• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discrete multi-step phase hologram for high frequency acoustic modulation

    2024-01-25 07:13:30MengQingZhou周夢晴ZhaoXiLi李照希YiLi李怡YeChengWang王業(yè)成JuanZhang張娟DongDongChen諶東東YiQuan全熠YinTangYang楊銀堂andChunLongFei費春龍
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張娟東東

    Meng-Qing Zhou(周夢晴), Zhao-Xi Li(李照希), Yi Li(李怡), Ye-Cheng Wang(王業(yè)成), Juan Zhang(張娟),Dong-Dong Chen(諶東東), Yi Quan(全熠), Yin-Tang Yang(楊銀堂), and Chun-Long Fei(費春龍)

    School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: discrete multi-step phase hologram,econstruction quality,3D printing accuracy,high-fidelity

    1.Introduction

    The strategic modulation of acoustic wavefronts paves the way for the reconstruction of highly diverse acoustic fields and the subsequent retrieval of the essential information that is necessary for wavefront storage.This sophisticated process empowers precision in the manipulation of ultrasound beams to sculpt the acoustic field.[1–4]As a result, it dramatically elevates the quality of ultrasound imaging in the realm of biomedicine.[5–7]Furthermore, this technique is instrumental in facilitating particle manipulation[8–11]in a broad spectrum of ultrasound applications.At present,the acoustic beam is mainly manipulated by phased array ultrasonic transducers,[12–15]self-focusing mechanisms,[16–18]holograms,[19–25]etc.In contrast to conventional techniques,acoustic holography is usually fabricated by the rapidly developing three-dimensional (3D) printing technology, which allows mapping the output of the unitary transducer onto a pre-calculated phase map[19]and creating a high-fidelity ultrasound field.In addition, acoustic holography can be well scaled to higher information content than commercial phasedarray and self-focusing mechanisms.With its high costeffective and high freedom degree of reconstruction,[20,26–28]which makes it widely applicable to various transmitting and reflecting elements.

    The static phase plates or holograms with a large spatial information content enable acoustic fabrication,[29]cell assembly of design patterns,[30]beam steering,[31]and wavefront distortion compensation in transcranial focused ultrasound.[7]Recently, Maet al.[27,32]have generated rewriteable bubble masks through electrolysis or optically induced electrochemical interactions to achieve dynamic modulation of the holographic wavefront.However, this approach may deviate from the desired acoustic field,owing to the instability of the bubbles which is technically challenging.Holograms pursue high-fidelity implementation of complex acoustic fields at high frequencies, where the rise in frequency greatly increases the complexity of the designed static ultrasound fields,and the high precision print size is often accompanied by robust instability and randomly introduced undesirable errors.At the same time,the metrics for the quality of the reconstructed ultrasound fields is still inadequate and imperfect.At present, only the binary amplitude modulation capability of the incident field has been demonstrated,limiting the efficiency of coupling energy to the desired field to 10%.[33]It is fair to state that the majority of acoustic hologram research is still in the low-frequency phase,where the attainable spatial bandwidth product (SWH) is restricted by printer size or the reconstructed beam profile range.This leads to a simpler target acoustic field that can be achieved by holograms,such as common single point focusing.[34–36]The demand for higher resolution patterning capabilities at higher frequencies has escalated,making the implementation of continuous phase acoustic holograms challenging in terms of 3D printing accuracy.Yet, the current 3D printing technology[37]is expensive and time-consuming for precisely achieving high printing accuracy, so the mainstream 3D fast printing cannot realize the production of continuous-phase holographic panels with enough fineness.

    In this study, we introduce an innovative computational approach for acoustic holography.In the inversion process,we numerically divide the continuous phase information of initial plane into discrete phase information with equal spacing,and demonstrate a discrete multistage step phase holographic plate created with 3D printing technology.Concurrently, we introduce the concept of reconstruction similarity, which refines the metric for characterizing the acoustic field.Under equivalent printing conditions, the reconstruction quality of the optimized multi-step phase(four-step or eight-step)holograms aligns closely with conventional phase holograms.It is applicable to the realization of complex acoustic fields at high frequencies,ensuring robust image reconstruction quality,and reasonably reducing the requirement for 3D printing accuracy.In addition,the realization of 20-MHz composite acoustic field has greatly promoted the development of high-frequency holograms,from scientific research to practical applications.

    Fig.1.(a) General flow of iterative angular spectrum approach of reconstructing the acoustic field, along with a correction diagram from continuous phase to eight-step phase,and(b)ultrasonic transducer combined with the corresponding hologram for acoustic field reconstruction.

