• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Giant and controllable Goos–H¨anchen shift of a reflective beam off a hyperbolic metasurface of polar crystals

    2024-01-25 07:13:02TianXue薛天YuBoLi李宇博HaoYuanSong宋浩元XiangGuangWang王相光QiangZhang張強(qiáng)ShuFangFu付淑芳ShengZhou周勝andXuanZhangWang王選章
    Chinese Physics B 2024年1期
    關(guān)鍵詞:淑芳張強(qiáng)

    Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(張強(qiáng)),Shu-Fang Fu(付淑芳),?, Sheng Zhou(周勝), and Xuan-Zhang Wang(王選章)

    1Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,and School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China

    2Department of Basic Courses,Guangzhou Maritime University,Guangzhou 510725,China

    Keywords: Goos–H¨anchen shift,black phosphorus,surface plasmon phonon polaritons,sensitivity,metasurfaces

    1.Introduction

    Real light beams with finite lateral width reflected at dielectric surfaces appear to be shifted in-plane and out-of-plane,which is not entirely consistent with geometrical optics predictions.The Goos–H¨anchen(GH)shift[1]refers to the beam shift parallel to the plane of incidence, while the Imbert–Fedorov(IF)shift[2]refers to the beam shift perpendicular to the incident plane.Artmann first theoretically described the GH shift in the regime of classical physics in 1948.[3]Optical losses due to optical absorption or scattering cannot be ignored in most materials, particularly metals.As a result, at an ordinary dielectric interface,the GH shift will be the same as the incident wavelength.The development of weak measurement technology has expanded the GH shift’s potential applications,[4]including the accurate measurement of optical properties.[5]Several studies have been conducted on various dielectric surfaces to enhance the GH shift, such as the metasurfaces,[6]topological insulators,[7]Weyl semimetals,[8]and metamaterials (MMs),[9,10]as well as two-dimensional(2D) atomic crystals,[11]and so on.A structure known as subwavelength gratings was recently used to improve the GH shift.[12]Wuet al., for example, demonstrated massive GH shifts in a compound grating waveguide structure that is aided by bound states in the continuum(BICs).[13,14]

    Due to their special electronic and optical properties,2D atomic crystals have revealed a variety of physical phenomena since the discovery of graphene.[15]The hyperbolic properties of graphene-based MMs can be achieved by adjusting the chemical potential controlled by the gate voltage or the doping level.[16]As an alternative to graphene, black phosphorus (BP) has received more attention, showing extraordinary potential in many applications, including photodetectors,[17]phase shifters,[18]and absorbers.[19]Unlike graphene,BP processes the puckered honeycomb lattice structure, resulting in the significant in-plane anisotropy.Furthermore,BP has a direct and layer-sensitive bandgap ranging from 0.3 eV to 2 eV,making it a remarkable material capable of achieving a tunable optical response over a broad range of wavelengths.[20]It is worth noting that 2D BP monolayers have been used in the development of polarization-sensitive broadband photodetectors, as well as traditional terahertz (THz) absorbers.[21]Motivated by the emergence of stacked 2D materials with a twist angle, the spatial shifts of the reflective beam from the hBN covered by a rotated BP layer are investigated.[22]Reference[23]investigated the spin Hall effect(SHE)on the surface of a twisted few-layer BP film,and discovered that an in-plane shift occurs and is sensitive to the twist angle.Surface plasmon polaritons(SPPs)can also be generated on the surface of a 2D BP film, which makes it a viable option for designing optoelectronic devices.[24]

    Ionic crystals(ICs),which constitute the majority of polar crystals,possess at least one reststrahlen band(RB)where the longitudinal and transverse components of permittivity have the opposite sign.[25]The optical phonon mode of lattice vibration in ICs strongly couples with electromagnetic waves to form surface phonon polaritons(SPhPs)in the THz range.Unlike photonic crystals and metamaterials,the excited SPhPs on the surface of ICs can travel longer distances than SPPs due to the much lower optical losses of ICs.[26]In the infrared to THz range, SPhPs can support sub-diffraction limited nearfield imaging,extraordinary transmission,and so on.[27]

