• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy

    2022-04-12 03:47:48ZeyuZhang張澤宇QiangZhang張強(qiáng)andWenboMi米文博
    Chinese Physics B 2022年4期
    關(guān)鍵詞:張強(qiáng)

    Zeyu Zhang(張澤宇) Qiang Zhang(張強(qiáng)) and Wenbo Mi(米文博)

    1Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology,School of Science,Tianjin University,Tianjin 300354,China

    2Core Technology Platforms,New York University Abu Dhabi,P.O.Box 129188,Abu Dhabi,United Arab Emirates

    Keywords: Mn4N,epitaxial film,anomalous Hall effect,scaling law

    1. Introduction

    The electrical control of spin in magnetic materials and devices plays an important role in the spintronics applications.The current-induced magnetization reversal or domain wall motion could be applied in magnetic recording, nonvolatile memory and energy-efficient devices.[1-3]The discovery of spin-orbit torque(SOT)has opened a series of opportunities to manipulate magnetization efficiently.[4,5]Recently, transition metal nitrides have gained much interest due to their excellent magnetic, electronic and chemical properties.[6,7]Mn4N is a typical transition metal nitride with the antiperovskite structure.[8,9]In particular,Mn4N shows ferrimagnetism with a Curie temperature of 745 K,[6]while other Mn-N compounds are antiferromagnetic.[10,11]Compared to Fe4N that also has antiperovskite structure, the high Curie temperature,high saturation magnetization and high spin polarization of Fe4N make it a potential candidate for magnetic recording and logical processing devices.[12,13]However, the in-plane magnetic anisotropy limits applications of Fe4N. Materials with low saturation magnetization could reduce the critical switching current density for SOT reversal of magnetization.[14]Therefore,the perpendicular magnetic anisotropy(PMA)and low saturation magnetization in Mn4N films reveal the potential of Mn4N in spin-torque applications.[15,16]Moreover, the reports about the high domain wall mobility in Mn4N films also confirmed that Mn4N is a promising candidate for spintronics applications.[17-19]

    The anomalous Hall effect (AHE) could be regarded as a useful tool to control spin-polarized currents and to characterize the magnetization.[20,21]Therefore, studying the spindependent transport properties of magnetic materials is beneficial to design of functional devices in spintronics.[22,23]In order to distinguish various contributions to the AHE,the conventional scaling law ofρAH∝ργxxwas proposed,[20]whereρAHis anomalous Hall resistivity andρxxis longitudinal resistivity.The skew scattering mechanism leads toγ=1,[24]while the side jump mechanism and intrinsic mechanisms leads toγ= 2.[25,26]The magnitude ofρxxin Mn4N film is about 102μΩ·cm, which lies in the region of Fe (10 μΩ·cm) and Fe3O4(104μΩ·cm). The AHEs of Fe and Fe3O4films have been investigated and they are in good agreement with the theory.[27,28]Although the AHE in Mn4N films has been investigated in recent years,[29-32]the origin of AHE in Mn4N films fabricated by reactive sputtering remains controversial. The clarification between the different contributions of the AHE in Mn4N films is of fundamental importance for applications of Mn4N.

    In this work, the AHE of epitaxial Mn4N films with different thicknesses fabricated by reactive facing-target sputtering is investigated in details. Different scaling laws are used to clarify the various contributions of AHE mechanisms. The effects of film thickness, magnetization and carrier concentration on the AHE scaling in Mn4N films are studied. The scaling exponentγ >2 is found in Mn4N films with different thicknesses by the conventional scaling ofρAH∝ργxx, which could be ascribed to the influence of residual resistivity. Different contributions from extrinsic and intrinsic mechanisms to AHE of Mn4N films are also investigated.

    2. Experimental details

    Mn4N films with different thicknesses(t=4.7,7.8,11.0,15.8,23.6,31.5,47.3,and 78.8 nm)were fabricated on MgO(001)substrates by the direct-current(DC)facing-target reactive sputtering from a pair of Mn targets (99.95%) with substrate temperature 505°C. The gas mixture of Ar (99.999%)and N2(99.999%)was introduced to the chamber and the pressure was kept at 1.0 Pa during the deposition. The sputtering power on the targets was 61 W.The surface morphology was analyzed by atomic force microscopy(AFM).The film thickness was determined using a Dektak 6M surface profiler and confirmed by transmission electron microscopy (TEM). The deposition rate was about 7.9 nm/min. The microstructures of the films were analyzed by x-ray diffraction (XRD) with CuKαradiation (λ=1.5406 °A) and high-resolution TEM (HRTEM).The magnetic properties were measured by a Quantum Design magnetic properties measurement system. The electronic transport properties were measured by a Quantum Design physical property measurement system.The Hall resistivityρxywas measured in a magnetic field applied perpendicular to the film plane range from-70 kOe to +70 kOe. In order to eliminate the contribution ofρxx, the realρxy(H) was obtained by subtracting theρxy(+70 kOe→-70 kOe)fromρxy(-70 kOe→+70 kOe)to remove the longitudinal resistivity component,which is found to be constant as a function of the magnetic field.

