• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Digital synthesis of programmable photonic integrated circuits

    2022-02-24 08:58:18JuanZhang張娟ZhengyongJi計正勇YipengDing丁一鵬andYangWang王陽
    Chinese Physics B 2022年2期
    關(guān)鍵詞:張娟王陽

    Juan Zhang(張娟) Zhengyong Ji(計正勇) Yipeng Ding(丁一鵬) and Yang Wang(王陽)

    1Key Laboratory of Specialty Fiber Optics and Optical Access Networks,School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China2School of Physical Science and Electronics,Central South University,Changsha 410012,China3Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions. Due to the complexity of the signal routing in a general mesh, a particular synthesis algorithm often only accounts for a specific function with a specific cell configuration. In this paper, we try to synthesize the programmable waveguide mesh to support multiple configurations with a more general digital signal processing platform.To show the feasibility of this technique, photonic waveguide meshes in different configurations (square, triangular and hexagonal meshes)are designed to realize optical signal interleaving with arbitrary duty cycles. The digital signal processing(DSP)approach offers an effective pathway for the establishment of a general design platform for the software-defined programmable photonic integrated circuits. The use of well-developed DSP techniques and algorithms establishes a link between optical and electrical signals and makes it convenient to realize the computer-aided design of optics–electronics hybrid systems.

    Keywords: photonic integrated circuit,digital signal processing,Z-transform

    1. Introduction

    Recent developments in nanophotonics have enabled increasing research on programmable photonic integrated circuits (PPICs) for various applications in communication, artificial neural networks, and quantum information technologies.[1–14]In PPICs, optical signal processing is performed in a linear optical core consisting of a Mach–Zehnder interferometer (MZI) waveguide mesh, where the topology and connectivity define the possible implementable functionalities. Different devices or subsystems can be demonstrated in the single hardware platform by programming its control signals. Similar to the field-programmable gate arrays (FPGAs) in electronics, the versatile architecture and multifunctionality of PPICs will enable us to considerably reduce the required time and cost to design, fabricate, and test different photonic chips.

    The programming or reconfiguration of photonic waveguide meshes is realized with tunable optical building blocks in MZIs,such as couplers/beam splitters and phase shifters,normally controlled by electronics. The programmable meshes can be divided into two major categories according to the signal routing approaches. One is the forward-propagation configuration.[4,8,16]Linear optical transformations are implemented by the one-way propagation from a set of input ports to a set of output ports.[3,15]The other is the reverse-feedback configuration.[18–20]Waveguides are connected in loops that can implement differential delay lines, ring resonators, and optical feedback circuits, enabling applications such as finite/infinite impulse response(FIR/IIR)multiport filters.[6,17]In fact, both forward- and reverse-feedback programmable configurations can be realized in a general MZI mesh by selecting appropriate structural parameters of tunable optical building blocks,regardless of the shape of the mesh cell(such as square-,triangular-,and hexagonal-shaped meshes).

    Due to the complexity of the signal routing in a general mesh,a particular synthesis algorithm often only accounts for a specific function (such as an FIR filter) with a specific cell configuration. It is a great challenge to synthesize the programmable waveguide mesh that supports multiple configurations with a more general design platform.[21]

    From another point of view, in the FPGA-like photonic processor, the reconfigurable optical core (MZI mesh)is integrated with some electrical elements and subsystems,such as control electronics, an input/output electronics interface, and electro-optical/photoelectric converters to support software programming. Although the all-photonic system is the ultimate target, optical networks will require the cointegration of electronics and photonics over a long period of time,such as the combination of complementary metal-oxidesemiconductor(CMOS)electronics and silicon photonics.[22]Heterogeneous integration of these technologies will eventually be limited by totally different design approaches.

    Fortunately, both electric and optical systems can be described using the theory of digital signal processing (DSP).Although DSP is often considered an important branch of electronics and telecommunication engineering,many popular optical devices, especially in optical communications, could be represented with a digital filter model,as described in our previous work.[23–27]The use of well-developed DSP techniques and algorithms to design these optical devices is not only a wise use of existing technology but also establishes a link between optical and electrical signals.[28,29]Furthermore,extensive DSP simulation applications make it convenient to realize software-programming and computer-aided design of optics–electronics hybrid systems.

    In this paper, the digital signal model of the optical core of the PPIC is proposed for the first time. To showcase the potential of this technique, the DSP algorithm is used to design optical interleavers with tunable duty cycles. The effect of the shape of the mesh cell, and the design and fabrication errors of the tunable basic unit (TBU) on the performance of interleaving are discussed in detail. The DSP approach offers an effective pathway for the establishment of a general design platform for software-defined PPICs.

    2. DSP model of integrated waveguide meshes

    The integrated waveguide meshes are composed of unitary TBUs, which are interconnected to create cells with different shapes (such as square, triangular, and hexagonal configurations). Figure 1(a)shows a typical square-shaped mesh with 9 cells.[18]As shown in Fig.1(b),each TBU is composed of two 3-dB couplers and two parallel waveguides with upper and lower phase shifters,φuandφl, respectively. By controlling the phase shift, any TBU in the mesh can operate either as a directional coupler or an optical cross-bar switch, thus providing independent amplitude- and phase-controlled optical routing,as shown in Fig.1(c). The ideal transfer matrix of a TBU can be expressed as

    Fig.1. The layout of a 9-cell square mesh and a zoom of an interconnection node.(b)The structure of a TBU with 1×basic unit length(BUL).(c)Signal flow for different functions of a TBU.