    For conventional types of sensors that typically use noble metal like gold or silver to improve sensor sensitivity,[28]it is still a challenging to improve sensor sensitivity due to the low binding ability of gold with biomolecules and the poor chemical stability of silver in the air.Monitoring GH shift signals by controlling the structural parameters and material characteristics is an efficient way to realize the sensing performance.Based on this concept, a sensor that works in the THz range by measuring the GH shift effect is promised.A new dissolved oxygen sensor based on surface plasmon resonance (SPR) and GH shift has been proposed, where the hemoglobin is immobilized on the sensor chip through self-assembled monolayers.[29]A highly sensitive short-range mode resonance sensor made of multilayer structured hyperbolic MMs with a maximum sensitivity of 330 μm/RIU in the near-infrared band has recently been designed.[30]Reference [31] describes a graphene–MoS2heterostructure-coated Au GH shift sensor with a sensitivity of 5.545×105λ0/RIU.The sensibility of a bimetallic sensor based on graphene–hBN heterostructure can be improved by enhancing the GH shift in the infrared band, and a sensibility of 202×105λ0/RIU can be achieved.[32]By precisely controlling the GH shift in the graphene–substrate system at the optical communication band, Zhouet al.created a refractive index sensor with adjustable sensitivity coefficient, which can be increased to±1×108λ0/RIU by adjusting the Fermi energy.[33]In this work,we propose a metasurface structure made of polar crystals with BP-patches.The properties of the metasurface can be altered by adjusting parameters of BP-patches, such as inplane anisotropy,size,carrier density,and layer number.Another important feature is that the surface plasmon phonon polaritons (SPPPs) will be excited at the interface between the BP-patches and the polar crystal, which is coupled by SPPs in BP and SPhPs in the polar crystal.It has been proven that the generation of SPPPs is beneficial to enhance the spatial shift.[34,35]Based on these advantages,the proposed novel sensing method based on the enhanced GH shift exhibits superior sensibility, namely, the maximum sensitivity is up to 6.43×108λ0/RIU,which is almost two orders of magnitude higher than the conventional sensor.We believe that this work is conducive to the design of GH shift sensors in THz range,and may also play an important role in highly sensitive detection.

    This paper is organized as follows.Section 2 describes the metasurface structure created by the BP-patches,ZnS crystal,and sensor medium.Using the transfer matrix and equivalent circuit models,we provide a theoretical analysis of the GH shift and the proposed sensor device.Section 3 discusses how numerical simulations are used to verify the accuracy of theoretical models and provide additional physical insights.Finally,we summarize our findings in Section 4.

    2.Theoretical model and method

    In Fig.1(a), a hyperbolic metasurface based on BPpatches is constructed.The thickness of IC isdand the period of BP-patches is set toDalong thex- andy-axes.A sensing layer(SL)under the IC is utilized to detect the slight changes in its refractive index based on the GH shift.LxandLyindicate the lengths of the BP-patch along thex- andydirections, respectively.The case where the armchair (AC)and the zigzag (ZZ) along thex- andy-directions is referred to as the model-I.The model-II is defined when the directions of the armchair and zigzag are switched, as shown in Fig.1(b).The corresponding equivalent circuit model is plotted in Fig.1(c).We assume that a radiation beam impinges on the hyperbolic metasurface with incident angleθ.With the help of Kubo’s formula, the Drude model of BP conductivity can be described by[36]

    wherenBis the carrier density,η,mj,andsjrepresent the relaxation time,the effective mass of electrons,and the different strengths of the interband component along thejdirection,respectively.ωjis the frequency of the interband transitions for thejcomponent.Θis the step function.It is worth noting that the optical conductivity of an ultrathin BP film containing several monolayers(N <6)can be approximated asNσj,[37]whereNrepresents the layer number of BP film.The dielectric constant of the IC as the function of frequency is normally expressed as[38]

    whereεhandεlare the high and low frequency permittivity,fTis the transverse lattice vibration frequency, andτdrepresents the damping of optical loss.The RB of IC is shown byif the damping responsible for losses is ignored.The dielectric constant of the SL can be

    where Δnrefers to the change of refractive index of sensing medium.[31]Since the dimension of the unit-cell is assumed to be subwavelength, the surface with the patch-array can be characterized by a homogeneous surface impedance.For TMwaves,the surface impedance of BP-patches can be expressed by[39]

    A serial relationship exists between the IC layer and the semiinfinite SL,and the serial impedance is

    and the symbol “‖” represents the parallel relationship betweenZBPandZzs.The reflective coefficient is expressed by

    here the free space impedance for different incident angles is given asZ0=η0cosθ, whereη0=120πis the plane wave impedance in free space.The GH shift is then obtained by the well-known result[42]

    whereλ0is the vacuum wavelength of the incident light.Obviously,the GH shift can reach a peak when the phase difference experiences a sharp variation with the incident angle.Finally,the phase (φ) and reflectivity (R) of reflection coefficient are obtained from the formulae

    We define ΔGHas the change of GH shift with the changing of the refractive index and Δn=0.0002.Therefore,the sensitivity can be defined as[32]

    Fig.1.(a) Schematic diagram of the spatial shift on the metasurface of BP–ZnS–SL.(b) Model-I is defined as the armchair (AM) direction along the x-axis and model-II means the zigzag(ZZ)along x-axis.(c)The equivalent circuit diagram of this structure.

