• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of grain size on gas bubble evolution in nuclear fuel:Phase-field investigations

    2024-01-25 07:28:56DanSun孫丹QingfengYang楊青峰JiajunZhao趙家珺ShixinGao高士鑫YongXin辛勇YiZhou周毅ChunyuYin尹春雨PingChen陳平JijunZhao趙紀軍andYuanyuanWang王園園
    Chinese Physics B 2024年1期
    關(guān)鍵詞:周毅高士陳平

    Dan Sun(孫丹), Qingfeng Yang(楊青峰), Jiajun Zhao(趙家珺), Shixin Gao(高士鑫),Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陳平),?,Jijun Zhao(趙紀軍), and Yuanyuan Wang(王園園),?

    1Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu 610213,China

    2Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams,Dalian University of Technology,Dalian 116024,China

    Keywords: grain size,point defects,fission gas bubble

    1.Introduction

    Since the Fukushima accident occurs, the development of accident-tolerant fuels (ATFs) has been a more prominent topic of interest for improving the safety, competitiveness and economics of commercial nuclear power.[1]Large-grained UO2is a promising candidate to replace the traditional UO2fuel, as its larger grain size may reduce irradiation-induced swelling and fission gas release.[2]In addition, U3Si2fuel is also a potentially attractive substitute for commercial UO2fuel due to its higher thermal conductivity and uranium density.[2]These excellent properties can not only extend the refuelling cycle but also have a promising potential in reducing fuel enrichment.[3,4]Recently,more attention has been paid on the irradiation swelling behavior of large-grained UO2and U3Si2.

    Noirotet al.[5]compared the microstructures of coarsegrained UO2and conventional-grained UO2at the burnups of 72 GWd/tHM and 76 GWd/tHM, respectively.The bubbles and grain refinement were observed in the standard-grained UO2,while in the large-grained UO2,bubbles only formed at the center of grains and on the grain boundaries (GBs), indicating that coarse grains can effectively improve the irradiation resistance of UO2.The irradiation experiments performed by AREVA[6,7]indicate that fission gas release and fuel swelling are reduced by doping Cr2O3in the large-grained UO2.In the Cr2O3-doped UO2with large grain size,fission gas is mainly dissolved in the grains rather than on the GBs, which is different from that in the conventional-grained UO2.It can be attributed to the fact that the larger grain size increases the diffusion distance of fission gas from grain interior to GB,improving irradiation swelling resistance.Cooperet al.[8]investigated the influence of Cr on the diffusion rate of Xe atom in UO2using the cluster dynamics method,which is called by the BISON program to study the behavior of fission gas release in the doped UO2.

    Moreover, the irradiation properties of U3Si2are examined and analyzed.According to the microstructure of irradiated U3Si2/Al dispersion fuel, the fission bubbles are uniformly distributed within the U3Si2fuel particles.The mean diameter of bubbles is approximately 94 nm,leading to~11%increase of the volume fraction.[9]Taking account of the experimental results of irradiated U3Si2fuel in the light water reactor,[10,11]the bubble density and size are assessed by a fission gas model.It is assumed that fission gas release is controlled by the bubbles on the GB, and the sensitivity of the model parameters is additionally analyzed.On the other hand,a rate theory model of fission gas behavior is developed and applied to explore the swelling of U3Si2fuel.[12]The amorphous U3Si2fuel has also been observed under irradiation,and hence, Rest[13]established a model to study the behavior of fission gas bubble in the amorphous U3Si2.

    Despite the extensive research has been carried out on the irradiation performance of large-grained UO2and U3Si2, to authors’knowledge,the evolution of fission gas bubble in UO2and U3Si2fuels associated with different grain sizes under different fission rates and temperatures is still waiting to be identified.Nowadays,at the atomic scale,ab initiois widely used to simulate the thermal dynamics behaviors of irradiationinduced point defects(i.e., vacancy and self-interstitial atom)and fission gas atom in both UO2and U3Si2.[14–16]The phasefield approach considered as a typical mesoscopic method is employed to understand the formation and growth of bubbles and the gas swelling in the nuclear fuel.[17–20]For examples,Aagesenet al.[18]established a phase-field model by tracking the concentrations of vacancy and gas atom to simulate the fission bubbles in UO2fuel.Wanget al.[19]investigated the effects of vacancy concentration,the generation rate of Xe atom and the temperature gradient on the evolution of bubbles in UO2by means of the phase-field model.In addition, the morphology structure of intergranular fission gas bubbles in U3Si2is also investigated using the phase-field method.[20]