    Fig. 2. Square (left), hexagonal (middle), and triangular (right) mesh configurations to implement (a) a single-stage ORR, (b) a coupled multi-stage ORR,(c)a cascaded multi-stage ORR,and(d)an MZI.In and out are the input and output ports of light,respectively.

    whereθ=(φu?φl)/2 andΔ=(φu+φl)/2.

    Fig.3. The DSP model of the mesh configurations shown in(a)Fig.2(a),(b)Fig.2(b),(c)Fig.2(c),and(d)Fig.2(d).

    The meshes can be reconfigured from MZIs to optical ring resonators(ORRs)with the feedback response. Figure 2 shows the square, hexagonal, and triangular mesh configurations corresponding to a single-stage ORR, a coupled multistage ORR, a cascaded multi-stage ORR, and a typical MZI,respectively. The direction of light propagation in the ORRs and MZIs is indicated by arrows in the figures.

    According to the transfer characteristics of the basic unit shown in Eq. (1), the DSP model of these mesh configurations can be presented in Fig. 3, respectively. The Z transformation operator, which denotes the signal delay, is related to the structural parameters of the optical systems byz?1=e?j·2π·ne·N·BUL/λ,whereneis the effective refractive index of the waveguide,BUL is the length of a TBU,andNis the number of TBUs in the ORR(for one round trip). For example, in the configuration shown in Figs.2(a)and 3(a),N=4,6,and 3 for square,hexagonal,and triangular meshes,respectively. In Fig.3(d),φis the phase delay induced by the length difference in the two arms of an MZI.For square,hexagonal,and triangular mesh configurations, the length differences in the two armsΔLare 4×BUL,6×BUL,and 3×BUL,respectively.

    From Fig. 3(a), the transfer function of the single-stage ORR can be expressed as

    whereis the conjugate ofρr. The transfer function of the coupled multi-stage ORR can be derived from Fig.3(b)as follows:

    For the simplest multi-stage structure composed of two ring resonators, its transfer function can be deduced from Eq. (3)as

    For the cascaded multi-stage ORR,its transfer function can be written as

    From Fig.3(d),we can obtain the transfer function of the MZI as

    whereθ1,Δ1, andθ2,Δ2are the parameters of the tunable coupler at the input and output ports,respectively. The phase delayφ=2π·ne·ΔL/λ.

    From the combination of different configurations, the mesh can be reconfigured to realize different optical functions.For a mesh configuration composed of an MZI with cascaded single-stage ORR and multi-stage ORR in the upper and lower arms,its transfer function can be expressed as

    whereHup(z) andHlow(z) are the transfer functions of ring resonators located in the upper and lower arms and can be obtained from Eqs.(2)and(3)(or Eq.(5)),respectively.

    3. Design principle of integrated waveguide meshes

    Filtering is one of the most important and complicated DSP applications. It includes complex matrix operations,which are often concerned with optics and photonics fields.Computer-based DSP platforms(such as Matlab DSP toolbox)provide various algorithms and design tools for streaming signal processing to achieve designed filtering and routing functions. Taking filters as examples,the design principles of integrated waveguide meshes are presented.

    The optimum bandpass filters, which include the Butterworth, Chebyshev, and elliptic filters, are very important for signal processing to meet desired bandpass and stopband requirements. Elliptical filters have equal ripples in both the passband and stopband and no other filters with equal order can obtain a faster transition in gain between the passband and stopband.[25]Therefore,the design method for elliptical filters is adopted. The transfer function of the synthesized filter can be expressed as[29]

    whereP(z)andD(z)are two polynomials ofzwith real coefficients,in whichP(z)has even symmetry. Equation(10)can be decomposed into the sum (or difference) of two all-pass functionsH1(z)andH2(z)by

    whereβ=0 for an odd filter order. WhenP(z) has odd order,H1(z) andH2(z) have orderrandN ?r, respectively. IfP(z)has even order,H1(z)andH2(z)are complex conjugates and each hasN/2 poles(and zeros). For an odd filter order,a simple decomposition method that utilizes the pole interlacing properties of the two all-pass functions can be used.[30]The two decomposed all-pass functions can be expressed as

    whereε0,ε1,ε2,...,εN?1,numbered according to increasing angles,are the poles ofH(z).

    TheH1(z)andH2(z)are expressions aboutz?1and have a similar form to Eqs.(2)and(3). It indicates that the basic optical structures, which can realize the designed filtering functions, are MZIs with cascading single-stage ORRs and (or)multi-stage ORRs. To further determine the mesh configurations,the two decomposed all-pass functionsH1(z)andH2(z)should be expressed in the format of multiplication of multiple all-pass functions with the lowest filter order. Based on the obtained Eq.(11)with the simplified decomposition form,the mesh configuration can be obtained. Then, the transfer function of the mesh(labeled as Eq.(?))can be calculated according to Eq.(8)(or Eq.(9)). The detailed structural parameters of the mesh can be obtained by comparing and equalling the coefficients of Eq.(?)and Eq.(11). The whole design process is shown in Fig.4.