    3.Results and discussion

    For subsequent theoretical and numerical calculations,both the BP-patch period (D) and the thickness of ZnS (d)are 500 nm, andLxandLyare fixed at 100 nm.Of course,the structure parameters of BP can be adjusted to flexibly control the GH shift.The ZnS crystal is selected as an example wherefT=8.22 THz,εh=5.0 andεl=8.3.[43]The damping of ZnS is supposed to beτd=3 cm?1.Figure 2 presents the permittivity of ZnS versus the frequency.In the region offT<f <1.2884fTsituated in the mid-infrared range, the ZnS crystal possesses a negative permittivity which leads to the hyperbolic properties.For the conductivity of BP,a particular set of parameters for model-I is used,namely,mx=0.2m0andmy=0.7m0(m0is the static electron mass),η=0.01 eVωx=1.0 eV,sx=1.7,ωy=0.35 eV, andsy=3.7.[44]For model-II,we only need to exchange the electron mass alongxandy-directions.The real and imaginary parts of BP conductivity as a function of the frequency under the differentnBare illustrated in Fig.3.Atf=38.48 THz,a transition takes place for the real part ofσACand a dip is observed for the imaginary part.It is well-known that the BP exhibits the strong structure anisotropy, which means that the puckered lattice results in two inequivalent directions in-plane.As a result,the transition point for the real part ofσZZoccurs at about 13.74 THz,which is close to the RB of ZnS.In addition,the values of conductivity increase with the increasingnB.The electromagnetic response of the anisotropic 2D material is normally classified into two district regions.In the lower frequency region, the conductivity is considered as a pure Drude type, where the in-plane anisotropy results from the effective mass of the electrons traveling in various directions.Yet,the contribution from interband electron transitions may become dominant at higher frequencies.In the following discussions,we mainly focus on the two typical models.

    Fig.2.(a)Real and(b)imaginary parts of permittivity of ZnS slab versus frequency.The colored region indicates the RB.

    Fig.3.Conductivity of BP as a function of the frequency under the different nB and the transition occurs at(a) f =38.48 THz for σAC and(b)f =13.48 THz for σZZ.

    The relative impedance and the GH shift versus the frequency atN=1 andnB=1.0×1013cm?2are presented in Fig.4.For model-I shown in Fig.4(a),the relative impedance amplitude undergoes two transitions located in the lower and higher frequency regions,respectively.The first transition occurs at 11.2 THz,which is just close to the right boundary of the ZnS’s RB(see Fig.2).The other transition near 38.48 THz should be caused by the BP layer if we check its conductivity.An obvious GH shift is observed near the first transition atf=11.12 THz where the impedance approaches to zero,as shown in Fig.4(b).As a result of the zero reflection (see Eq.(8)),the incident angle will be close to the Brewster angle.When the BP’s zigzag direction is rotated to the direction of the armchair, only a transition in the lower frequency region is preserved and shifts from the higher frequency to the lower frequency, as illustrated in Fig.4(c).The inset in Fig.4(c)also indicates that the significant GH shift normally is excited near Brewster angles,as shown in Fig.4(d).It is reasonable to predict that the impedance transition is the result of the joint action of BP and ZnS.The in-plane anisotropy of BP will play a crucial role in the generation of large GH shifts.

    Fig.4.Impedance of the BP–ZnS–SL structure and the GH shift versus the frequency at N=1,nB=1.0×1013 cm?2,Lx=Ly=100 nm and(a)θ =60.89° for model-I,(b)θ =60.91° for model-II.

    Fig.5.Variation of (a) GH shift, (b) reflectivity and (c) phase with respect to angle of incidence under different nB at f =13.74 THz, N =1 and Lx=Ly=100 nm for model-I.

    Next,we investigate the regulation of BP on the GH shift by varying the carrier density, layer number, and size of BP.At first,we consider the effect ofnBon the GH shift since it is easily controlled by changing the gate voltage.For model-I, the GH shift, reflectivity, and phase with respect toθat 13.74 THz are presented in Fig.5.With the increasing ofnB, the GH shift turns from the positive to the negative one,and a large GH shift about Δxmax≈?378.98λ0is obtained atnB=3×1013cm?2.The lowest points of reflectivity are closer to zero and the phase becomes sharper, indicating that the incident angle is located near the Brewster angle, i.e.,θ=60.89°.AsnBincreases further, the GH shift decreases rapidly and maintains a relatively stable value about?73.7λ0whennB≥7×1013cm?2.On the other hand, the GH shifts atf=11.2 THz and 38.48 THz(see Fig.4(b))are very small,while it has been proven that the GH shifts are independent ofnB.For model-II,figure 6 illustrates the variation of GH shift,reflectivity, and phase withnBat the two special frequencies(see Fig.4(c)),respectively.For both cases,the maximum values of GH shift are obtained atnB=1×1013cm?2and rapidly decrease with the increasing ofnB.In Fig.6(a), the corresponding Brewster angle is fixed atθ=61.21°.However, in Fig.6(b),the GH shift exhibits the red shift phenomenon asnBincreases, resulting in the different Brewster angles for each curve.Moreover,the phase curve is steeper,implying that the conditions for obtaining a larger GH shift are relatively more stringent.These findings confirm the validity of regulating GH shift via gate voltage,which may provide an effective way to flexibly increase the GH shift, leading to the optimum sensitivity of the structure.