    2.Methods

    2.1.Calculation of multi-step phase holograms

    Like optical holograms, acoustic holograms accomplish meticulous control of sound waves via sophisticated holographic projections.In order to keep the accurate phase term during propagation, we use iterative angular spectrum approach (IASA) to optimize the calculation of holograms and generate high-fidelity holograms stably[19](see Fig.1).

    According to IASA, given that the angular spectrum of the holographic plane(z=0)isP(kx,ky,0),the angular spectrum of thezdplane can be calculated by multiplying it by the propagation functionH(kx,ky,zd)as follows:

    where|k|=ω/cis the wavenumber in the liquid medium,ωis the angular frequency,cis the speed of sound in the medium,andk=(kx,ky,kz)is the wave vector.Then the angular spectrum of the target plane,obtained from the forward calculation,is inferred back to the angular spectrum of the 0-plane by the formula

    In this work, we take the ideal region “XDU” with amplitude 1 (others are all 0) as the amplitude constraint in the target plane, and modify the phase information of the holographic plane in the iterative process so that its continuous phase is discretized into an equally spaced multi-step phase distribution,as shown below:

    wheren ∈[1,N],Nis the total number of equally spaced multistep phases andnis then-th order in the multi-step phase.

    To compare the ability of different gradient phases to shape the acoustic field, as shown in Eqs.(5)–(8), we setNto 2, 4, and 8, respectively, to obtain the final phase distribution of the holographic plane shown in the upper right inset in Fig.2(a),respectively.

    By analogy, the equation for the eight-step phase hologram is shown in Eq.(7), while the final equally spaced multi-step phase diagram of any holographic plane can be calculated by expanding Eq.(4).

    According to the final phase diagram of the plane,the initial thicknessT0is used to remove the change amount of the thickness at the pixel position,which causes the phase change ΔT(x,y),and the final acoustic holographic thicknessT(x,y)can be obtained.Since the phase distribution of the original hologram is discretized into multi-step phase information,the acoustic hologram with discrete phase can be calculated from the following equation:

    Fig.2.(a) Thickness distribution and phase distribution (top right inset) of acoustic holograms calculated for discrete multi-step (two-step, four-step, and eight-step) phases and continuous phases, and (b) variations of acoustic holographic thickness T(x,y) with x, corresponding to the black cut-off line (top:two-step and four-step,bottom: eight-step and continuous).

    wherekmis the wave number in the water andkhis the wave number in the 3D printed acoustic hologram.According to the above steps,the map of final printed acoustic holographic thickness is shown in Fig.2.

    With the number of steps increasing, the discrete phase gradually converges to the continuous phase.Considering a variety of factors, such as printing accuracy and manufacturing difficulty, we select four kinds of acoustic holograms for printing in order to better make a comparative choice according to the needs.In addition to three discrete multi-step phase holograms described above,we makeNtend to infinity while obtaining the conventional continuous phase computed acoustic hologram by 3D printing (printing accuracy: 100 μm), as shown in the upper right inset of Fig.2(a).The detailed information about 3D printed holograms is provided in supplemental material S1.We define the same parameters in advance for these four kinds of acoustic holograms,i.e.,design frequency(f=3 MHz), target plane (z=30 mm), and transducer size(R=25 mm).

    2.2.Measurement of acoustic pressure field

    The motion scan acquisition system and the experimental setup are schematically shown in Fig.3(a).Figure 3(b)shows the multi-step phase hologram,which is positioned on the surface of the transducer with a central frequency of 3 MHz.Detailed specifications of the transducer can be found in supplemental material S1.The sound pressure fields in thex–yplane of these four multi-step holograms are gauged by using a custom-built,multi-functional ultrasonic testing system.This system is constructed based on LabVIEW software in conjunction with a needle hydrophone(NA1000,PA,UK).

    Fig.3.(a)Schematic diagram of motor control system and equipment to be tested.(b)Experimental setup for testing actual object.(c)Sketch map of partial calculation of image reconstruction efficiency and reconstruction similarity.

    During the test,the ultrasonic dual pulser/receiver is taken in conjunction with a needle hydrophone(NA1000,PA,UK).The ultrasonic dual pulser/receiver (DPR500, JSR Ultrasonics, USA) generates a pulse excitation signal.This signal is subsequently applied to the ultrasonic transducer to produce the ultrasonic pressure field.Finally, the sound pressure field within a rectangular area of 52 mm×52 mm (x–yplane) is measured by using a hydrophone with a precision of 200μm.