    Fig.4. A flow chart of the DSP-based design process.

    4. Design examples of integrated waveguide mesh

    As an example, a 5-order square-wave interleaver with a duty cycle of 1:2(symmetrical interleaver), a free spectral range(FSR)of 100 GHz,and isolation

    The transfer function of a digital elliptic low-pass filter that satisfies the required spectral characteristics can be expressed as

    By using the pole interlacing properties,the transfer function can be decomposed as

    After comparing Eq.(15)with Eqs.(2)and(3),it can be seen that an MZI with a double ring resonator structure on both arms with the arm length difference ofN×BUL can be used to realize the target spectral characteristics. The ratio of two polynomials in Eq. (15) is the transfer function of the double-ring resonator in the upper and lower arms, respectively. By comparing the expression with Eq.(4)and making them equal,the structural parameters of the double-ring resonator can be obtained. The DSP model,optical layout,and detailed structural parameters of the corresponding square-mesh configuration are shown in Fig.5(a)and Table 1,respectively. The obtained transmission spectra at the two output ports are presented as the green lines in Fig.5(c).We can see that the double-ring resonator becomes a single-ring resonator with doubled ring length to satisfy the requirements.

    Fig.5. The DSP models and corresponding layout of square-mesh configurations for(a)5-order and(b)4-order square-wave interleavers with a duty cycle of 1:2. (c)Corresponding transmission spectra of the two output ports.

    Similarly, an even-order square-wave interleaver can be designed. For the same target spectral requirements, if the filter order is 4,its transfer function can be obtained as

    Then,Eq.(16)can be decomposed into the sum of two all-pass functions

    It can be seen that an MZI with two cascaded single-stage ring resonators on each arm with appropriate phase delays can be configured to realize the target spectral characteristics. The four ratios of two polynomials in Eq.(15)are the transfer functions of the single-stage ring resonator in the upper and lower arms,respectively. By comparing the expression of the ratio with Eq.(2)to make them equal, the structural parameters of the ring resonator can be obtained. The DSP model and optical layout of the square mesh are shown in Fig.5(b). Table 1 gives its detailed structural parameters. The obtained transmission spectra at the two output ports are presented as the red lines in Fig.5(c).

    According to this design method, square-wave interleavers with other duty cycles (asymmetrical interleavers) can also be obtained. Figure 6(a)shows the layout of the square mesh configuration for an asymmetrical 5-order interleaver. The detailed structural parameters of the mesh are given in Table 2. The transmission spectra at one of the output ports are presented as the red,green,and blue lines in Fig.6(b),respectively.

    Fig.6. (a)The layout of the square mesh configuration for an asymmetrical 5-order interleaver. (b)Corresponding transmission spectra of the interleaver with duty cycles of 1:3,1:4,and 1:5.

    Table 1. Structural parameters of TBUs in the square mesh for 5-order and 4-order square-wave interleavers with a duty cycle of 1:2.

    Table 2. Structural parameters of TBUs in the square mesh for a 5-order square-wave interleaver with duty cycles of 1:3,1:4,and 1:5.

    The square mesh configurations for asymmetrical 4-order interleavers are the same as that of the symmetrical one but with different structural parameters,as shown in Table 3.

    It can be seen from the above results that the higher the filter order,the closer the transmission spectra of the filter is to the ideal square wave(with a higher rectangular degree). Both even- and odd-order interleavers can be designed to achieve arbitrary duty cycles with different mesh configurations. For the same odd order, the mesh configurations of symmetrical interleavers are different from those of asymmetrical ones.While, for the same even order, the mesh configurations are the same for symmetrical and asymmetrical interleavers. Additional phase delay is needed on both arms for the even-order interleavers, whereas it is not necessary for odd-order ones.The even-order interleavers have a cascaded structure of multiple single-stage ring resonators on both arms, whereas the odd-order ones are not cascaded structures.

    Table 3. Structural parameters of TBUs in the square mesh for 4-order square-wave interleavers with duty cycles of 1:3,1:4,and 1:5.