    Fig.6.Variation of GH shift,reflectivity,and phase with respect to angle of incidence under different nB at(a) f =11.12 THz,(b) f =13.609 THz,N=1 and Lx=Ly=100 nm for model-II.

    The effect of layer numberNof BP film on the GH shift is investigated further, and the maximum values of GH shift are screened out by precisely adjusting the size of BP while remainingnB=3×1013cm?2.We limitLxandLyto vary from 10 nm to 500 nm.Figure 7(a)depicts the maximum GH shift caused by a blue shift atf=11.2 THz ifN <5,resulting in different Brewster angles for each GH shift.The largest GH shift is found atN=3,which is about?7565.58λ0.It can also be seen that the size of BP required to obtain the maximum GH shift should satisfy the condition ofLx >Ly.In the inset of Fig.7(a),we present the distribution of the electric field at the maximum GH shift by using Comsol Multiphysics software.The localization effect is clearly visible on the edges of the BP-patches.Figure 7(b)demonstrates that large GH shift is found at the small size of BP-patch whenf=13.74 THz,such as,Δxmax=3150.76λ0atLx=11 nm,Ly=357 nm andN=2.Unlike Fig.7(a),the Brewster angle is normally fixed at 60.889°and the length of BP satisfiesLx <Ly.SinceLx ?Dthe interaction between the BP-patches obviously disappears,as shown in the inset of Fig.7(b).The stronger light localization only exists around each BP-patch.Finally,figure 7(c)plots the GH shift versus the incident angle atf=38.48 THz.It is apparent that whenN >2,the GH shift becomes negative and increases with the increase ofN.The largest GH shift can be obtained atN=5 and the BP-patch is close to the square.Although the interaction between the adjacent BP-patches is clearly enhanced compared to Fig.7(b), the GH shift is reduced due to the overall reduction of the optical localization.To summarize,if a large GH shift is pursued,then we should consider the optimum combination of BP-patch size and layer number given in Fig.7(a).However,if a small BP-patch size is expected,then we have to sacrifice the GH shift and consider the recommended dimensions in Fig.7(b).

    Fig.7.Maximum of GH shift under the different size of BP and layer numbers at nB = 3.0×1013 cm?2, and (a) f = 11.12 THz, (b) f =13.609 THz,and(c)nB=1.0×1013 cm?2, f =38.48 THz for model-I.The insets show the distributions of electric fields for the maximum GH shifts.

    For model-II,according to the discussion in Fig.6 we fixnB=1×1013cm?2and further adjust the size and layer number of BP to obtain the maximum of GH shift,as illustrated in Fig.8.Atf=11.12 THz in Fig.8(a),the GH shift presents a red shift phenomenon and changes from positive to negative.The maximum GH shifts achieve atN=1 whenLx=191 nm andLy=10 nm.The Brewster angle for each GH shift also drifts to the right asNincreases.In addition,Lx ?Lyif the maximum GH shift is desired.The strength and distribution of the electric field are presented in the insets.For the case atf=13.609 THz shown in Fig.8(b),the Brewster angle is fixed atθ ≈60.91°independent ofN.In addition,whenLx ≈LyandN=1 the GH shift is largest.However,onceN >1,the conditionLx >Lyhas to be selected to obtain the maximum value of GH shift.Compared with Fig.8(a),the maximum value of GH shift is relatively smaller,which may be understood if we carefully examine the strength of the electric field shown in the inset of Fig.8(b).Based on the above discussion,the large GH shift can be realized by artificially designing the size and the layer number of the BP-patch in the actual device fabrication.BP is a 2D anisotropic material,which can be deposited on the surface of ZnS by the chemical vapor deposition(CVD)technique[45]and molecular beam epitaxy(MBE).[46]

    Fig.8.Maximum of GH shift under the different size of BP and layer numbers at nB =1×1013 cm?2, and (a) f =11.12 THz and (b)f =13.609 THz for model-II.The insets show the distributions of electric fields for the maximum GH shifts.

    Fig.9.Highest sensibility with the largest GH shift for the different layer numbers of BP.The refractive index varies from 1.75 RIU to 1.85 RIU.The other parameters are the same as in Figs.7 and 8 for the different models, respectively.The inset in panel(c)shows the S is very small at N=1.

