区免费在线视频| 午夜福利成人在线免费观看| 可以在线观看毛片的网站| 看片在线看免费视频| 成人国产综合亚洲| 老司机靠b影院| 人人妻,人人澡人人爽秒播| 日韩欧美一区二区三区在线观看| 久久香蕉国产精品| 免费搜索国产男女视频| 亚洲色图 男人天堂 中文字幕| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 国产成+人综合+亚洲专区| 精品少妇一区二区三区视频日本电影| 国产精品综合久久久久久久免费 | 宅男免费午夜| 久久中文字幕人妻熟女| 午夜精品在线福利| 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 一级黄色大片毛片| 村上凉子中文字幕在线| 一二三四社区在线视频社区8| 国产成人精品在线电影| 又大又爽又粗| 精品国产一区二区久久| 久久影院123| 在线十欧美十亚洲十日本专区| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 亚洲视频免费观看视频| 天天添夜夜摸| 青草久久国产| www国产在线视频色| 黄片播放在线免费| 一本综合久久免费| 亚洲国产欧美日韩在线播放| 国产精品久久久av美女十八| 久热爱精品视频在线9| 不卡一级毛片| 国产精品香港三级国产av潘金莲| 国产精品一区二区三区四区久久 | 国产主播在线观看一区二区| 淫秽高清视频在线观看| 一级,二级,三级黄色视频| 日韩有码中文字幕| 成人三级做爰电影| netflix在线观看网站| 麻豆久久精品国产亚洲av| 精品一品国产午夜福利视频| 久久中文字幕人妻熟女| 久久性视频一级片| 国产97色在线日韩免费| 人人澡人人妻人| 午夜两性在线视频| 久久人人精品亚洲av| 国产主播在线观看一区二区| 国产主播在线观看一区二区| 免费高清在线观看日韩| 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 国产熟女xx| 久久久久久免费高清国产稀缺| 亚洲国产精品999在线| 免费在线观看完整版高清| 51午夜福利影视在线观看| 欧美乱妇无乱码| 人妻久久中文字幕网| 一级毛片高清免费大全| 女同久久另类99精品国产91| 国产三级在线视频| 久久精品影院6| 母亲3免费完整高清在线观看| 欧美成狂野欧美在线观看| 色尼玛亚洲综合影院| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 两性夫妻黄色片| 中出人妻视频一区二区| 99国产精品99久久久久| 精品一区二区三区视频在线观看免费| 一级a爱片免费观看的视频| 国产精品爽爽va在线观看网站 | 免费人成视频x8x8入口观看| 狠狠狠狠99中文字幕| 日韩欧美国产一区二区入口| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 亚洲一卡2卡3卡4卡5卡精品中文| 十分钟在线观看高清视频www| 国产99久久九九免费精品| 精品不卡国产一区二区三区| 国产成人系列免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲熟女毛片儿| 日韩 欧美 亚洲 中文字幕| 99国产综合亚洲精品| 国产欧美日韩综合在线一区二区| 国产高清videossex| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 久久婷婷人人爽人人干人人爱 | 国产乱人伦免费视频| 亚洲美女黄片视频| 成人免费观看视频高清| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 女人被躁到高潮嗷嗷叫费观| 欧美激情 高清一区二区三区| 在线观看午夜福利视频| 老司机福利观看| 男男h啪啪无遮挡| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 国产97色在线日韩免费| 丁香六月欧美| 老汉色∧v一级毛片| 国产欧美日韩一区二区三| 国产伦人伦偷精品视频| 久久久精品国产亚洲av高清涩受| 国产日韩一区二区三区精品不卡| 女同久久另类99精品国产91| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 免费在线观看亚洲国产| 国产激情欧美一区二区| 亚洲中文字幕日韩| 欧美在线黄色| 搡老妇女老女人老熟妇| 国产熟女午夜一区二区三区| 欧美最黄视频在线播放免费| 久久精品91蜜桃| 激情视频va一区二区三区| 亚洲av片天天在线观看| 大型av网站在线播放| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 无限看片的www在线观看| 9热在线视频观看99| 国产高清视频在线播放一区| 美女高潮喷水抽搐中文字幕| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3 | 麻豆一二三区av精品| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 后天国语完整版免费观看| 我的亚洲天堂| 侵犯人妻中文字幕一二三四区| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 色av中文字幕| 午夜激情av网站| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 天堂影院成人在线观看| 午夜激情av网站| 宅男免费午夜| 午夜精品在线福利| 国产一区二区激情短视频| 好男人在线观看高清免费视频 | 波多野结衣巨乳人妻| 亚洲av成人不卡在线观看播放网| 