    3.Results and discussion

    3.1.Image uniformity evaluation

    In this work,the acoustic field simulation is performed on condition that the acoustic field is augmented by a factor of 4 to minimize the adverse effects of boundary effects.Based on the defined transducer plane diameter of 50 mm, each grid is a square with a size of 200μm(less than half a wavelength),so on the basis of magnification, the effective area is finally selected in the imaging plane, i.e., it contains a structure of 250×250 pixels, as shown in Fig.4.As mentioned above,its phase map is encoded and printed in the hologram,and reconstructed in water with 3-MHz ultrasound.The number of individually accessible pixels in the hologram that creates the acoustic field directly affects the amount of information contained in it.To further describe the image distribution, the concept of image uniformity is proposed.

    The normalized sound pressure amplitude distributions of four phase acoustic holograms are obtained by calculation and experiment as shown in Fig.4.The comparison of simulation calculations with experimental results shows that its distribution has a certain regularity.The absolute sound pressure distribution produced by the two-step phase hologram is relatively dispersed as shown in Figs.4(a) and 4(b),which suggests that the acoustic field is lacking in fine detail and relatively rough.The four-step phase and the eightstep phase holograms produce a finer distribution of sound pressure, mainly concentrated on the letters“XDU”and with higher values.The accuracy of the 3D printed acoustic hologram gradually declines and approaches the complexity of continuous phase printing as the number of phase steps increases(detailed explanation in supplemental material S2),but it is still considerably better than that generated by two-step phase.

    Figures 4(c)–4(g)show the distribution curves of the relationship between the number of pixel points and the generated sound pressure value of the four-step phase simulation and experiments.Here,the sound pressure values are normalized and the range of sound pressure values from 0 to 1 is divided into ten equal intervals.In Figs.4(c) and 4(d), the pixels on the letter“XDU”are mainly distributed between 0.4 and 0.7.The two-step phase has the most pixel distribution when the sound pressure values are at 0.4(experimental value)and 0.5(simulation value).Comparing with the two-step phase,the number of pixels in the four-step phase is gradually distributed evenly,and the hologram of the eight-step phase and the hologram of continuous phase are both mainly concentrated at the sound pressure value 0.6 and gradually approaches 1.Figures 4(f)and 4(g)mainly display the number distributions of pixels outside the letter “XDU” in four cases.Figure 4(g) shows the significantly interfering data in the two-step image, with the undesired fraction concentrated below the 0.2 sound pressure value when the phase is set to four-step phase and eight-step phase.Thus, uniformity and high fidelity similar to that of conventional (ideal) continuous phase can still be achieved.The errors between the experimental results and simulation values for these four holograms in Fig.4(e) are due to the presence of shear waves in the experimental lens as well as acoustic wave attenuation, which are neglected in the present simulation.

    Fig.4.[(a),(b)]Normalized sound pressure(Norm.p)amplitude distributions in x–y plane(z=30 mm)calculated by IASA and scanned by hydrophone,respectively, showing two-step phase, four-step phase, eight-step phase, and continuous phase from left to right.(c) Simulated and (d) measured pixel distribution on the“XDU”letter area of the target image,(f)simulated and(g)measured pixel distribution in the area other than the“XDU”area corresponding to the four phases.(e)Comparison between simulated and measured numbers of pixels in“XDU”region for four holograms.

    As a result, the quantitative evaluations of visual effects and image homogeneity by the naked eye show that our multiorder phases are able to reduce manufacturing difficulties and that the fourth and higher order phases can simultaneously ensure a homogeneous distribution of images with major sound pressure values above 0.5.

    3.2.Image reconstruction quality evaluation

    Relating the sound power of the target region within the acoustic field to the sound power of the entire image acoustic field[19]enables a better assessment of the effectiveness of the reconstructed image,thus using the overall reconstruction efficiencyηas a representation of the quality of the acoustic field reconstruction.According to the relationship among sound pressure,sound intensity and sound power,the formula for sound power can be finally expressed in terms of sound pressure,as given by

    where(i,j)is the location of each pixel point; Δxand Δyare the sampling distances(pixel size)along thexcoordinate andycoordinate,respectively,in the observation plane.

    The reconstruction efficiency can be expressed as follows:

    where the target regionTis the actual pixel set corresponding to the position where the ideal image is greater than 0 amplitude after 50 iterative calculations.The whole imageIis a set of pixels with all values after calculation.