    5. Discussion

    5.1. Comparison of different mesh configurations

    Different mesh geometries have different figures of merit.[18]Here, triangular, hexagonal, and square mesh are compared in terms of the square-wave properties. The FSR of a square-wave interleaver can be expressed as[18]

    whereCis the speed of light in vacuum, andL=N×BUL is the total length of TBUs in the ORR. Due to different values ofNfor different mesh configurations, the BUL for the same FSR is different for triangular, square, and hexagonal mesh configurations. For an FSR = 100 GHz, the BUL is about 240μm,180μm,and 120μm for the triangular,square,and hexagonal mesh configurations, respectively, if the typical silicon-on-insulator(SOI)withng=4.18 is used. Table 4 lists the possible values of the FSR for triangular,square,and hexagonal mesh configurations with a BUL of 240 μm. The corresponding total ring lengthLis also shown. It can be seen from the table that the FSR can be 100 GHz, 50 GHz,33.3 GHz,25 GHz,20 GHz,16.7 GHz,...,100/nGHz withL=3n×BUL (n=1,2,3,...) for the triangular mesh configuration, 75 GHz, 37.5 GHz, 25 GHz, 18.8 GHz, 15 GHz,..., 75/nGHz withL= 4n×BUL (n= 1,2,3,...) for the square mesh configuration, and 50 GHz, 30 GHz, 25 GHz,21.4 GHz,18.8 GHz,16.7 GHz,15 GHz,...,150/(4+n)GHz withL=6×BUL, (8+2n)×BUL (n=1,2,3,...) for the hexagonal mesh configuration,respectively.Specific values of the FSR can be obtained with a selected mesh configuration,and the maximum number of FSRs(7 different FSRs)can be obtained with the hexagonal mesh configuration for the same range of total length from 1×BUL to 20×BUL.

    Table 4. Possible values of FSR for different mesh configurations with a BUL=240μm. The corresponding total ring length L is also shown.

    The square mesh configuration for a 4-order square-wave interleaver with a duty cycle of 1:2 is shown in Fig. 5(b).A total of 31 TBUs have been used and the total size is 16×BUL2. Figure 7 shows the layout of hexagonal and triangular mesh configurations with the same filter orders and duty cycles. The configurations are the standard square-wave interleaver configuration.[31]For a hexagonal mesh configuration,39 TBUs are needed,and the total size is. For a triangular mesh configuration,27 TBUs are needed,and the total size is.

    Fig. 7. The layout of (a) hexagonal and (b) triangular mesh configurations for a 4-order square-wave interleaver with a duty cycle of 1:2.

    5.2. Influence of design and fabrication errors

    In practical applications, there are various possible sources of errors, both in design and fabrication, that cause imperfect behavior of the TBUs, which will then introduce parasitic behavior in the mesh. These errors (which mainly include phase errors, and insertion loss) can accumulate and deteriorate the transmission spectrum of the circuit.[32]Taking the square mesh configuration (shown in Fig. 5(b)) as an example,the influence of the errors on the transmission characteristics of the circuit is discussed.All the TBUs are numbered as shown in Fig.8(a).

    Firstly,the influence of the phase error of a single TBU in different states is discussed.

    TBUs in the cross stateThe influence of the variation ofφu(orφl)for TBUs 1–4 on the transmission spectra is similar.The variations ofφuandφlhave almost the same influence on the transmission spectra for each TBU.A typical transmission spectrum is shown in Fig.8(b).It can be seen that the variation ofφu(orφl)for TBUs 1–4 only increases the insertion loss of the system,while the ripple of the passband and stopband,and the isolation are not changed. The positive and negative variations ofφu(orφl)have the same influence on the transmission spectra. A larger variation ofφu(orφl)would result in a larger 3-dB bandwidth.

    A typical result of the influence of the variation ofφufor TBU 5 on the transmission spectra is shown in Fig.8(c). The influence of the variation ofφufor TBUs 6–12 on the transmission spectra is similar to that for TBU 5(not shown here).The variations ofφuandφlhave almost the same influence on the transmission spectra for TBUs 5–12 as well. It can be seen that the variation ofφu(orφl) for TBUs 5–12 increases insertion loss,the ripple of the passband and stopband,and the isolation. The 3-dB bandwidth also increases with the variation ofφu(orφl), which is a little larger than that for TBUs 1–4. Besides,the positive and negative variations ofφu(orφl)on the transmission spectra are different.

    Fig.8. (a)The mesh configuration of the designed interleaver;(b)transmission spectra with different variations of φu for TBU 1;(c)transmission spectra with different variations of φu for TBU 5; (d) transmission spectra with different variations of φu for TBU 13; (e) transmission spectra with different variations of φu for TBU 25;(f)transmission spectra with different variations of φu for TBU 26;(g)transmission spectra with different variations of φu for TBU 28;(h)transmission spectra with different variations of φl for TBU 28. The insets show enlarged passbands.

    TBUs in the bar stateA typical result of the influence of the variation ofφufor TBU 13 on the transmission spectra is shown in Fig.8(d). Similar results can be obtained for TBUs 14–24(not shown here).The variation ofφufor TBU 25 on the transmission spectra is shown in Fig.8(e).The variations ofφuandφlalso have almost the same influence on the transmission spectra for TBUs 13–25.We can see that the variation ofφu(orφl)for TBUs 13–24 and 25 increases the insertion loss,the ripple of the passband and stopband,and the isolation. For TBUs 13–24,the ripple of the passband and stopband is asymmetrical,and the positive and negative variations ofφu(orφl)have different influences on the transmission spectra. Whereas,for TBU 25, the passband and stopband have equal ripples, and the positive and negative variations ofφu(orφl)have the same influence on the transmission spectra.