    3. Results and discussion

    To show the thickness dependence of surface roughness,the surface morphologies of the Mn4N films were obtained by AFM.Figure 1(a)displays the AFM images with scan range of 5μm×5μm for 7.8-47.3 nm-thick Mn4N films. The average surface roughnessRais defined as the arithmetic average deviation from the mean line within the assessment length.[33]TheRavalues for the 7.8,15.8,23.6 and 47.3 nm-thick Mn4N films are 0.293, 0.276, 0.277 and 0.443 nm, respectively, which show relatively smooth surfaces of films.

    Fig.1. (a)AFM images of the 7.8,15.8,23.6 and 78.8 nm-thick Mn4N films. (b)XRD θ-2θ pattern of the 78.8 nm-thick Mn4N film on the MgO(001)substrate. The XRD pattern of the MgO(001)substrate is shown as a reference. (c)XRD pole figure of the 78.8 nm-thick Mn4N film. (d) Cross-sectional HR-TEM image of the Mn4N/MgO interface of the 78.8 nm-thick Mn4N film. The inset in the green square is the corresponding FFT diffraction image of the area in the red square and The inset in the blue square is the inverse FFT image of the FFT image.

    Figure 1(b)shows the XRD patterns of the 78.8 nm-thick Mn4N film and the MgO (001) substrate. Only the diffraction peaks (00l) from the Mn4N film are observed, which suggests that the films grow with a preferred (001) orientation. Based on Bragg’s law, the calculated lattice constant of the Mn4N films is 3.93 °A, which is quite close to 3.87 °A of the Mn4N films prepared by molecular beam epitaxy.[16]Figure 1(c) shows the XRD pole figure of the Mn4N film on the MgO (001) substrate. The pole figure was collected at 2θ=40.365°andαfrom 20°to 90°. Atα=35.3°, there is no peak from the MgO substrate and only the Mn4N(111)peak appears.As seen in Fig.1(c),the strong diffraction peaks(111)indicate the film to be epitaxial.

    Figure 1(d) shows the HR-TEM image of the interface between the 78.8 nm-thick Mn4N film and the MgO substrate.The inset in the green square is the fast Fourier transform(FFT)diffraction image of the area labeled by red square. The FFT diffraction image also indicates the epitaxial growth of the Mn4N film,which is consistent with the XRD results. The inset in the blue square is the inverse FFT image of the FFT image,where one can clearly observe the orderly arranged Mn and N atoms, indicating a high-quality growth of the Mn4N film. Purple(Mn atoms)and white(N atom)dots were added to show different atoms. The magnified view of the Mn4N layer indicates thed-spacing of the film to be about 3.98 °A for(100)plane and 3.96 °A for(001)plane. The(001)d-spacing is larger than the XRD results of 3.93 °A,which is attributed to the influence of Mn4N/MgO interface on the structure of the Mn4N film.

    Fig. 2. Magnetic field-dependent Hall resistivity ρxy(H) of the (a) 78.8, (b) 47.3, (c) 31.5, (d) 23.6, (e) 15.8, (f) 11.0, (g) 7.8 and (h) 4.7 nm-thick Mn4N films at different temperatures. (i)M-H curves of the 78.8 nm-thick Mn4N film measured along the in-plane and out-of-plane applied magnetic field at 300 K.