    Hence, in current work,ab initiocalculation is first performed to obtain the energetic values(e.g.,formation energy)of vacancy, self-interstitial and fission gas atom in U3Si2and UO2, respectively.A comparison of bubble density, size and porosity of U3Si2and UO2is presented under different temperatures and fission rates.The difference of bubble evolution characteristics under different grain sizes is shown.Moreover,the corresponding thermal conductivities of bubble-containing U3Si2are evaluated by the established steady heat transfer model.The predicted results can provide fundamental understanding on the mechanics of bubble formation and evolution,which is helpful for the future research on the irradiation swelling of U3Si2and UO2fuels.

    2.Computational framework

    2.1.Point defect energies from atomic simulation

    All the calculations are performed within the framework of density functional theory (DFT) using the projector augmented wave method implemented in Viennaab initiosimulation package (VASP).[21]We adopt the projector-augmented wave (PAW) potentials for the ion–electron interaction.[22]The generalized gradient approximation(GGA)in the parameterization by Perdew, Burke, and Ernzerh (PBE) of functional is used to describe the electron exchange–correlation interactions.[23]Moreover, the effects due to the localization of 5f electrons of uranium in UO2and U3Si2were treated with the GGA+Uapproximation, the value ofUeffis set as 4 eV for both UO2and U3Si2.[24–26]The calculated equilibrium lattice constants of UO2(a=c=5.57 ?A,b=5.50 ?A)are in reasonable agreement with the experiment data[27]and previous theoretical values.[28]The lattice constants of U3Si2(a=b=7.33 ?A,c=3.90 ?A)are using the experiment data.[29]The structures of UO2and U3Si2have been presented in Fig.1,respectively.We use a 96-atom UO2supercell formed by 2×2×2 unit cells and a 160-atom U3Si2supercell formed by 2×2×4 unit cells.The cutoff energy of plane wave is set as 500 eV.The Brillion zone integrations for UO2and U3Si2are performed using 4×4×5 and 3×3×3 Monkhorst–Pack grid,respectively.All atomic positions are fully relaxed at the constant volume until the energy variation on each atom is less than 1×10?4eV and the total force on each atom is less than 0.01 eV/?A.

    Fig.1.Structures of UO2 and U3Si2 crystals.Red ball represents O atom,blue ball represents U atom,and yellow ball represents Si atom.

    The formation energies (Ef) of vacancy and Xe atom in UO2and U3Si2are defined as

    Here,Etotalis the energy of the supercell containing a defect,μdenotes the chemical potential of atom in the most stable site, and thereforeμXeis the energy of an isolated Xe atom in a large empty supercell,μOis one half of the energy of a gas-phase O2molecule in a large empty supercell,μUandμSiare the energy per U/Si atom in the corresponding bulk phase,E0is the total energy of UO2/U3Si2supercell.By definition,a system with the positive formation energy means its formation process is endothermic,while the negative value to formation energy means exothermic.

    2.2.Phase-field model

    To explore the evolution features of intra- and intergranular bubbles in both UO2and U3Si2, the phase-field model is developed.[30–32]The total free energy of the polycrystalline system is written as

    Here,ηandφare the order parameters to distinguish the bubble phase and matrix phase and to identify different grains,respectively.Especially,ηequaled to 1 represents the bubble phase,andηequaled to 0 represents the matrix phase.Pis the number of possible orientations in space,andφi(i=1,...,p)are the orientation field variables.Across the GBs between the grainφiand its neighborhood grain,the absolute value ofφivaries continuously from 1 to 0.

    The free energy of the matrix(fm)is expressed as

    wherefbis the free energy of the gas bubble and is expressed by the simplified van der Waals equation of state in the following equation:

    whereA'is a constant fitted based on the experimental data,p0is the reference pressure,cbgis the atomic concentration of gas atom in the bubble.The definition ofcbgis given as

    wherenis the number of Xe atom in a bubble,Vbis the volume of bubble,NVis the number of vacancies,andVsiteis the volume of crystal lattice.

    The reference pressure is expressed as

    In current work,the simplified van der Waals equation of state is used and its expression is

    According to Ref.[33], parametersa,b, andcare determined as 259780 J·cm3/mol2, 23.9276 J·cm3/mol2, and 55.6583 J·cm3/mol2,respectively.