    TBUs in the tunable coupler stateA typical result of the influence of the variation ofφufor TBU 26 on the transmission spectra is shown in Fig. 8(f). The influences of the variations ofφufor TBUs 26 and 27 are similar,and the variations ofφuandφlhave almost the same influence on the transmission spectra for the two TBUs. The variation ofφu(orφl)for TBUs 26 and 27 only increases the insertion loss,isolation,and bandwidth. The positive and negative variations ofφu(orφl) have the same influence on the transmission spectra. The influence of the variation ofφuandφlfor TBU 28 on the transmission spectra is shown in Figs. 8(g) and 8(h), respectively.Similar results can be obtained for TBUs 29–31 (not shown here). It can be seen thatφuandφlhave different influences on the transmission spectra. The variation ofφuandφlfor TBUs 28–31 mainly increases the ripple of the passband and stopband,the isolation,and bandwidth.The ripple of the passband and stopband is asymmetrical as well,which is similar to TBUs 13–24.

    By comparing Figs. 8(b)–8(h), we can see that for the small variation(±0.02π),the phase shift of TBUs 1–4 has little effect on device characteristics,whereas that of TBUs 28–31 and 13–24,which form resonators,has a greater influence.

    Fig.9. Transmission spectra at the output port 1(or 2)with an insertion loss of 0.2 dB and(a)variation of φu,(b)variation of φl,and(c)simultaneous variations of φu and φl for all TBUs. (d)Transmission spectra at all ports with an insertion loss of 0.2 dB and δφu of 0.02π. The insets show enlarged passbands.

    For a PPIC,when multiple TBUs have phase errors,there is a higher possibility that light will leak into adjacent paths and cause undesired interference(crosstalk)within the circuit.Furthermore, when additional insertion loss is introduced in multiple TBUs, the light intensity will be attenuated. Figure 9(a) shows the transmission spectra at output port 1 (or2)with an insertion loss of 0.2 dB andδφuof 0,±0.02π,0.1πfor all TBUs,respectively.For comparison,the ideal transmission spectrum without phase errors and insertion loss is also shown. It can be seen that the flat-top transmission decreased obviously when a 0.2dB insertion loss was considered. When the variation ofφuis small, the positive and negative variations ofφuhave almost no significant different influence on the spectrum. However,the transmission spectrum changes obviously (especially for the isolation), and the center frequency shifts greatly when the variation ofφuis large. For the positive/negative variation ofφu,the transmission spectrum shifts to a high-frequency/low-frequency direction. The influence of the variation ofφl,and simultaneous variations ofφuandφlare shown in Figs.9(b)and 9(c),respectively. The shift direction of transmission spectra is opposite for the variations ofφuandφl. Besides the prescribed output ports (1 and 2), due to the leakage of light in all adjacent TBUs,the light will also output from all other ports of the circuit. Figure 9(d)shows the result of this whenδφuequals 0.02πfor all TBUs. The upper two curves in the figure are the transmission of output ports 1 and 2, and the remaining ones are those of other ports. We can see that although most signals are transmitted to output ports 1 and 2 with high transmission, a small part of the signals is leaked out through other ports simultaneously.

    6. Conclusion

    In this paper, from the perspective of DSP, the digital signal model of the PPIC is established. Based on this, a software-defined general design method for the PPIC is established using mature DSP technology and algorithm. The DSP design method establishes the relationship between optical and electrical signals, which is especially suitable for the design of the optoelectronic hybrid system, and which is not a feature of the conventional optical design method. To show the feasibility of this technique, photonic waveguide meshes with square configurations are designed to realize optical signal interleaving with tunable duty cycles. The influence of the shape of the mesh cell (mesh configuration) and the design and fabrication errors(which mainly include phase errors and insertion loss)of the tunable basic unit(TBU)on the performance of the interleavers is discussed in detail. The DSP approach offers an effective pathway for the establishment of a general design platform for software-defined PPICs.