亚洲av电影在线进入| 最近最新免费中文字幕在线| av福利片在线| 国产99久久九九免费精品| 精品久久蜜臀av无| 18禁黄网站禁片午夜丰满| 精品久久久久久久人妻蜜臀av | 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 国产亚洲精品av在线| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 9热在线视频观看99| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| 国产成人一区二区三区免费视频网站| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 一进一出好大好爽视频| 桃红色精品国产亚洲av| 久久久久久久久免费视频了| 91字幕亚洲| 丝袜美腿诱惑在线| 中文字幕人妻熟女乱码| 免费搜索国产男女视频| 一卡2卡三卡四卡精品乱码亚洲| 激情在线观看视频在线高清| 777久久人妻少妇嫩草av网站| 精品不卡国产一区二区三区| 长腿黑丝高跟| 一级片免费观看大全| 午夜福利免费观看在线| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人| 日本黄色视频三级网站网址| 十八禁网站免费在线| 热99re8久久精品国产| 精品卡一卡二卡四卡免费| 国产一区在线观看成人免费| av网站免费在线观看视频| av天堂久久9| 午夜福利高清视频| 亚洲av电影在线进入| 操美女的视频在线观看| 亚洲av片天天在线观看| 国产一区在线观看成人免费| av超薄肉色丝袜交足视频| 在线播放国产精品三级| 国产亚洲av高清不卡| 99在线人妻在线中文字幕| 国产单亲对白刺激| 国产乱人伦免费视频| 久久精品国产亚洲av香蕉五月| 人成视频在线观看免费观看| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 在线天堂中文资源库| 首页视频小说图片口味搜索| 一二三四在线观看免费中文在| 啦啦啦 在线观看视频| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 波多野结衣av一区二区av| 日韩高清综合在线| 窝窝影院91人妻| 久久狼人影院| 这个男人来自地球电影免费观看| 国产精品久久电影中文字幕| 黄色成人免费大全| 国产一区二区激情短视频| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 18禁国产床啪视频网站| 99在线视频只有这里精品首页| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜美腿诱惑在线| 制服诱惑二区| 国产精品 欧美亚洲| 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 一区二区三区精品91| 久久久久久亚洲精品国产蜜桃av| 熟妇人妻久久中文字幕3abv| 精品一区二区三区视频在线观看免费| 国产不卡一卡二| 国产色视频综合| 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 视频在线观看一区二区三区| 免费在线观看日本一区| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| 狠狠狠狠99中文字幕| 国产日韩一区二区三区精品不卡| 大型黄色视频在线免费观看| 欧美激情高清一区二区三区| 国产片内射在线| 亚洲伊人色综图| 一边摸一边抽搐一进一小说| 一级毛片精品| 午夜免费成人在线视频| 视频在线观看一区二区三区| 国产激情欧美一区二区| 国产野战对白在线观看| 在线观看午夜福利视频| 91精品国产国语对白视频| 成人三级黄色视频| 18禁裸乳无遮挡免费网站照片 | 欧美黄色片欧美黄色片| 午夜老司机福利片| 天天一区二区日本电影三级 | 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| 亚洲精品美女久久久久99蜜臀| 操美女的视频在线观看| 亚洲欧美日韩另类电影网站| av有码第一页| 国产精品久久电影中文字幕| 视频在线观看一区二区三区| 久久伊人香网站| 亚洲国产欧美日韩在线播放| 久久人妻福利社区极品人妻图片| 国产精品 欧美亚洲| 妹子高潮喷水视频| 精品国产乱码久久久久久男人| 国产片内射在线| 亚洲精品在线观看二区| 国产精品久久视频播放| 麻豆一二三区av精品| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 法律面前人人平等表现在哪些方面| 成人av一区二区三区在线看| 亚洲av熟女| 国产人伦9x9x在线观看| 18禁观看日本| 亚洲一码二码三码区别大吗| 人妻丰满熟妇av一区二区三区| 午夜福利18| 一本久久中文字幕| 欧美乱码精品一区二区三区| 久久中文看片网| 久久久国产成人精品二区| 亚洲欧美激情在线| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 午夜福利18| 久久精品成人免费网站| 久久精品亚洲精品国产色婷小说| 国产精品二区激情视频| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 日韩成人在线观看一区二区三区| 欧美成狂野欧美在线观看| 国产成+人综合+亚洲专区| 日本 av在线| 午夜老司机福利片| 亚洲精品国产区一区二| 女同久久另类99精品国产91| 老司机在亚洲福利影院| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 