    Electronic transport properties of the Mn4N films were investigated in the temperature range of 5-300 K. The Hallbar shaped samples were used for measuring the Hall resistivityρxyof Mn4N films with the thickness of 4.7-78.8 nm.Figures 2(a)-2(h)show theρxy-Hcurves of Mn4N films with different thicknesses at 5-300 K.Figure 2(i)shows theM-Hcurves of the 78.8-nm-thick Mn4N film measured along the inplane and out-of-plane applied magnetic field at 300 K. The hysteresis loops are clearly open in the magnetic field perpendicular to the films, which indicates the PMA of Mn4N films. The hysteresis loops of Hall resistivity show the similar behavior with that of field-dependent magnetization,which is different from the Hall resistivity of Fe4N.[34]The linear field dependence of Hall resistivity in the high-field regions originates from the ordinary Hall effect, which is caused by Lorentz force.[35]The Hall resistivity including ordinary Hall resistivity (ρOH) and anomalous Hall resistivity (ρAH) can be expressed asρxy=ρOH+ρAH=R0H+Rs4πM,whereR0andRsare ordinary and anomalous Hall coefficients,respectively,Mis the magnetization perpendicular to the film plane. TheρOHwas proportional to the applied magnetic field, and its sign follows the type of the charge carriers. The anomalous Hall resistivityρAHis obtained by subtracting the ordinary Hall componentR0Hfrom Hall resistivity by linearly fitting the high-field regions of theρxy-Hcurves, where the slope andy-axis intercept corresponds toR0andρAH, respectively.The insets of Figs. 2(b) and 2(d) display theρxy-Hcurves at 50 K, which shows a positive slope in high-field regions.The variation of slope implies the sign reversal of carrier concentration. The temperature-dependent carrier type transition indicates the change of electronic filling status and the shift of Fermi energy level in a topological structure.[36]The low temperature anomaly of the Hall resistivity is presumed to be caused by the tetragonal crystal field effect due to the structure distortion.[31]Note that theρxy-Hcurves of the 4.7 nm-thick Mn4N film are significantly different from other curves. The hysteresis behavior ofρxyhas disappeared and the sign reversal ofR0from negative to positive.The sign reversal of AHE is related to the change of band structure in the ultrathin films.[37]In addition, the sign reversal has also been observed in other materials such as(Bi1-xMnx)2Se3films.[38,39]

    Figure 3(a) displays the temperature-dependentρAHof Mn4N films with 7.8-78.8 nm thicknesses. TheρAHincreases sharply with the increasing temperature at 100-300 K. Below 100 K, theρAHshows weak temperature dependence.TheρAHof the 31.5 nm-thick Mn4N film is 2.698 μΩ·cm at 300 K, which is comparable to the value (2.8 μΩ·cm)for the 35 nm-thick Mn4N film fabricated by pulsed laser deposition[32]and also comparable with the typical PMA materials such asL10-type FePt film(1.7μΩ·cm)and amorphous TbxCo1-x(2μΩ·cm).[40,41]The value ofρAHat room temperature is lower than that of the Fe4N film (14.15 μΩ·cm) due to the higher conductivity.[34]In Fig.3(b),R0is negative,suggesting that electrons dominate transport properties. TheRsdetermined by theρAH/4πMsis displayed in Fig.3(c),which decreases with decreasing temperature monotonically and approaches almost zero at low temperature. Moreover, the carrier mobilityμdefined byμ=R0/ρxxis displayed in Fig.3(d).Theμof Mn4N films with different thicknesses increases with the increasing temperature from 5-50 K,and decreases in the temperature range from 50 to 300 K. The magnitude ofμabout 102cm2/(V·s)in Mn4N is one order larger than that in Mn2PtSn films(30 cm2/(V·s)),[42]which is consistent with the high conductivity of Mn4N films.

    Fig.3. Temperature-dependent(a)ρAH,(b)R0,(c)Rs and(d)μ of Mn4N films with different thicknesses on MgO substrates.

    Fig. 4. (a) Relation of logρAH vs. logρxx of Mn4N films with different thicknesses below 100 K, based on the conventional scaling of ρAH=aργxx.(b) Plots of σAH vs. σxx at different measured temperatures with the fitting lines by σAH =Aσγxx+B. (c) Plots of logρAH/m vs. logρxx for the 78.8 nm-thick Mn4N film at 5-300 K. (d) Plots of ρAH/nh vs. ρxx in log-log scale of the Mn4N films with different thicknesses at 5 K. (e) Plots of ρAH vs. ρxx for Mn4N films with different thicknesses below 100 K by the scaling of ρAH =αρxx0+bρnxx. (f)Plots of logρAH vs. logρxx for Mn4N films with different thicknesses at 5 K. (g) Plots of ρAH/ρxx vs ρxx at 5 K, with ρxx0 being the longitudinal resistivity at 5 K, the red line being the linear fit by ρAH0/ρxx0 =α+(β +b)ρxx0. The intercept is parameter α and the slope is (β +b). (h) Plots of ρAH vs. ρ2xx. Inset is the intrinsic contribution b obtained by the slope of fitting lines in(h). (i)The relation between σAH and σ2xx of the Mn4N films with different thicknesses,satisfying the σAH=-(ασ-1xx0+βσ-2xx0)σ2xx-b.