    However, in general, the quality of acoustic field reconstruction cannot be described solely in terms of sound energy utilization;, and it is also related to reconstruction accuracy.When calculating and analyzing the efficiency, the most important premise is to calculate the sound pressure within the area corresponding to the ideal “XDU”.Therefore, it is necessary to evaluate the reconstruction similarity of the“XDU”letter between the acoustic field of the actual target areaTand the acoustic field of the ideal target areaD.

    The above correction of Eq.(11)leads to the formula for reconstructing similarity

    whereDis the target acoustic field area of non-zero amplitude on the letter“XDU”in the ideal case.

    The schematic diagram of the local calculation of the reconstructed image quality is shown in Fig.3(c).Before comparing its reconstruction efficiency, it is necessary to analyze the reconstruction similarity first,thereby fully characterizing the quality of the whole acoustic field image reconstruction.Table 1 gives the reconstruction similarity for two-step phase,four-step phase,eight-step phase,and continuous phase,as indicated by simulation and experiment.

    Table 1.Reconstruction similarity between multi-step phase and continuous phase.

    Table 2 then shows the reconstruction efficiencies in these four cases.For these four types, it is obvious that the reconstruction similarity between the two-step phase and the fourstep phase is relatively close to each other, but their reconstruction efficiencies are significantly different, which indicates that the two-step phase produces more interference data outside the “XDU” letters and there is obvious scattering of acoustic field.When the phase information is set to the eightstep phase information, the reconstruction similarity and the reconstruction efficiency are almost better than the those of continuous phase.

    This is because the eight-step phase hologram’s complexity makes it difficult to distinguish between the actual step and an erroneous one that is not simply minor in comparison with the step in the best scenario.The C-mode scans of the four holograms are performed by a 100-MHz high-frequency ultrasound transducer, and the mean absolute percentage errors(MAPEs) of 3D printing are verified to be 9.87%, 10.88%,45.51%, and 50.39%, respectively.Details of the four hologram thickness variations are given in supplemental material S2.Therefore, in the case where the 3D printing accuracy cannot meet the higher requirements of continuous phase acoustic holograms, the effect of four-step phase and eightstep phase acoustic holograms are more likely to meet the target requirements.

    Table 2.Reconstruction efficiency between multi-step phase and continuous phase.

    Increasing the frequency from 3 MHz to 20 MHz will be more stringent on the accuracy of the printer.The quick creation of high frequency holograms cannot be supported by the 100-μm printing precision being used at present time.In order to simply compare the feasibility of using step phases for their high frequencies, as shown in Fig.5(a), only four-step and continuous-phase high-frequency holograms are generated with only 10-μm printing accuracy.Figures 5(b)and 5(c)show the simulated and measured normalized sound pressure amplitude diagram of four-step phase and continuous phase at a frequency of 20 MHz.In the same printing conditions,the reconstruction similarity and reconstruction efficiency of the four-step hologram,calculated in the experiment(simulation), are 18.03%(simulation: 30.77%)and 41.81%(simulation: 86.27%), and the reconstruction efficiency of continuous holograms are 17.94%(simulation: 33.07%)and 40.71%(simulation: 92.80%), respectively.In order to better characterize the contouring errors occurring in the 3D printing process, C-mode scanning of hologram is performed by a 100-MHz high-frequency ultrasonic transducer,in which the error of the four-step holograms is only 11.77%,whereas the printing error of continuous holograms can even reach more than 20%.The thickness variation of the 20-MHz phase hologram scanned by C-mode is given in supplemental material S2.Like the results in the low-frequency condition,the four-step hologram possesses a better image reconstruction quality.With the development of high frequency in demand,the implementation of multi-step holograms to a certain extent can not only reduce the influence caused by the printing error as much as possible,but also maintains the reconstruction quality of complex acoustic fields.It can be shown that the optimized multistep phase hologram can be better applied to high frequency scenarios when the desired frequency is gradually increased.

    Fig.5.(a)Designed and 3D printed hologram with generated letters“XDU”.(b)and(c)Normalized sound pressure amplitude distribution(left side: simulation, right side: experiment)in x–y plane(z=15 mm)generated by IASA calculations and hydrophone scanning with four-step phase(top row)and continuous phase(bottom row).

    Generally,the ability to store encoded acoustic field information in holograms is constrained by a finite flat aperture in the transmission of sound waves to the target image distance,thereby making it impossible to achieve 100% perfect image reconstruction quality.By comparing with the ideal value,the mean square error can be used to calculate the error of reconstruction similarity.The mean square errors of two-step,fourstep,eight-step,and continuous phase simulations are 3.36%,3.13%, 2.31%, and 2.49%, respectively.In addition, the experimental errors are 4.81%, 4.25%, 4.26%, and 4.39%, owing to the coupling and attenuation of the acoustic waves in the medium,respectively.