    To predict the intergranular bubble evolution,the effect of polycrystalline free energy is considered,andfpcis expressed as follows:

    The concentrations of vacancy (cv), self-interstitial (ci),and gas atom(cg)as a function of time are given as

    Here,Mis the migration rate of defect(Mm=Dmcm/kBTwithm=v i, and g), whereDis the diffusion coefficient,Pis the generation rate of defect, andRv,iis the recombination rate between the vacancy and the self-interstitial atom.All the performances are carried out in a 256Δx×256Δysimulation domain.The formation energies of defects are obtained by usingab initiocalculations in the present work and the other parameters are summarized in the following Table 1.The periodic boundary condition is applied to the simulation domain and we use the normalization parameters for the numerical calculation:l?=1 nm,t?=0.1 s.

    Table 1.Parameters used for phase-field simulations.

    3.Results and discussion

    3.1.Formation energies of point defects and Xe atom

    First,we compare the possible configurations and stabilities of intrinsic point defects in UO2and U3Si2host crystal.Four types of point defects in UO2(that is U vacancy (VU),O vacancy (VO), U interstitial (IU), O interstitial (IO)), and five types of point defects in U3Si2(that is two different U vacancies marked asVU1andVU2, where U1 and U2 represent the occupied positions in the minimum symmetric cell with U 4h(0.181, 0.681, 0.5) and U 2a(0, 0, 0), respectively, Si vacancy(VSi1), U interstitial(IU), and Si interstitial(ISi))are considered.The formation energies of these point defects are summarized in Fig.2.

    Fig.2.Formation energies of irradiation-induced point defects in(a)UO2 and(b)U3Si2 crystals,respectively,and the incorporation energy of Xe atom in(c)UO2 and(d)U3Si2 crystals,respectively.

    As shown in Fig.2(a), the stabilities of intrinsic defects in UO2increase in an order ofIO,IU,VO,andVU,and the corresponding formation energies are 0.34 eV, 3.27 eV, 5.40 eV,and 11.19 eV, respectively.While the stabilities of intrinsic defects in U3Si2increase in an order ofISi,VU2,VSi,IU, andVU1.Among the values of formation energies,Efof U vacancy in UO2is the highest one,and the value ofVU2in U3Si2is the lowest one.From the energetic point,O interstitial first forms in UO2than other intrinsic defects, while in U3Si2, the formations of U vacancy and Si interstitial are more energetically favorable than those of other intrinsic defects.

    To further reveal different thermodynamic behaviors of fission gas bubbles between UO2and U3Si2, we analyze the incorporation energy of Xe and the interaction between vacancy and Xe.The Xe atom occupied the interstitial site(IXe)and the substitutional site(XeX,Xrepresents U,O or Si atoms)is considered here.As shown in Fig.2(c), the incorporation energy ofIXein UO2is lower than those of XeUand XeO.Nevertheless,in U3Si2,the opposite result is obtained that Xe on the U2 site shows the most stable status.Then,we compare the stabilities of Xe–vacancy complexes in UO2and U3Si2.It should be noted that there are many types of divacancy in UO2and U3Si2, and we only consider the most stable divacancy.The most stable double vacancy in UO2is composed of one O vacancy and one U vacancy (VUO) and that in U3Si2is composed of two Si vacancies (V2Si).In UO2, the incorporation energies of Xe occupied the sites of single vacancy (VOandVU) and divacancy (VUO) are much lower than that of Xe at the interstitial site,especially theVUOsite.On the contrary,in U3Si2, the energy of Xe atom incorporated with divacancy is higher than that with monovacancy.A comparison of the incorporation energies in UO2and U3Si2indicates that Xe atom is more stable in U3Si2than that in UO2.

    3.2.Fission gas bubble and its effect on thermal conductivity

    3.2.1.Intragranular bubble

    Different temperatures and fission densities influence the formation characteristics of gas bubble (i.e., the density and size of gas bubbles) in the nuclear fuel.This is due to the temperature-dependent materials’parameters and the external irradiation environment.For UO2,we choose 1200 K,1773 K,and 2073 K as the representative temperatures to understand the effect of temperature on the bubble evolution, and three different temperatures at 473 K, 673 K, and 873 K are assumed to reveal the temperature impact on bubble formation in U3Si2.Figures 3 and 4 show the bubble morphologies in UO2and U3Si2as functions of time and temperature,respectively.The morphologies of UO2and U3Si2after irradiation show that the intragranular bubbles are generally formed.[35–37]Our simulation results are in good agreement with the experimental results.