欧美绝顶高潮抽搐喷水| 国产在线观看jvid| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 久久中文看片网| 女警被强在线播放| 国产精品电影一区二区三区| 亚洲专区中文字幕在线| 嫩草影院精品99| 色av中文字幕| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 一本综合久久免费| 女性生殖器流出的白浆| av天堂久久9| 午夜福利一区二区在线看| 成人国语在线视频| 亚洲全国av大片| 久久午夜亚洲精品久久| 亚洲欧美日韩另类电影网站| 国产成人精品无人区| 男男h啪啪无遮挡| 啦啦啦 在线观看视频| 高清在线国产一区| 久久亚洲精品不卡| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产亚洲av嫩草精品影院| 777久久人妻少妇嫩草av网站| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 18美女黄网站色大片免费观看| 老熟妇乱子伦视频在线观看| 51午夜福利影视在线观看| 91九色精品人成在线观看| 久久精品影院6| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 免费在线观看影片大全网站| www.www免费av| 免费无遮挡裸体视频| 男女之事视频高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频| 亚洲国产看品久久| 老司机午夜十八禁免费视频| 此物有八面人人有两片| 国产成人av教育| 午夜视频精品福利| 久久久久九九精品影院| 久热爱精品视频在线9| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 97超级碰碰碰精品色视频在线观看| 亚洲全国av大片| 久久精品成人免费网站| 国产精品亚洲美女久久久| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 国产精品av久久久久免费| 我的亚洲天堂| 久久中文看片网| 亚洲天堂国产精品一区在线| av视频免费观看在线观看| bbb黄色大片| 亚洲欧美激情在线| 少妇裸体淫交视频免费看高清 | 日韩欧美三级三区| 亚洲av第一区精品v没综合| 成年版毛片免费区| 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 51午夜福利影视在线观看| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 妹子高潮喷水视频| 亚洲成a人片在线一区二区| 久久精品国产亚洲av香蕉五月| 国产aⅴ精品一区二区三区波| 欧美日本中文国产一区发布| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 淫妇啪啪啪对白视频| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点 | www.自偷自拍.com| 精品日产1卡2卡| 99热只有精品国产| 精品卡一卡二卡四卡免费| 免费搜索国产男女视频| 亚洲专区国产一区二区| 国产成人av教育| av欧美777| 国产精品电影一区二区三区| 免费看美女性在线毛片视频| 最新美女视频免费是黄的| 免费少妇av软件| 很黄的视频免费| 国产视频一区二区在线看| 香蕉丝袜av| 脱女人内裤的视频| 搡老岳熟女国产| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 91精品国产国语对白视频| 日韩大尺度精品在线看网址 | 国产精品 欧美亚洲| 国产又色又爽无遮挡免费看| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| 日本vs欧美在线观看视频| 久久久久亚洲av毛片大全| 国产麻豆69| 亚洲伊人色综图| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 国产成人av教育| 涩涩av久久男人的天堂| 国产区一区二久久| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 女人高潮潮喷娇喘18禁视频| 手机成人av网站| 亚洲一码二码三码区别大吗| 国产高清视频在线播放一区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| avwww免费| 亚洲中文日韩欧美视频| 免费看十八禁软件| 国产三级在线视频| 欧美久久黑人一区二区| 国产精品精品国产色婷婷| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清 | 欧美日韩福利视频一区二区| 一级黄色大片毛片| 亚洲精华国产精华精| 侵犯人妻中文字幕一二三四区| 一本久久中文字幕| 一边摸一边抽搐一进一出视频| 天天添夜夜摸| 一区二区三区国产精品乱码| 日韩欧美一区视频在线观看| 精品久久久久久成人av| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 在线观看免费视频网站a站| 日本三级黄在线观看| 黄色女人牲交| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 啦啦啦观看免费观看视频高清 | 精品一区二区三区av网在线观看| 变态另类丝袜制服| 精品国产国语对白av| 香蕉丝袜av| 欧美精品亚洲一区二区|