    4.Conclusions

    In this work,we presented a computational technique for discrete multi-step phase acoustic holograms, which is based on the optimization of the iterative angular spectrum approach.In the present method the conventional continuous phase is discretized into uniformly spaced multi-step phases, thereby generating corresponding acoustic holograms.We also introduced the concept of reconstruction similarity, an improved measure that can characterize the acoustic field image quality more evenly.

    Under equivalent printing conditions,the unavoidable errors associated with 3D printing lead the image reconstructions for eight-step and continuous phase-based holograms to lower their quality.Furthermore, the hydrophone scanning results for the ultrasound field differ from the simulation results.Our findings indicate that four-step or eight-step holograms can ensure higher reconstruction quality and greater robustness when the accuracy of 3D printing cannot satisfy the more stringent requirements of continuous phase holograms.Additionally, the discrete multi-step phase technique can be adopted in the implementation of complex acoustic fields at 20 MHz,which can greatly promote the development of highfrequency acoustic fields, from scientific exploration to practical applications.

    Data availability statement

    The data that support the findings of the present study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00153.

    Acknowledgements

    Project supported by the China Postdoctoral Science Foundation (Grant No.2023M732745), the National Natural Science Foundations of China (Grant Nos.61974110 and 62104177), the Fundamental Research Funds for the Central Universities, China (Grant Nos.QTZX23022 and JBF211103), and the Cooperation Program of XDU–Chongqing IC Innovation Research Institute (Grant No.CQ IRI-2022CXY-Z07).