    Finally, based on the controllable GH shift, the possibility of its application in sensors is discussed.We use a sensitivity factorSto characterize the performance of the sensor.Both the layer numberNand carrier densitynBof the BP film greatly determine the GH shift.Therefore, the control variable method is used to analyze the performance of the sensor based on GH shift under the differentNandnBat Brewster angles.The highest sensibility with largest GH shift (see Figs.7 and 8) is sought when the refractive index varies from 1.75 RIU to 1.85 RIU with a scanning interval of 0.0002.Thus, it will make the detection of GH shift more accurate and convenient, and the sensitivity of the sensor can be improved correspondingly.The condition to produce the highest sensitivities under the differentNis shown in Fig.9,and the other parameters,including the size of the BP film,the carrier density, and the frequency, are the same as Fig.7 for the model-I and Fig.8 for model-II, respectively.The variation of the refraction index for eachSis indicated at the top of the bars.The sensibilityScorresponding to the GH shift in Figs.7(a)and 8(a)is presented in Fig.9(a).The maximum value ofScan reach 3.95×107λ0/RIU atN=2 for model-I and 1.62×107λ0/RIU atN=1 for model-II.Moreover, the order of magnitude ofSremains 107λ0/RIU for both models,with only a little difference whenN >2.Figure 9(b)presents the largest sensibility related to the GH shift in Figs.7(b)and 8(b).It can be seen that the sensibility atN=2 can reach about 1.5×107λ0/RIU for model-I and 1.72×107λ0/RIU atN=4 for model-II.Compared with Fig.9(a), the sensibility is obviously smaller.In particular, the smallestSis about 7.78×106λ0/RIU atN=5 for model-II.Finally, we check the sensibility atf=38.48 THz only for model-I related to Fig.7(c).As shown in Fig.9(c), the largest sensibility will reach 8.36×106λ0/RIU atN=5, which is smaller than the largest ones obtaining for the other two frequencies by an order of magnitude.The inset gives the sensibilitySforN=1 although the GH shift is not shown in Fig.7(c).It is clearly seen that the order of magnitude of the correspondingSis 10?7λ0/RIU,which may imply that a small GH shift has the potential to accompany a small sensitivityS.To summarize,it can be deduced that not only large GH shifts but also the flexible adjustment of sensibility are achieved in the BP–ZnS–SL sensor.It is noteworthy that the carrier densitynBhas a great influence on GH shift, which can be easily controlled by the external field.Thus,we will consider the sensibility regulation ofnBwhen the proposed structure is applied to the sensor.

    Based on the simulation results withN, we investigated the effect ofnBon the sensibility, as shown in Fig.10.The physical parameters are same as those in Fig.9,including the selection of the refraction index for each curve.In general,theSof model-I is higher than that of model-II,which can be the order of 108λ0/RIU;for example,S=6.43×108λ0/RIU atN=5,nB=2.98×1013cm?2andf=11.2 THz as well asS=5×108λ0/RIU atN=4,nB=0.997×1013cm?2,andf=38.48 THz.It can be seen from the above discussion that the precise control of the carrier density helps to obtain the higher sensibility in BP–ZnS–SL sensor.Compared with that in the symmetrical graphene-cladding waveguide and in a graphene–hBN heterostructure,[32]the sensibility obtained in the BP–ZnS–SL metasurface structure is enhanced at least two orders of magnitude,which suggests the potential application of sensors based on the GH shift in THz range.

    Fig.10.Sensibility versus nB for the different layer numbers based on Fig.9.

    4.Conclusion

    In conclusion, we propose a strategy to achieve tunable and larger GH shifts with the high sensibility in THz range via the excitation of SPPPs based on the BP–ZnS–SL metasurface structure.Under differentN,the largest GH shifts are predicted by dynamically adjusting the BP-patch size and the electron doping level.A comparison was made for the GH shift between model-I and model-II near the RB of ZnS and the transition of BP’s conductivity.It has been demonstrated that the largest GH shift can reach about?7565.58λ0atf=11.2 THz andθ=61.095°whenN=3,nB=3×1013cm?2,Lx=308 nm andLy=100 nm for model-I.The localized electric field around BP-patches can enhance the GH shift significantly.As a SPPP sensor based on the changing GH shift in THz range, the sensibility can reach at 6.43×108λ0/RIU when the index refraction of the senor medium is in the range of 1.75 RIU–1.85 RIU and the scan interval is 0.0002.The sensibility is at least two orders of magnitude larger than that of the conventional SPR sensor, which is extremely sensitive to the parameters of BP,including the size,carrier density,and the layer number near Brewster angles.These findings can serve as a theoretical foundation for designing SPPP sensors with high sensibility accompanied by a large GH shift in THz frequency.

    Acknowledgments

    Project supported by the Natural Science Foundation of Heilongjiang Province of China(Grant No.LH2020A014)and the Graduate Students’Research Innovation Project of Harbin Normal University(Grant No.HSDSSCX2022-47).