    The origin of the AHE mechanism could be characterized by exponential factorγin the conventional scaling ofρAH=aργxx. In order to distinguish the various contributions to the AHE mechanism, theρAH~ρxxrelations of Mn4N films with different thicknesses in a log-log scale are shown in Fig.4(a).TheρAH~ρxxcurves could be fitted to a series of straight lines with slopesγbelow 100 K,yet theρAHdeviates from the linear dependence at higher temperature. The scaling exponentγshows a strong dependence on film thickness.Note thatγis larger than 2 in all the Mn4N films. Generally,the scaling exponentsγof heterogeneous ferromagnetic systems are larger than 2,such asγ=2.6 of Fe/Cr multilayer andγ=3.7 of Co-Ag granular films.[43,44]Moreover,the interfacial scattering dominated AHE could also lead to a largeγ.[45]

    The anomalous Hall conductivityσAHversusσxxof Mn4N films with different thicknesses in a log-log scale is displayed in Fig. 4(b), which implies that theσxxfalls into the dirty regime. The fitted exponentγis 1.52 at 300 K.However, the data points are dispersed below 50 K, which indicates that the AHE in Mn4N films cannot be fitted by the scaling law ofσAH=Aσγxx+Bat low temperature. In order to investigate the nonlinear relationship in the high temperature induced by the temperature-dependent magnetization,[46,47]theρAH/mversusρxxof the 78.8 nm-thick Mn4N film in a log-log scale is plotted in Fig. 4(c), wheremis defined asm=Ms(T)/Ms(300 K). The data of log(ρAH/m) versus logρxxcould be well fitted in the temperature region from 5 K to 300 K. The magnetization-dependent AHE scaling law of Mn4N films also implies that only the data below 100 K could be analyzed,where the effect of temperature-dependent magnetization onρAHis negligible. The carriers and impurities govern the different origins of the AHE.In order to determine whether the AHE current is dissipationless, it is necessary to factor out the carrier concentration from Hall resistivity. The dissipationless Hall resistivity confirms that the anomalous velocity origin is topological in nature and is equally valid in the Bloch and localization regimes.[48]The curve of log(ρAH/nh)versus logρxxat 5 K is displayed in Fig.4(d)to investigate the dependence ofρAHonnh. The dissipationlessρAHsatisfies the relationship of (ρAH/nh)∝ρ2xx;α=3.44 at 5 K is obtained by linear fitting,which indicates that theρAHof Mn4N films is scattering-dependent.

    Note that the scaling exponentγis larger than 2 in all the films, hence other scaling laws are used to further analyze the AHE mechanism. In order to exclude the contribution of phonons to skew scattering, a proper scaling ofρAH=αρxx0+bρ2xxwas proposed.[49,50]Theρxx0is residual resistivity,which represents the impurity or defects scattering in the film. The scaling constantαis considered to be from skew scattering contributions,while the constantbrepresents the contributions from side-jump and intrinsic mechanism. In the previous report,the scaling ofρAH=αρxx0+bρ2xxshows an excellent agreement with the experimental data.[30]Here,consider the skew scattering contributions in the conventional scaling ofρAH=aργxx, the differences between phonons and impurities or defects could result in the scaling exponentγ >2.Therefore,the revised scaling ofρAH=αρxx0+bρnxxwas first used to separate out the temperature-independentρxx0from different contributions. Figure 4(e)shows the scaling fit well for the Mn4N films with different thicknesses,which confirms the difference between contributions from phonons and impurities. According to the fitting results,the scaling exponents vary from 1.61 to 2.67,indicating that the thickness-dependentρxx0leads to the scaling exponent larger than 2. Note that the scaling exponentn <2 has also been observed, the deviation of scaling exponent from 2 may be associated with the thermal disorder from a relatively skew scattering contribution.[51]Furthermore,in order to clarify the effect of impurity scattering on AHE, the logρAH-logρxxcurve at 5 K with different thicknesses is shown in Fig. 4(f). The slope valuen=2.20 is obtained by linear fitting, indicating that another extrinsic contribution exists besides the skew scattering.[52]