    猜你喜歡
    張娟王陽
    Clinical study of warm needling moxibustion combined with entecavir in the treatment of compensated cirrhosis due to chronic hepatitis B
    “音”差陽錯
    華聲(2022年6期)2022-05-30 10:48:04
    經(jīng)皮穿刺氣管切開術(shù)在重癥醫(yī)學(xué)科的臨床應(yīng)用
    夢寐以求的生日禮物
    等待偃蒙命綻放
    女哥們概述
    山花(2020年11期)2020-11-30 09:14:44
    音差陽錯
    單戀這件事
    花火B(yǎng)(2015年5期)2015-05-30 10:00:20
    Critically discuss current and likely future developments relating to metadata
    卷宗(2014年1期)2014-03-20 01:28:52
    Information Systems in Organisations
    卷宗(2013年12期)2013-10-21 11:50:06
    国产v大片淫在线免费观看| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 久久香蕉精品热| 欧美av亚洲av综合av国产av| 香蕉丝袜av| 1024手机看黄色片| 日日爽夜夜爽网站| 男人舔女人的私密视频| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产乱子伦一区二区三区| 午夜精品一区二区三区免费看| 777久久人妻少妇嫩草av网站| 91字幕亚洲| 亚洲av成人av| 国产av又大| 国产在线精品亚洲第一网站| 国产熟女xx| 国产在线精品亚洲第一网站| 18禁国产床啪视频网站| 88av欧美| www日本黄色视频网| 国产三级中文精品| 动漫黄色视频在线观看| 日本成人三级电影网站| 亚洲成人久久性| 又紧又爽又黄一区二区| 亚洲精品一卡2卡三卡4卡5卡| 不卡一级毛片| 99国产极品粉嫩在线观看| 国产一区在线观看成人免费| 国产91精品成人一区二区三区| 亚洲精品国产精品久久久不卡| 天天添夜夜摸| 亚洲精华国产精华精| 欧美色视频一区免费| 99久久精品国产亚洲精品| 成人三级做爰电影| 日本一本二区三区精品| 国产亚洲精品一区二区www| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 日韩有码中文字幕| 国产亚洲精品一区二区www| 久久欧美精品欧美久久欧美| 亚洲成人国产一区在线观看| 国产一区在线观看成人免费| 国产成人欧美在线观看| 最近最新免费中文字幕在线| 色精品久久人妻99蜜桃| 亚洲av熟女| 国产高清有码在线观看视频 | 欧美色视频一区免费| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 免费在线观看日本一区| 天天一区二区日本电影三级| 精品一区二区三区视频在线观看免费| 欧美日本亚洲视频在线播放| 免费av毛片视频| 天天添夜夜摸| 久久九九热精品免费| 亚洲欧美精品综合久久99| 国产成人av激情在线播放| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 成人永久免费在线观看视频| 99re在线观看精品视频| 丝袜人妻中文字幕| 真人做人爱边吃奶动态| 国产三级中文精品| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 欧美成人午夜精品| 免费高清视频大片| 国产精品美女特级片免费视频播放器 | 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 精华霜和精华液先用哪个| 亚洲精品中文字幕一二三四区| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 久久精品国产清高在天天线| a在线观看视频网站| 最近最新中文字幕大全电影3| 国产99白浆流出| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 成人欧美大片| 丁香欧美五月| 午夜免费激情av| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 久久精品aⅴ一区二区三区四区| www.999成人在线观看| 青草久久国产| 熟女少妇亚洲综合色aaa.| 日本熟妇午夜| 丰满人妻一区二区三区视频av | www.999成人在线观看| av福利片在线| 在线十欧美十亚洲十日本专区| 在线观看一区二区三区| 两性夫妻黄色片| 国产精品野战在线观看| av国产免费在线观看| 大型av网站在线播放| 色尼玛亚洲综合影院| 欧美成人午夜精品| 久久久精品欧美日韩精品| 亚洲免费av在线视频| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 俺也久久电影网| 50天的宝宝边吃奶边哭怎么回事| 日本五十路高清| 制服丝袜大香蕉在线| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 久久中文看片网| 成人av在线播放网站| 人人妻人人看人人澡| 国产精品久久久av美女十八| a在线观看视频网站| 国产精品电影一区二区三区| 老熟妇仑乱视频hdxx| av在线天堂中文字幕| 久久久久国产一级毛片高清牌| 白带黄色成豆腐渣| 十八禁网站免费在线| 成人18禁在线播放| 亚洲专区中文字幕在线| 亚洲一码二码三码区别大吗| 精品久久久久久久久久免费视频| 国产av在哪里看| а√天堂www在线а√下载| 成人18禁在线播放| 午夜免费成人在线视频| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 欧美在线黄色| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影| 欧美午夜高清在线| av福利片在线| 无限看片的www在线观看| 久久这里只有精品中国| 国产麻豆成人av免费视频| 国产成+人综合+亚洲专区| 两个人免费观看高清视频| 给我免费播放毛片高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 午夜a级毛片| 黄片大片在线免费观看| 亚洲专区字幕在线| 波多野结衣高清作品| e午夜精品久久久久久久| 99国产精品99久久久久| 天堂影院成人在线观看| 精品国产乱码久久久久久男人| 十八禁人妻一区二区| 女人被狂操c到高潮| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 琪琪午夜伦伦电影理论片6080| 禁无遮挡网站| 级片在线观看| 欧美精品亚洲一区二区| 一区福利在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一进一出抽搐gif免费好疼| 