    猜你喜歡
    張娟東東
    Clinical study of warm needling moxibustion combined with entecavir in the treatment of compensated cirrhosis due to chronic hepatitis B
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    夢寐以求的生日禮物
    Digital synthesis of programmable photonic integrated circuits
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    東東“闖關(guān)”記
    Critically discuss current and likely future developments relating to metadata
    卷宗(2014年1期)2014-03-20 01:28:52
    热re99久久国产66热| 国产在线视频一区二区| 美女中出高潮动态图| 亚洲伊人色综图| 一级黄色大片毛片| 亚洲 欧美一区二区三区| 多毛熟女@视频| 中文字幕色久视频| 自拍欧美九色日韩亚洲蝌蚪91| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 99九九在线精品视频| 91精品伊人久久大香线蕉| 成人18禁高潮啪啪吃奶动态图| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 午夜日韩欧美国产| 色婷婷久久久亚洲欧美| 亚洲欧美激情在线| 国产精品免费视频内射| a级毛片黄视频| 日本欧美国产在线视频| 亚洲精品国产色婷婷电影| 高清av免费在线| 亚洲av成人精品一二三区| 90打野战视频偷拍视频| 人妻一区二区av| 黄片小视频在线播放| 国产免费又黄又爽又色| 丝袜在线中文字幕| 亚洲欧美一区二区三区久久| 99re6热这里在线精品视频| 国产一区有黄有色的免费视频| 自线自在国产av| 精品一品国产午夜福利视频| av视频免费观看在线观看| 99久久人妻综合| 久久人人97超碰香蕉20202| 老司机靠b影院| 久久精品久久久久久久性| 激情视频va一区二区三区| 日本91视频免费播放| 飞空精品影院首页| 久久精品国产a三级三级三级| 亚洲精品一二三| 久久久久久久久久久久大奶| 一级毛片电影观看| 欧美成人午夜精品| kizo精华| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 一区二区三区激情视频| 99国产精品免费福利视频| 汤姆久久久久久久影院中文字幕| 久久热在线av| 99热全是精品| 老汉色av国产亚洲站长工具| 亚洲欧洲国产日韩| 高清不卡的av网站| 精品亚洲乱码少妇综合久久| 精品免费久久久久久久清纯 | 热re99久久国产66热| 午夜视频精品福利| 九草在线视频观看| 国产成人91sexporn| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 国产又色又爽无遮挡免| 国产精品一国产av| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看 | 90打野战视频偷拍视频| 亚洲国产欧美在线一区| 777久久人妻少妇嫩草av网站| 韩国精品一区二区三区| 人妻 亚洲 视频| cao死你这个sao货| 欧美精品av麻豆av| 中文字幕制服av| 日韩视频在线欧美| 国产欧美日韩一区二区三 | 美女福利国产在线| 99久久99久久久精品蜜桃| 在线 av 中文字幕| 婷婷色av中文字幕| 精品亚洲成国产av| 尾随美女入室| 亚洲av国产av综合av卡| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 亚洲第一青青草原| 日本一区二区免费在线视频| 2021少妇久久久久久久久久久| av在线老鸭窝| 满18在线观看网站| 青春草亚洲视频在线观看| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 日本wwww免费看| 9191精品国产免费久久| 男女午夜视频在线观看| 亚洲黑人精品在线| 久久综合国产亚洲精品| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 午夜久久久在线观看| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| 十分钟在线观看高清视频www| 国产在视频线精品| 国产主播在线观看一区二区 | 午夜视频精品福利| 久久人妻熟女aⅴ| 91麻豆av在线| 亚洲av综合色区一区| 日韩,欧美,国产一区二区三区| 女警被强在线播放| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看| 男人操女人黄网站| 日韩免费高清中文字幕av| av在线老鸭窝| 久久性视频一级片| 一本久久精品| 国产xxxxx性猛交| 十八禁网站网址无遮挡| 国产在线免费精品| 免费在线观看完整版高清| 人体艺术视频欧美日本| 久久免费观看电影| e午夜精品久久久久久久| 日本av手机在线免费观看| 久久国产精品人妻蜜桃| 咕卡用的链子| 又紧又爽又黄一区二区| 黄网站色视频无遮挡免费观看| 亚洲专区国产一区二区| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 免费女性裸体啪啪无遮挡网站| 亚洲人成电影免费在线| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美一区二区三区久久| 蜜桃国产av成人99| 国产主播在线观看一区二区 | 久久青草综合色| 国产亚洲av高清不卡| 午夜影院在线不卡| 欧美日韩综合久久久久久| 观看av在线不卡| 免费av中文字幕在线| 亚洲熟女毛片儿| 捣出白浆h1v1| 一本—道久久a久久精品蜜桃钙片| 亚洲一区中文字幕在线| 蜜桃在线观看..| 最近最新中文字幕大全免费视频 | 十八禁高潮呻吟视频| 亚洲七黄色美女视频| 啦啦啦在线观看免费高清www| 午夜91福利影院| 黄色视频在线播放观看不卡| a级毛片黄视频| 999久久久国产精品视频| 亚洲av综合色区一区| 免费在线观看影片大全网站 | www.999成人在线观看| a级毛片在线看网站| 制服人妻中文乱码| 欧美国产精品一级二级三级| 99九九在线精品视频| 国产高清视频在线播放一区 | 啦啦啦 在线观看视频| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 免费日韩欧美在线观看| 在线观看人妻少妇| 久久精品人人爽人人爽视色| 成人国产av品久久久| 亚洲国产欧美在线一区| 亚洲中文字幕日韩| 免费观看人在逋| 伦理电影免费视频| 一个人免费看片子| 美女主播在线视频| 一级黄色大片毛片| 免费观看av网站的网址| 久久影院123| 午夜免费成人在线视频| 欧美成狂野欧美在线观看| 好男人视频免费观看在线| av欧美777| 国产一区二区三区av在线| 精品国产国语对白av| avwww免费| 久久久国产欧美日韩av| 国产精品.