    4. Conclusions

    In summary,the antiperovskite-type epitaxial Mn4N films with different thicknesses have been deposited on MgO(001)substrates. The Hall resistivity is negative at positive magnetic field and shows a hysteresis behavior. Different scaling laws are used to distinguish the various contributions of AHE mechanisms. The deviation of the conventional scaling relation at high temperature is due to the influence of temperaturedependent magnetization. The anomalous Hall conductivity is scattering-dependent in Mn4N films. The scaling exponentγlarger than 2 for theρAH∝ργxxin Mn4N films with different thicknesses is the result of the contribution fromρxx0.The contributions from extrinsic and intrinsic AHE mechanisms are investigated by the proper scaling. The dominant mechanism of AHE in Mn4N films is related to the competition among skew scattering,side jump and the intrinsic mechanisms.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant Nos.51871161 and 52071233).

    猜你喜歡
    張強(qiáng)
    基于Zigbee的在線教學(xué)設(shè)計(jì)與探索
    改天請(qǐng)你喝酒
    故事會(huì)(2022年3期)2022-02-10 21:13:35
    這鎖真牛
    這鎖真牛
    張強(qiáng)、肖龍飛招貼作品
    藏到夢(mèng)里
    王夭一先勝?gòu)垙?qiáng)
    棋藝(2016年4期)2016-09-20 05:41:04
    張強(qiáng):國(guó)內(nèi)首個(gè)醫(yī)生集團(tuán)創(chuàng)始人
    張強(qiáng):轉(zhuǎn)身后的感悟
    張強(qiáng):“求包養(yǎng)”何來體面?
    svipshipincom国产片| 性色av乱码一区二区三区2| 久久久久久久午夜电影| 欧美性感艳星| 欧美zozozo另类| 最后的刺客免费高清国语| 99在线视频只有这里精品首页| 搡老妇女老女人老熟妇| 观看美女的网站| 日本 欧美在线| 免费观看人在逋| 一个人观看的视频www高清免费观看| 久久亚洲真实| 久久九九热精品免费| tocl精华| 精品无人区乱码1区二区| 亚洲第一欧美日韩一区二区三区| 精品欧美国产一区二区三| 热99re8久久精品国产| 国产v大片淫在线免费观看| 级片在线观看| 亚洲国产欧美网| 亚洲最大成人中文| 国产精品久久久久久久电影 | 亚洲狠狠婷婷综合久久图片| a级毛片a级免费在线| 午夜福利免费观看在线| 黄色视频,在线免费观看| 丝袜美腿在线中文| 毛片女人毛片| 97超级碰碰碰精品色视频在线观看| 色综合欧美亚洲国产小说| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 欧美日本视频| 日韩精品中文字幕看吧| 我的老师免费观看完整版| 一级a爱片免费观看的视频| 日韩欧美一区二区三区在线观看| 国产成年人精品一区二区| 18禁在线播放成人免费| 十八禁人妻一区二区| 亚洲人成伊人成综合网2020| 亚洲七黄色美女视频| 亚洲精品美女久久久久99蜜臀| 天天添夜夜摸| 欧美zozozo另类| 麻豆国产av国片精品| 狂野欧美激情性xxxx| 一本精品99久久精品77| 欧美高清成人免费视频www| 免费av不卡在线播放| 大型黄色视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品合色在线| 天堂av国产一区二区熟女人妻| 两性午夜刺激爽爽歪歪视频在线观看| 国产视频一区二区在线看| 日韩欧美国产一区二区入口| 搡女人真爽免费视频火全软件 | 最近视频中文字幕2019在线8| 国产伦人伦偷精品视频| 久久精品91无色码中文字幕| 午夜激情欧美在线| 国产高清videossex| 久久久久免费精品人妻一区二区| 午夜两性在线视频| 亚洲精品一区av在线观看| 高清日韩中文字幕在线| 国产一区二区三区在线臀色熟女| 中国美女看黄片| 老司机午夜十八禁免费视频| 国产av一区在线观看免费| 少妇的逼水好多| 亚洲色图av天堂| 97碰自拍视频| 他把我摸到了高潮在线观看| 舔av片在线| 午夜免费激情av| 欧美中文日本在线观看视频| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 人妻丰满熟妇av一区二区三区| 在线国产一区二区在线| 在线观看66精品国产| 国产精品久久久久久亚洲av鲁大| 一级a爱片免费观看的视频| 国产av不卡久久| 久久久久久久精品吃奶| 