    猜你喜歡
    淑芳張強(qiáng)
    Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
    Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
    Visual Storytelling and Globalization
    攝影《黃河左岸》 魏淑芳
    91歲開畫展
    張強(qiáng)、肖龍飛招貼作品
    ChineseStudents’PerceptionofEnglishLanguageLearningActivitiesintheclass
    春雪(攝影)
    藏到夢里
    王夭一先勝張強(qiáng)
    棋藝(2016年4期)2016-09-20 05:41:04
    欧美性长视频在线观看| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 老司机影院毛片| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| 婷婷色麻豆天堂久久| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 精品福利观看| 搡老岳熟女国产| 久久国产精品大桥未久av| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 97精品久久久久久久久久精品| 男人添女人高潮全过程视频| 51午夜福利影视在线观看| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 欧美日韩av久久| 天天影视国产精品| 纵有疾风起免费观看全集完整版| www.精华液| 久久精品亚洲熟妇少妇任你| 成年动漫av网址| 精品免费久久久久久久清纯 | 丝袜脚勾引网站| 在线观看人妻少妇| 久久国产精品大桥未久av| 精品熟女少妇八av免费久了| 午夜福利视频精品| 亚洲图色成人| 国产熟女欧美一区二区| 久久久久久亚洲精品国产蜜桃av| 我要看黄色一级片免费的| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 大片免费播放器 马上看| 飞空精品影院首页| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av| av网站免费在线观看视频| 婷婷丁香在线五月| 亚洲欧美中文字幕日韩二区| 国产精品国产av在线观看| 国产成人精品久久久久久| 成人国产av品久久久| 日本wwww免费看| xxxhd国产人妻xxx| 亚洲中文字幕日韩| 在线精品无人区一区二区三| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 久久精品久久久久久久性| 亚洲精品一二三| 亚洲精品自拍成人| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区 | 啦啦啦视频在线资源免费观看| 免费在线观看影片大全网站 | 欧美另类一区| 国产精品一区二区精品视频观看| 亚洲成av片中文字幕在线观看| 国产一区二区三区av在线| 50天的宝宝边吃奶边哭怎么回事| 丝瓜视频免费看黄片| 午夜福利免费观看在线| xxx大片免费视频| www日本在线高清视频| 国产精品麻豆人妻色哟哟久久| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 2021少妇久久久久久久久久久| 午夜福利视频在线观看免费| 亚洲av日韩在线播放| 一级片'在线观看视频| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 亚洲国产av影院在线观看| 午夜91福利影院| 男女午夜视频在线观看| 国产精品 国内视频| 成人影院久久| 999久久久国产精品视频| 国产成人精品在线电影| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 国产欧美日韩精品亚洲av| 最黄视频免费看| 亚洲精品av麻豆狂野| 中文字幕亚洲精品专区| 免费观看av网站的网址| 高清av免费在线| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲国产精品国产精品| 男女下面插进去视频免费观看| 国产男女内射视频| 天堂俺去俺来也www色官网| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 日本欧美国产在线视频| 久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 久久久欧美国产精品| 欧美亚洲 丝袜 人妻 在线| 我的亚洲天堂| 久久久国产欧美日韩av| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 欧美+亚洲+日韩+国产| 国产av精品麻豆| av又黄又爽大尺度在线免费看| a级毛片黄视频| 国产欧美日韩一区二区三 | 日韩一卡2卡3卡4卡2021年| 一本久久精品| 一本一本久久a久久精品综合妖精| 亚洲天堂av无毛| 中文字幕高清在线视频| 成年动漫av网址| 一区二区三区精品91| xxxhd国产人妻xxx| 国产xxxxx性猛交| a级毛片在线看网站| 亚洲av电影在线观看一区二区三区| 亚洲精品国产区一区二| 一级毛片黄色毛片免费观看视频| 免费av中文字幕在线| 国产精品一二三区在线看| www.av在线官网国产| 亚洲欧洲国产日韩| 老司机在亚洲福利影院| 九草在线视频观看| 18禁国产床啪视频网站| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| cao死你这个sao货| 久久青草综合色| av在线app专区| 99国产精品一区二区蜜桃av | 午夜免费成人在线视频| 女人久久www免费人成看片| e午夜精品久久久久久久| 亚洲精品日本国产第一区| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 又紧又爽又黄一区二区| 国产欧美亚洲国产| 久久天躁狠狠躁夜夜2o2o | 只有这里有精品99| 狂野欧美激情性xxxx| 亚洲成人手机| 悠悠久久av| 亚洲人成网站在线观看播放| 永久免费av网站大全| 国产97色在线日韩免费| 不卡av一区二区三区| 午夜影院在线不卡| 高清黄色对白视频在线免费看| 国产成人一区二区三区免费视频网站 | 老司机影院毛片| 亚洲国产av影院在线观看| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 国产三级黄色录像| 99热网站在线观看| 一本久久精品| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 免费人妻精品一区二区三区视频| av国产久精品久网站免费入址| 美女中出高潮动态图| 制服诱惑二区| 日韩 亚洲 欧美在线| 19禁男女啪啪无遮挡网站| 