十八禁网站免费在线| 日韩高清综合在线| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 曰老女人黄片| 国产三级在线视频| 在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| av超薄肉色丝袜交足视频| 久久草成人影院| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女| 国产又色又爽无遮挡免费看| 午夜亚洲福利在线播放| 国产成人一区二区三区免费视频网站| 国产激情偷乱视频一区二区| 亚洲成人久久性| 日韩三级视频一区二区三区| 成年免费大片在线观看| 欧美日韩黄片免| 制服丝袜大香蕉在线| 久久人妻av系列| 女人高潮潮喷娇喘18禁视频| 1024手机看黄色片| 又紧又爽又黄一区二区| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 色在线成人网| 日本一区二区免费在线视频| 欧美成人午夜精品| 久久久久久久精品吃奶| 国产熟女xx| 精品乱码久久久久久99久播| 亚洲精品国产一区二区精华液| 久久久久久九九精品二区国产 | 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 国产av麻豆久久久久久久| 99re在线观看精品视频| 亚洲成a人片在线一区二区| 小说图片视频综合网站| 欧美成人性av电影在线观看| 在线国产一区二区在线| 亚洲av成人av| 91大片在线观看| 午夜福利18| 成人手机av| 少妇熟女aⅴ在线视频| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 一本大道久久a久久精品| 男女床上黄色一级片免费看| 在线播放国产精品三级| 亚洲真实伦在线观看| 一本久久中文字幕| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 国产精品永久免费网站| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 在线永久观看黄色视频| 亚洲欧美精品综合久久99| 天天躁夜夜躁狠狠躁躁| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 中文字幕久久专区| 亚洲国产看品久久| www国产在线视频色| 身体一侧抽搐| 久久精品成人免费网站| 久久精品国产综合久久久| 18禁国产床啪视频网站| 日本三级黄在线观看| 国产野战对白在线观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 国产私拍福利视频在线观看| 首页视频小说图片口味搜索| av天堂在线播放| 国产亚洲av嫩草精品影院| 岛国在线观看网站| 国产亚洲精品久久久久5区| 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| 99久久综合精品五月天人人| 国产三级在线视频| 亚洲欧美激情综合另类| 久久精品人妻少妇| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 极品教师在线免费播放| 亚洲午夜理论影院| 亚洲中文av在线| 级片在线观看| 久久99热这里只有精品18| 久久久久久亚洲精品国产蜜桃av| 午夜福利在线在线| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 狠狠狠狠99中文字幕| 国产探花在线观看一区二区| 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 久热爱精品视频在线9| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 久久精品综合一区二区三区| 黑人欧美特级aaaaaa片| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| avwww免费| 亚洲成a人片在线一区二区| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 免费观看人在逋| 看免费av毛片| 亚洲熟妇熟女久久| 免费观看精品视频网站| 哪里可以看免费的av片| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 黄色a级毛片大全视频| 国产av一区二区精品久久| 欧美一级毛片孕妇| 中文字幕人成人乱码亚洲影| 91麻豆av在线| 国产不卡一卡二| 免费看日本二区| 日韩精品青青久久久久久| 久久久国产成人免费| 亚洲 欧美 日韩 在线 免费| 久久久久九九精品影院| 午夜两性在线视频| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 国产高清有码在线观看视频 | 麻豆国产97在线/欧美 | 中文字幕人妻丝袜一区二区| 国产人伦9x9x在线观看| 久久这里只有精品中国| 国产精品永久免费网站| 午夜免费观看网址| 久久热在线av| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 久久香蕉国产精品| 国产av麻豆久久久久久久| 亚洲av成人av| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| 国产av麻豆久久久久久久| 一二三四社区在线视频社区8| 两个人看的免费小视频| 宅男免费午夜| 最近最新中文字幕大全电影3| 丰满的人妻完整版| 中文在线观看免费www的网站 | 久久 成人 亚洲| 国产黄a三级三级三级人| 精品一区二区三区av网在线观看| 免费av毛片视频| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 一卡2卡三卡四卡精品乱码亚洲| 精华霜和精华液先用哪个| 免费看日本二区| 欧美av亚洲av综合av国产av| 午夜福利成人在线免费观看| 一区福利在线观看| 久久久久精品国产欧美久久久| 两个人免费观看高清视频| 法律面前人人平等表现在哪些方面| 国产一区在线观看成人免费| 国产精品 欧美亚洲| avwww免费| 亚洲国产中文字幕在线视频| 99久久精品热视频| 久久人妻av系列| 免费在线观看完整版高清| 九色国产91popny在线| 久久中文看片网| 久久国产精品人妻蜜桃| 久久精品影院6| 国产99久久九九免费精品| 免费高清视频大片| 男男h啪啪无遮挡| 琪琪午夜伦伦电影理论片6080| 亚洲av中文字字幕乱码综合| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| 久久精品91无色码中文字幕| 久久香蕉精品热| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 在线观看日韩欧美| 精品人妻1区二区| aaaaa片日本免费| 免费看a级黄色片| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 日韩欧美国产在线观看| 亚洲av成人av| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 成人av一区二区三区在线看| aaaaa片日本免费| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产清高在天天线| 啦啦啦韩国在线观看视频| 国产亚洲欧美在线一区二区| 在线观看舔阴道视频| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 国产成人影院久久av| 日本黄大片高清| 操出白浆在线播放| 国产野战对白在线观看| www.