51国产日韩欧美| 日韩欧美国产在线观看| 免费人成在线观看视频色| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩国产亚洲二区| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 亚洲av美国av| 99国产精品一区二区蜜桃av| 51国产日韩欧美| 观看免费一级毛片| 熟妇人妻久久中文字幕3abv| av在线蜜桃| 久久这里只有精品中国| 欧美日韩中文字幕国产精品一区二区三区| 天天躁日日操中文字幕| 99热6这里只有精品| 国产高清videossex| 久久精品亚洲精品国产色婷小说| 999久久久精品免费观看国产| 美女大奶头视频| 成人特级av手机在线观看| 久久久久国内视频| 欧美日韩一级在线毛片| 精品99又大又爽又粗少妇毛片 | 男人的好看免费观看在线视频| 国产淫片久久久久久久久 | av片东京热男人的天堂| 啦啦啦观看免费观看视频高清| 国产乱人伦免费视频| 日本与韩国留学比较| 国产精品一区二区三区四区久久| 女人十人毛片免费观看3o分钟| 51国产日韩欧美| 国产在线精品亚洲第一网站| 在线十欧美十亚洲十日本专区| 亚洲 欧美 日韩 在线 免费| eeuss影院久久| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 国产精品美女特级片免费视频播放器| 日本三级黄在线观看| 婷婷丁香在线五月| 美女被艹到高潮喷水动态| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 岛国视频午夜一区免费看| 亚洲国产精品成人综合色| 国产成人av教育| 国产高清三级在线| 757午夜福利合集在线观看| 国产乱人视频| 99热只有精品国产| 91久久精品国产一区二区成人 | 欧美乱码精品一区二区三区| 欧美日韩黄片免| 国产91精品成人一区二区三区| 极品教师在线免费播放| 麻豆国产av国片精品| 欧美大码av| 3wmmmm亚洲av在线观看| 成年女人永久免费观看视频| 午夜老司机福利剧场| 99久久综合精品五月天人人| 免费av观看视频| 国产免费一级a男人的天堂| 久久精品国产亚洲av香蕉五月| 亚洲无线在线观看| tocl精华| 亚洲天堂国产精品一区在线| 成人高潮视频无遮挡免费网站| 91字幕亚洲| 亚洲熟妇熟女久久| 十八禁人妻一区二区| 亚洲第一电影网av| 手机成人av网站| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 欧美日韩一级在线毛片| 久久久久久久亚洲中文字幕 | ponron亚洲| 男女床上黄色一级片免费看| 欧美成人一区二区免费高清观看| 蜜桃亚洲精品一区二区三区| 亚洲成av人片在线播放无| 麻豆久久精品国产亚洲av| 丰满人妻一区二区三区视频av | 中文字幕久久专区| 日本黄大片高清| 国产精品一及| 嫩草影院入口| 校园春色视频在线观看| 欧美乱色亚洲激情| 国产男靠女视频免费网站| 国产精品日韩av在线免费观看| 久久性视频一级片| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 国产伦人伦偷精品视频| 欧美丝袜亚洲另类 | 嫩草影院入口| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 国产精品美女特级片免费视频播放器| 99热精品在线国产| 成人av一区二区三区在线看| 哪里可以看免费的av片| 久久久色成人| 精品一区二区三区av网在线观看| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 欧美成人一区二区免费高清观看| 国产高清videossex| 国产视频一区二区在线看| 免费av毛片视频| 久久久久国内视频| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 18禁国产床啪视频网站| 十八禁人妻一区二区| 九色国产91popny在线| 999久久久精品免费观看国产| 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| 久久精品91无色码中文字幕| 精品久久久久久久久久久久久| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 18禁裸乳无遮挡免费网站照片| 国产精品永久免费网站| 日本成人三级电影网站| 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 在线观看一区二区三区| 日本免费a在线| 国产v大片淫在线免费观看| 国产精品国产高清国产av| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人a在线观看| 色av中文字幕| 精品福利观看| 国产欧美日韩一区二区三| 一边摸一边抽搐一进一小说| 日韩欧美在线二视频| 熟女电影av网| 国产精品一及| 久久久久九九精品影院| 法律面前人人平等表现在哪些方面| 一本综合久久免费| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人 | 欧美三级亚洲精品| 久久精品影院6| 美女 人体艺术 gogo| 久久精品国产综合久久久| 村上凉子中文字幕在线| 少妇裸体淫交视频免费看高清| 美女 人体艺术 gogo| 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 一个人看视频在线观看www免费 | 99热这里只有精品一区| 久久国产精品影院| 免费电影在线观看免费观看| 亚洲国产欧美人成| 操出白浆在线播放| 中文字幕久久专区| 