精品欧美一区二区三区在线| 999久久久国产精品视频| 最近最新中文字幕大全免费视频 | 精品久久久久久久毛片微露脸 | 亚洲,一卡二卡三卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 午夜激情av网站| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 男的添女的下面高潮视频| 日日夜夜操网爽| 精品国产一区二区三区四区第35| 亚洲国产av新网站| 妹子高潮喷水视频| 人成视频在线观看免费观看| 亚洲av片天天在线观看| 国产不卡av网站在线观看| 国产成人一区二区三区免费视频网站 | 一个人免费看片子| 日本午夜av视频| 五月天丁香电影| 99国产精品免费福利视频| 久久久久视频综合| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情五月婷婷啪啪| 老司机深夜福利视频在线观看 | 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 亚洲精品乱久久久久久| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 国产99久久九九免费精品| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 国产精品久久久久成人av| 蜜桃在线观看..| 免费观看a级毛片全部| 欧美国产精品va在线观看不卡| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 日韩一本色道免费dvd| 99国产精品99久久久久| www.999成人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃国产av成人99| 免费看十八禁软件| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 国产精品免费大片| 久久人妻福利社区极品人妻图片 | 一区二区三区乱码不卡18| 搡老岳熟女国产| 一级片免费观看大全| 久久国产精品人妻蜜桃| 国产成人欧美| 在线天堂中文资源库| 两人在一起打扑克的视频| 成年人午夜在线观看视频| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美精品济南到| 免费一级毛片在线播放高清视频 | 国产激情久久老熟女| 国产片特级美女逼逼视频| 热99久久久久精品小说推荐| 免费高清在线观看视频在线观看| 国产99久久九九免费精品| 男人舔女人的私密视频| 成在线人永久免费视频| 大码成人一级视频| 欧美成人午夜精品| 亚洲国产日韩一区二区| 国产97色在线日韩免费| 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕| 亚洲精品日韩在线中文字幕| 美女扒开内裤让男人捅视频| 欧美性长视频在线观看| 午夜福利一区二区在线看| 日韩av在线免费看完整版不卡| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 宅男免费午夜| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩高清在线视频 | 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 久久性视频一级片| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 人体艺术视频欧美日本| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄色大片毛片| 欧美黑人欧美精品刺激| 性少妇av在线| 午夜激情av网站| 亚洲精品美女久久久久99蜜臀 | 日韩精品免费视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 999久久久国产精品视频| 日韩大码丰满熟妇| 亚洲国产精品成人久久小说| 国产av精品麻豆| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲 | 久热这里只有精品99| 爱豆传媒免费全集在线观看| 丁香六月天网| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 成年人午夜在线观看视频| 天天添夜夜摸| 丝袜美足系列| 老司机影院毛片| 丁香六月欧美| 成人免费观看视频高清| 国产成人a∨麻豆精品| kizo精华| 两人在一起打扑克的视频| 精品国产一区二区久久| 各种免费的搞黄视频| 免费日韩欧美在线观看| 亚洲视频免费观看视频| av福利片在线| 我要看黄色一级片免费的| 日韩视频在线欧美| 麻豆国产av国片精品| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 老司机在亚洲福利影院| 亚洲中文av在线| 高清av免费在线| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 人人澡人人妻人| 丝瓜视频免费看黄片| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 久久九九热精品免费| 热99国产精品久久久久久7| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频 | 色视频在线一区二区三区| av在线app专区| 久久99精品国语久久久| av在线播放精品| 美女中出高潮动态图| 久久精品亚洲av国产电影网| 亚洲成人手机| 亚洲欧美色中文字幕在线| 亚洲av国产av综合av卡| 国产成人免费无遮挡视频| 欧美在线黄色| 国产精品国产三级专区第一集| 91精品国产国语对白视频| 免费少妇av软件| 一区在线观看完整版| 亚洲三区欧美一区| 亚洲五月婷婷丁香| 另类精品久久| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 操美女的视频在线观看| 免费黄频网站在线观看国产| 777米奇影视久久| 搡老岳熟女国产| 国产一区亚洲一区在线观看| 日韩电影二区| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 国产精品三级大全| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 午夜免费鲁丝| www.av在线官网国产| 高清不卡的av网站| 亚洲成色77777| 99久久99久久久精品蜜桃| 国产成人精品在线电影| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 女性被躁到高潮视频| 99国产精品一区二区蜜桃av | 男女边摸边吃奶| 亚洲专区国产一区二区| 国产色视频综合| 国产精品久久久久久精品古装| 日本av免费视频播放| 悠悠久久av| 欧美日韩一级在线毛片| 97在线人人人人妻| 亚洲国产欧美在线一区| 