久久久| 老司机影院毛片| 亚洲成色77777| 久久久精品免费免费高清| 香蕉丝袜av| 婷婷色综合大香蕉| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 菩萨蛮人人尽说江南好唐韦庄| 我的亚洲天堂| 一级黄色大片毛片| 国产精品久久久人人做人人爽| 在线看a的网站| 婷婷丁香在线五月| 日本欧美国产在线视频| 国产真人三级小视频在线观看| 成年美女黄网站色视频大全免费| 9色porny在线观看| av线在线观看网站| 一区二区三区精品91| 午夜日韩欧美国产| 91精品三级在线观看| 狂野欧美激情性xxxx| 国产无遮挡羞羞视频在线观看| 丝袜美腿诱惑在线| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 麻豆av在线久日| 国产av国产精品国产| 男人添女人高潮全过程视频| 亚洲av男天堂| 午夜视频精品福利| 欧美日韩成人在线一区二区| 9热在线视频观看99| 黄色视频不卡| 在线观看国产h片| 国产亚洲av片在线观看秒播厂| 欧美日韩成人在线一区二区| 9热在线视频观看99| 看十八女毛片水多多多| svipshipincom国产片| 黑人巨大精品欧美一区二区蜜桃| 青草久久国产| netflix在线观看网站| 黄网站色视频无遮挡免费观看| 一级毛片 在线播放| 久久久久精品国产欧美久久久 | 免费高清在线观看日韩| 国产精品国产三级专区第一集| 免费不卡黄色视频| 搡老乐熟女国产| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 国产黄色免费在线视频| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡| 精品一品国产午夜福利视频| av网站免费在线观看视频| av一本久久久久| 韩国高清视频一区二区三区| 久久久欧美国产精品| 汤姆久久久久久久影院中文字幕| 久久久久久久久免费视频了| 久久久久久久大尺度免费视频| 亚洲国产欧美日韩在线播放| 高清av免费在线| 啦啦啦视频在线资源免费观看| 水蜜桃什么品种好| 午夜福利一区二区在线看| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 亚洲欧美中文字幕日韩二区| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 99热网站在线观看| 中文乱码字字幕精品一区二区三区| 国产主播在线观看一区二区 | 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 天天影视国产精品| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播 | 又紧又爽又黄一区二区| 美女大奶头黄色视频| 一本综合久久免费| 大陆偷拍与自拍| 黄色a级毛片大全视频| 精品一品国产午夜福利视频| 18在线观看网站| 欧美少妇被猛烈插入视频| 精品国产超薄肉色丝袜足j| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 精品人妻1区二区| 亚洲天堂av无毛| 一级a爱视频在线免费观看| 国产伦人伦偷精品视频| 人妻人人澡人人爽人人| 99精国产麻豆久久婷婷| 国产免费一区二区三区四区乱码| 国产精品.久久久| 欧美日韩视频高清一区二区三区二| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 国产一级毛片在线| 国产色视频综合| 亚洲精品第二区| 国产女主播在线喷水免费视频网站| av电影中文网址| 亚洲av日韩精品久久久久久密 | 男人添女人高潮全过程视频| 成人三级做爰电影| 极品少妇高潮喷水抽搐| 两人在一起打扑克的视频| 亚洲精品国产av蜜桃| 制服诱惑二区| 黄色 视频免费看| 丝袜人妻中文字幕| 亚洲精品第二区| 亚洲国产欧美一区二区综合| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 亚洲精品国产av成人精品| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 亚洲中文av在线| 免费在线观看日本一区| 国产在线视频一区二区| 亚洲色图综合在线观看| 亚洲中文av在线| av国产精品久久久久影院| 亚洲第一青青草原| 91麻豆av在线| 999精品在线视频| 另类精品久久| 成人免费观看视频高清| 男女免费视频国产| 亚洲精品久久成人aⅴ小说| 久久中文字幕一级| 在线av久久热| 我要看黄色一级片免费的| 日韩 欧美 亚洲 中文字幕| 亚洲色图 男人天堂 中文字幕| 欧美日韩视频高清一区二区三区二| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 亚洲,一卡二卡三卡| 国产真人三级小视频在线观看| 在线观看免费日韩欧美大片| av电影中文网址| 国产伦理片在线播放av一区| 色婷婷av一区二区三区视频| 九色亚洲精品在线播放| 看十八女毛片水多多多| 一级毛片电影观看| 国产精品欧美亚洲77777| 久久久久久人人人人人| 欧美精品人与动牲交sv欧美| 亚洲中文日韩欧美视频| 亚洲欧美色中文字幕在线| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| 在线av久久热| 精品一区二区三卡| 国产精品免费大片| av视频免费观看在线观看| 多毛熟女@视频| 成人午夜精彩视频在线观看| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 高潮久久久久久久久久久不卡| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生| 老汉色av国产亚洲站长工具| 国产免费视频播放在线视频| 色网站视频免费| 91九色精品人成在线观看| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 国产成人影院久久av| 日韩一区二区三区影片| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 