精华液| 国产私拍福利视频在线观看| 可以在线观看毛片的网站| 午夜福利免费观看在线| 欧美乱色亚洲激情| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 日韩有码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 丰满人妻一区二区三区视频av | 可以在线观看的亚洲视频| 又粗又爽又猛毛片免费看| e午夜精品久久久久久久| 巨乳人妻的诱惑在线观看| √禁漫天堂资源中文www| 国产精品,欧美在线| 欧美一级a爱片免费观看看 | 国产精品99久久99久久久不卡| 高清毛片免费观看视频网站| 12—13女人毛片做爰片一| 免费在线观看亚洲国产| 在线观看一区二区三区| 99热这里只有是精品50| 久久久久久大精品| 日韩精品中文字幕看吧| 青草久久国产| 亚洲精品在线观看二区| 亚洲avbb在线观看| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 人人妻,人人澡人人爽秒播| 性欧美人与动物交配| 久久精品夜夜夜夜夜久久蜜豆 | 久久亚洲精品不卡| 级片在线观看| 久久精品综合一区二区三区| 欧美性长视频在线观看| 高清毛片免费观看视频网站| 国产三级中文精品| 欧美另类亚洲清纯唯美| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 人妻夜夜爽99麻豆av| 亚洲欧美激情综合另类| 久久亚洲精品不卡| 欧美最黄视频在线播放免费| 在线观看美女被高潮喷水网站 | 一个人免费在线观看电影 | 亚洲成人国产一区在线观看| 波多野结衣巨乳人妻| 精品免费久久久久久久清纯| 全区人妻精品视频| 免费在线观看成人毛片| av在线播放免费不卡| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 少妇的丰满在线观看| 国产精品av视频在线免费观看| 夜夜躁狠狠躁天天躁| 久久久久久大精品| 欧美日韩精品网址| 99精品久久久久人妻精品| 免费看a级黄色片| √禁漫天堂资源中文www| 长腿黑丝高跟| 无限看片的www在线观看| 国模一区二区三区四区视频 | 欧美黑人欧美精品刺激| 国产亚洲精品一区二区www| 亚洲精华国产精华精| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 精品国产美女av久久久久小说| 窝窝影院91人妻| 搡老妇女老女人老熟妇| 在线观看www视频免费| 国产成人一区二区三区免费视频网站| avwww免费| 啦啦啦观看免费观看视频高清| 久久人妻福利社区极品人妻图片| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 久久精品夜夜夜夜夜久久蜜豆 | 国产一区二区在线观看日韩 | tocl精华| 无遮挡黄片免费观看| 精品久久久久久久久久久久久| 久久久水蜜桃国产精品网| 欧美绝顶高潮抽搐喷水| 成人手机av| 午夜影院日韩av| 欧美大码av| 舔av片在线| 一级黄色大片毛片| 免费在线观看成人毛片| 一进一出好大好爽视频| 久久精品国产综合久久久| 1024视频免费在线观看| 悠悠久久av| www国产在线视频色| 亚洲av美国av| 特级一级黄色大片| 欧美乱妇无乱码| 午夜福利18| 两个人看的免费小视频| 91av网站免费观看| 在线观看www视频免费| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 9191精品国产免费久久| 国产精品久久视频播放| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 露出奶头的视频| 亚洲欧美精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 亚洲美女视频黄频| 色综合婷婷激情| 国产亚洲精品久久久久5区| 亚洲最大成人中文| 欧美在线一区亚洲| 日韩大码丰满熟妇| 亚洲色图av天堂| 亚洲av第一区精品v没综合| 欧美乱码精品一区二区三区| 欧美一区二区国产精品久久精品 | 中文字幕av在线有码专区| 久久香蕉国产精品| 看片在线看免费视频| 欧美一区二区国产精品久久精品 | 午夜福利18| 欧美成人免费av一区二区三区| 国产高清激情床上av| √禁漫天堂资源中文www| 亚洲激情在线av| 欧美久久黑人一区二区| 久久久水蜜桃国产精品网| 在线国产一区二区在线| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 亚洲精品在线美女| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 91麻豆av在线| 国产免费av片在线观看野外av| 九色国产91popny在线| 变态另类丝袜制服| 久久精品国产综合久久久| 狠狠狠狠99中文字幕| 精品不卡国产一区二区三区| 两性夫妻黄色片| 天天躁夜夜躁狠狠躁躁| 女人被狂操c到高潮| 在线观看一区二区三区| 久久热在线av| 好看av亚洲va欧美ⅴa在| 国产蜜桃级精品一区二区三区| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片在线播放无| cao死你这个sao货| 熟女电影av网| 在线观看免费午夜福利视频| 国产男靠女视频免费网站| 首页视频小说图片口味搜索| av国产免费在线观看| 国产成人啪精品午夜网站| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 亚洲欧美精品综合一区二区三区| 亚洲成av人片免费观看| 国产三级中文精品| 久久久久国产一级毛片高清牌| 99久久精品热视频| 夜夜躁狠狠躁天天躁| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 桃红色精品国产亚洲av| 国内少妇人妻偷人精品xxx网站 | 亚洲成人久久爱视频| 国产在线观看jvid| 欧美大码av| 久久久久久大精品| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| www.自偷自拍.com| 成人亚洲精品av一区二区| 日韩欧美三级三区| 色综合婷婷激情| 国产成人精品久久二区二区91| 国产一级毛片七仙女欲春2| 亚洲精品国产一区二区精华液| 亚洲性夜色夜夜综合| 黄色 视频免费看| 国产高清videossex| 日日干狠狠操夜夜爽|