欧美变态另类bdsm刘玥| 黄色a级毛片大全视频| 国产欧美日韩精品亚洲av| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 欧美精品人与动牲交sv欧美| 国产视频一区二区在线看| 免费人妻精品一区二区三区视频| 国产高清视频在线播放一区 | 丝袜美足系列| 天堂中文最新版在线下载| 欧美性长视频在线观看| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 一区在线观看完整版| 伊人久久大香线蕉亚洲五| 国产成人91sexporn| 国产野战对白在线观看| 大片电影免费在线观看免费| 免费看不卡的av| 国产一区二区 视频在线| 人妻人人澡人人爽人人| 久久99一区二区三区| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 黄色 视频免费看| 日韩伦理黄色片| 国产在线一区二区三区精| 桃花免费在线播放| 成年动漫av网址| 欧美大码av| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 久久性视频一级片| 亚洲av成人不卡在线观看播放网 | 亚洲自偷自拍图片 自拍| 天天操日日干夜夜撸| 99热全是精品| 国产极品粉嫩免费观看在线| 亚洲成人免费av在线播放| 熟女少妇亚洲综合色aaa.| kizo精华| 91精品国产国语对白视频| 国产免费现黄频在线看| 不卡av一区二区三区| 日韩一本色道免费dvd| 免费看av在线观看网站| 久久这里只有精品19| 午夜福利视频在线观看免费| 久久久久精品国产欧美久久久 | 国产有黄有色有爽视频| 国产精品99久久99久久久不卡| 久久精品亚洲av国产电影网| 99久久人妻综合| 狂野欧美激情性xxxx| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 国产亚洲午夜精品一区二区久久| 亚洲,欧美精品.| 国产1区2区3区精品| 少妇裸体淫交视频免费看高清 | 国产欧美日韩一区二区三区在线| av片东京热男人的天堂| 一区二区日韩欧美中文字幕| 脱女人内裤的视频| 香蕉丝袜av| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩精品久久久久久密 | 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 日韩视频在线欧美| 亚洲精品国产一区二区精华液| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| 亚洲国产av新网站| 亚洲专区中文字幕在线| 亚洲五月婷婷丁香| 亚洲一区中文字幕在线| 国产女主播在线喷水免费视频网站| 在现免费观看毛片| 男女免费视频国产| 亚洲自偷自拍图片 自拍| 久久99一区二区三区| 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| 电影成人av| 亚洲欧美精品综合一区二区三区| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 久久99一区二区三区| 老司机影院成人| 国产免费福利视频在线观看| 9热在线视频观看99| 成年美女黄网站色视频大全免费| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 日韩av免费高清视频| 一个人免费看片子| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 热re99久久国产66热| 精品福利永久在线观看| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品第二区| 欧美日韩成人在线一区二区| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 女人久久www免费人成看片| a级毛片黄视频| 69精品国产乱码久久久| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 精品久久久久久久毛片微露脸 | 国产一级毛片在线| 777米奇影视久久| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 免费看十八禁软件| 精品人妻1区二区| 久久久精品94久久精品| 亚洲成色77777| 亚洲欧美精品综合一区二区三区| 国产成人一区二区三区免费视频网站 | cao死你这个sao货| 久久久久久久大尺度免费视频| 成年女人毛片免费观看观看9 | www.熟女人妻精品国产| 成人亚洲精品一区在线观看| 久久久久国产精品人妻一区二区| 人人妻人人澡人人看| 91字幕亚洲| 国产一区二区在线观看av| 精品卡一卡二卡四卡免费| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| av在线app专区| 亚洲综合色网址| 91麻豆精品激情在线观看国产 | 久久精品成人免费网站| 亚洲图色成人| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 免费看av在线观看网站| 又粗又硬又长又爽又黄的视频| 在线天堂中文资源库| 丝袜脚勾引网站| 少妇人妻 视频| 热99久久久久精品小说推荐| 人妻人人澡人人爽人人| 亚洲美女黄色视频免费看| 日本欧美视频一区| 啦啦啦视频在线资源免费观看| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 国产有黄有色有爽视频| 老汉色∧v一级毛片| 一边亲一边摸免费视频| 午夜福利免费观看在线| 国产视频一区二区在线看| 成人国产av品久久久| 丝袜在线中文字幕| 2018国产大陆天天弄谢| 亚洲中文av在线| 亚洲精品第二区| 十分钟在线观看高清视频www| 亚洲成av片中文字幕在线观看| 亚洲精品日本国产第一区| 国产国语露脸激情在线看| 国产不卡av网站在线观看| 亚洲精品国产av成人精品| 日本色播在线视频| avwww免费| 久久精品久久精品一区二区三区| 精品福利永久在线观看| 午夜免费成人在线视频| 黄色a级毛片大全视频| 人成视频在线观看免费观看| 亚洲av成人不卡在线观看播放网 | 国产无遮挡羞羞视频在线观看| 久久久久国产一级毛片高清牌| 国产在线免费精品| 秋霞在线观看毛片| xxx大片免费视频| 性高湖久久久久久久久免费观看| 国产日韩欧美视频二区| 桃花免费在线播放| 精品人妻熟女毛片av久久网站| 国产精品熟女久久久久浪| 又大又黄又爽视频免费| 国产一卡二卡三卡精品| 欧美 亚洲 国产 日韩一| 久久精品久久久久久噜噜老黄| 制服诱惑二区| 欧美97在线视频| 亚洲中文日韩欧美视频| 久久性视频一级片| av欧美777| 99九九在线精品视频| 波多野结衣一区麻豆| 欧美变态另类bdsm刘玥| 又黄又粗又硬又大视频| 又大又黄又爽视频免费| 欧美黄色片欧美黄色片| 丝袜脚勾引网站| 十分钟在线观看高清视频www| 啦啦啦 在线观看视频| 国产视频一区二区在线看|