麻豆久久精品国产亚洲av| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 99国产综合亚洲精品| 亚洲欧美日韩高清专用| 小蜜桃在线观看免费完整版高清| 99视频精品全部免费 在线| 国产欧美日韩精品亚洲av| 亚洲人成伊人成综合网2020| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 在线观看午夜福利视频| 国产精品一区二区免费欧美| 人妻夜夜爽99麻豆av| 一个人免费在线观看的高清视频| 成人鲁丝片一二三区免费| 白带黄色成豆腐渣| 香蕉av资源在线| 精品一区二区三区视频在线 | 90打野战视频偷拍视频| 国产69精品久久久久777片| 色老头精品视频在线观看| 丰满的人妻完整版| 欧美乱妇无乱码| 9191精品国产免费久久| avwww免费| 亚洲成av人片免费观看| 成人精品一区二区免费| 无遮挡黄片免费观看| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 亚洲真实伦在线观看| 精品久久久久久久末码| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 日韩欧美国产在线观看| 好男人电影高清在线观看| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 成人高潮视频无遮挡免费网站| 国产免费av片在线观看野外av| 69人妻影院| svipshipincom国产片| 动漫黄色视频在线观看| 亚洲国产欧美人成| 欧美一级毛片孕妇| 午夜两性在线视频| 国产成人福利小说| 国产欧美日韩一区二区精品| 欧美乱码精品一区二区三区| 在线视频色国产色| 成人无遮挡网站| 成人一区二区视频在线观看| 亚洲精品一区av在线观看| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 亚洲av成人不卡在线观看播放网| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 一卡2卡三卡四卡精品乱码亚洲| 国产毛片a区久久久久| 黄片小视频在线播放| 久99久视频精品免费| 9191精品国产免费久久| 搡女人真爽免费视频火全软件 | 麻豆国产av国片精品| 国产亚洲精品一区二区www| 久久99热这里只有精品18| 精品欧美国产一区二区三| 在线国产一区二区在线| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看 | 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品50| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 国产亚洲精品av在线| 欧美午夜高清在线| 久久久久性生活片| 国产老妇女一区| 丰满乱子伦码专区| 欧洲精品卡2卡3卡4卡5卡区| 又粗又爽又猛毛片免费看| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 国产高潮美女av| 亚洲欧美一区二区三区黑人| 淫妇啪啪啪对白视频| 美女大奶头视频| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美精品.| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 嫩草影院精品99| 校园春色视频在线观看| 三级国产精品欧美在线观看| 狠狠狠狠99中文字幕| 怎么达到女性高潮| 男女下面进入的视频免费午夜| 国产淫片久久久久久久久 | 麻豆一二三区av精品| 在线观看一区二区三区| 在线免费观看不下载黄p国产 | 99久久精品国产亚洲精品| 亚洲av二区三区四区| 色综合站精品国产| 一本精品99久久精品77| 亚洲自拍偷在线| 国产欧美日韩一区二区精品| 岛国在线观看网站| 国产黄a三级三级三级人| 亚洲avbb在线观看| 精品电影一区二区在线| 日韩欧美精品免费久久 | 欧美日韩综合久久久久久 | 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 日韩人妻高清精品专区| 亚洲精品影视一区二区三区av| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 亚洲成av人片在线播放无| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| 亚洲国产欧美网| www.999成人在线观看| 国产免费男女视频| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 成人国产一区最新在线观看| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 99在线人妻在线中文字幕| 高清在线国产一区| 日韩成人在线观看一区二区三区| 麻豆成人午夜福利视频| 国产乱人伦免费视频| 国产精品女同一区二区软件 | 亚洲五月婷婷丁香| 激情在线观看视频在线高清| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 欧美bdsm另类| 97超级碰碰碰精品色视频在线观看| 不卡一级毛片| 欧美成人a在线观看| 熟妇人妻久久中文字幕3abv| 国产一区二区亚洲精品在线观看| 99久久成人亚洲精品观看| 国产真实伦视频高清在线观看 | 99热只有精品国产| 亚洲久久久久久中文字幕| 日本与韩国留学比较| 日韩有码中文字幕| 亚洲 欧美 日韩 在线 免费| 夜夜爽天天搞| 久久亚洲精品不卡| 热99re8久久精品国产| 午夜福利在线观看免费完整高清在 | 观看免费一级毛片| 国产主播在线观看一区二区| 免费在线观看成人毛片| 