国产成人av教育| 亚洲图色成人| e午夜精品久久久久久久| 精品亚洲成国产av| 大片电影免费在线观看免费| 热99久久久久精品小说推荐| 亚洲欧美日韩高清在线视频 | 国产欧美日韩一区二区三区在线| 日韩制服骚丝袜av| tube8黄色片| 中文精品一卡2卡3卡4更新| 久久狼人影院| 一级毛片电影观看| 亚洲,欧美,日韩| 午夜免费鲁丝| 岛国毛片在线播放| 亚洲欧美一区二区三区久久| 在线看a的网站| 水蜜桃什么品种好| 久久性视频一级片| 自线自在国产av| 操美女的视频在线观看| 精品一区二区三卡| 中国国产av一级| 国产欧美日韩精品亚洲av| 脱女人内裤的视频| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 国产成人精品无人区| 久热爱精品视频在线9| 只有这里有精品99| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 亚洲欧美色中文字幕在线| 日韩av免费高清视频| 搡老岳熟女国产| 精品国产一区二区久久| 午夜日韩欧美国产| 日韩制服骚丝袜av| 久久精品亚洲熟妇少妇任你| 亚洲国产精品999| av网站在线播放免费| 午夜免费成人在线视频| 男人操女人黄网站| 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 日日爽夜夜爽网站| 尾随美女入室| 午夜久久久在线观看| 在线观看人妻少妇| 亚洲人成电影免费在线| 亚洲中文字幕日韩| 老鸭窝网址在线观看| 丰满少妇做爰视频| 黄色一级大片看看| 国产精品一区二区免费欧美 | 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 51午夜福利影视在线观看| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 蜜桃国产av成人99| 亚洲av男天堂| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 夜夜骑夜夜射夜夜干| 国产一区二区三区综合在线观看| 国产成人免费无遮挡视频| 国产在线视频一区二区| 一本—道久久a久久精品蜜桃钙片| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 青草久久国产| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 51午夜福利影视在线观看| 我要看黄色一级片免费的| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 久久久久视频综合| 成年av动漫网址| 日韩大码丰满熟妇| 日本av手机在线免费观看| 欧美黑人精品巨大| 欧美日韩成人在线一区二区| 一区二区三区四区激情视频| 男女午夜视频在线观看| 观看av在线不卡| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 色综合欧美亚洲国产小说| 午夜视频精品福利| 久久九九热精品免费| 五月天丁香电影| 久久久久精品人妻al黑| 欧美大码av| 午夜影院在线不卡| 一区在线观看完整版| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看| av国产精品久久久久影院| 另类亚洲欧美激情| 国产男女内射视频| 日本欧美视频一区| 91精品伊人久久大香线蕉| 天天添夜夜摸| 久久久久国产精品人妻一区二区| 黑丝袜美女国产一区| 咕卡用的链子| 在线观看免费视频网站a站| 19禁男女啪啪无遮挡网站| 久久久国产一区二区| 人人妻,人人澡人人爽秒播 | 伊人亚洲综合成人网| 91老司机精品| 久久亚洲精品不卡| 首页视频小说图片口味搜索 | 免费人妻精品一区二区三区视频| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 精品人妻1区二区| 99热国产这里只有精品6| 国产高清视频在线播放一区 | 成人黄色视频免费在线看| 久久久精品区二区三区| 久久天躁狠狠躁夜夜2o2o | 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 精品人妻1区二区| 一级毛片电影观看| 美女高潮到喷水免费观看| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 91字幕亚洲| 大片电影免费在线观看免费| 看免费成人av毛片| 婷婷色综合www| 青草久久国产| av天堂在线播放| 国产高清国产精品国产三级| 亚洲成色77777| 久久久久国产精品人妻一区二区| 国产极品粉嫩免费观看在线| 一区二区日韩欧美中文字幕| 中文字幕av电影在线播放| cao死你这个sao货| 老司机靠b影院| 啦啦啦在线观看免费高清www| 高清视频免费观看一区二区| 99国产精品一区二区三区| 亚洲五月婷婷丁香| av在线app专区| www.熟女人妻精品国产| 亚洲人成77777在线视频| 黄色视频在线播放观看不卡| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 亚洲黑人精品在线| 嫩草影视91久久| www.精华液| 亚洲av电影在线进入| 手机成人av网站| 操出白浆在线播放| 精品一区二区三卡| 真人做人爱边吃奶动态| 精品福利永久在线观看| 欧美+亚洲+日韩+国产| 亚洲国产中文字幕在线视频| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 考比视频在线观看| 人妻人人澡人人爽人人| 青草久久国产| 男人添女人高潮全过程视频| av在线播放精品| 久久免费观看电影| 韩国精品一区二区三区| 婷婷丁香在线五月| av视频免费观看在线观看| 黄色a级毛片大全视频| 黑丝袜美女国产一区| 丰满饥渴人妻一区二区三| 一本—道久久a久久精品蜜桃钙片| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区 | 国产成人91sexporn| 黄片小视频在线播放| 一本综合久久免费| 久9热在线精品视频| 青春草视频在线免费观看| 精品少妇内射三级| 精品福利永久在线观看| 人人妻,人人澡人人爽秒播 | 美女午夜性视频免费| 欧美日韩视频高清一区二区三区二| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 国产精品三级大全| 美女脱内裤让男人舔精品视频| 婷婷色av中文字幕| 色综合欧美亚洲国产小说| 亚洲成色77777| 国产日韩欧美视频二区| xxx大片免费视频| www.av在线官网国产| 人妻人人澡人人爽人人| 伊人亚洲综合成人网|