免费在线观看影片大全网站| 在线观看午夜福利视频| 中文资源天堂在线| 女生性感内裤真人,穿戴方法视频| 久久人妻av系列| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 一区二区三区高清视频在线| 一区二区三区免费毛片| www日本在线高清视频| 淫秽高清视频在线观看| 一级毛片女人18水好多| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av在线| 午夜精品久久久久久毛片777| 全区人妻精品视频| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久国产精品麻豆| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 精品久久久久久久久久久久久| 少妇丰满av| 99久久综合精品五月天人人| 亚洲美女黄片视频| 三级毛片av免费| 老熟妇仑乱视频hdxx| 十八禁人妻一区二区| 黄色日韩在线| 亚洲av熟女| 日韩国内少妇激情av| 天天添夜夜摸| 亚洲av中文字字幕乱码综合| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| 欧美午夜高清在线| 日本在线视频免费播放| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 国产真实伦视频高清在线观看 | 国产私拍福利视频在线观看| 日韩欧美在线二视频| 在线观看一区二区三区| 老司机福利观看| 国产真人三级小视频在线观看| 少妇的丰满在线观看| 日韩欧美精品v在线| 国产69精品久久久久777片| 免费看a级黄色片| 99精品久久久久人妻精品| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 国产黄色小视频在线观看| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 国产午夜精品论理片| or卡值多少钱| netflix在线观看网站| 久久中文看片网| 久久久久精品国产欧美久久久| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 国产精品香港三级国产av潘金莲| 成熟少妇高潮喷水视频| 日韩 欧美 亚洲 中文字幕| 91麻豆av在线| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 色噜噜av男人的天堂激情| 欧美日韩亚洲国产一区二区在线观看| 欧美bdsm另类| 成人18禁在线播放| 高清日韩中文字幕在线| 最新美女视频免费是黄的| 国产精品,欧美在线| 久久久精品大字幕| 99在线人妻在线中文字幕| 国产激情欧美一区二区| 亚洲精品国产精品久久久不卡| 波多野结衣巨乳人妻| 极品教师在线免费播放| 一本综合久久免费| 男女之事视频高清在线观看| 欧美日韩瑟瑟在线播放| 亚洲国产精品成人综合色| 国产黄片美女视频| 最后的刺客免费高清国语| 九九在线视频观看精品| 午夜老司机福利剧场| 一级黄色大片毛片| 久久久久九九精品影院| 全区人妻精品视频| 成人无遮挡网站| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 熟女人妻精品中文字幕| 精品人妻1区二区| 国产亚洲欧美98| 精华霜和精华液先用哪个| 99热这里只有精品一区| 日韩欧美一区二区三区在线观看| 制服人妻中文乱码| 国产高清视频在线观看网站| 黑人欧美特级aaaaaa片| 国产成人系列免费观看| 很黄的视频免费| 国产真实伦视频高清在线观看 | 亚洲乱码一区二区免费版| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| 在线播放国产精品三级| 久久久久久久久久黄片| 国产激情欧美一区二区| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 美女高潮的动态| 在线观看一区二区三区| 日韩欧美国产在线观看| 哪里可以看免费的av片| 亚洲国产欧美网| 国产高清有码在线观看视频| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看| 久久精品国产99精品国产亚洲性色| 男女下面进入的视频免费午夜| 中文在线观看免费www的网站| 有码 亚洲区| 亚洲午夜理论影院| 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 久久久色成人| 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 香蕉av资源在线| 天堂av国产一区二区熟女人妻| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 毛片女人毛片| 一区二区三区高清视频在线| 99久久精品国产亚洲精品| 男人舔女人下体高潮全视频| 级片在线观看| 久久香蕉国产精品| 国产精品99久久久久久久久| 老鸭窝网址在线观看| 亚洲电影在线观看av| 亚洲欧美激情综合另类| avwww免费| 国产在线精品亚洲第一网站| 久久久久久久午夜电影| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久末码| av在线蜜桃| 首页视频小说图片口味搜索| eeuss影院久久| 男女那种视频在线观看| 综合色av麻豆| 亚洲国产精品合色在线| 日本一二三区视频观看| 久久精品人妻少妇| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久| 亚洲成av人片在线播放无| 国产精品久久久久久人妻精品电影| 国产视频一区二区在线看|