    Fig.3.Morphologies of intragranular bubbles as a function of temperature in UO2 under different time points.

    Fig.4.Morphologies of intragranular bubble as a function of temperature in U3Si2 at different time points.

    With time increasing,both number and size of bubble increase.At the same time,their differences determined by temperature are obviously captured.In Fig.5, the density, size and porosity of intragranular bubbles in UO2and U3Si2varied with time are plotted respectively.Generally speaking,three stages of bubble density can be divided, that is incubation stage, formation and growth stage and coarsening stage.In each stage, obvious features are shown.At the incubation stage,there is no bubble in the matrix.A dramatic increase of bubble number occurs at the formation and growth stage,and then the number of bubbles keep almost unchanged at a longer time.Compared with the incubation stage at a lower temperature,higher temperature leads to longer incubation time.As is known, the gas atoms, vacancies and self-interstitial atoms experience the generation,diffusion,aggregation,recombination and annihilation to form individual gas bubbles, and the bubble connection would occur with increasing time.The temperature-dependent material parameters influence the formation time of bubble.The formation of bubble becomes more difficult at higher temperature since the energetic value and the defect diffusion coefficient are higher.

    Fig.5.Comparison of intragranular bubble density, size, and porosity at different temperatures in(a)–(c)UO2 and(d)–(f)U3Si2.

    For UO2, the bubble density at 1200 K is higher than those at both 1773 K and 2073 K (Fig.5(a)), and the mean size of gas bubble at 1773 K shows the highest value than those at other temperatures (Fig.5(b)).To assess the porosity,the bubble size and density are simultaneously considered.The maximal porosity occurs at 1773 K and the minimal one presents at 2073 K if the time is in a range of 180 days to 220 days(Fig.5(c)).For U3Si2,lower temperature reaches to the coarsening stage earlier than that at higher temperature in Fig.5(d), and the maximal and minimal bubble densities appear at 873 K and 473 K, respectively.Overall speaking, in Fig.5(e), the mean size of bubble at 873 K shows the largest one,and the smallest size presents at 473 K.As for a comparison of porosity in Fig.5(f),the highest one and the lowest one appear at 473 K and 873 K,respectively.

    Fig.6.Morphologies of intragranular bubble as a function of fission rate in UO2 at different time points.

    Fig.7.Morphologies of intragranular bubble as a function of fission rate in U3Si2 at different time points.

    In addition to temperature effect, higher fission rate indicates there will be more point defects generated in the fuel,facilitating the formation of more bubbles.In the following investigation,the fission rates of 1.09×1019m?3·s?1,2.09×1019m?3·s?1, and 3.09×1019m?3·s?1for UO2and 3.0×1020m?3·s?1, 5.0×1020m?3·s?1, and 7.0×1020m?3·s?1for U3Si2are assumed and performed on the phase-field simulation.As the microstructures shown in Figs.6 and 7,lower fission rate results in longer bubble incubation time in UO2and U3Si2.It can be attributed to the face that the number of point defects produced by lower fission rate is smaller than that by higher fission per unit time and per unit space.Yaoet al.[38]investigated the irradiation behavior of U3Si2under 300-keV Xe+ion beam bombardment, and the results shown that the formation and coalescence of Xe bubble increase with an increment of irradiation dose.

    Fig.8.Comparison of intragranular bubble density, size, and porosity at different fission rates in(a)–(c)UO2 and(d)–(f)U3Si2.

    To quantitatively investigate the influence of fission rate,the bubble density,size and porosity as a function of time are evaluated.The corresponding results of UO2and U3Si2are plotted in Fig.8, respectively.There is no doubt that bubble density,size and porosity in UO2increase with the fission rate increase.The value of bubble size at 3.09×1018m?3·s?1is much higher than those at other fission rates.However,for U3Si2, the bubble size increases with increasing fission rate if the evolution time is less than 316 days as shown in Fig.8(e).Once the time is greater than 316 days, the bubble size at 3.0×1020m?3·s?1increases dramatically as high as 58 nm.The bubble density increases with the increment of fission rate as shown in Fig.8(d).The porosity of U3Si2in Fig.8(f)illustrates that the increment of fission rate can lead to higher porosity.Compared with the experimentally measured data,[37]the predicted porosity of U3Si2is consistent with the evolution trend,which is shown in Fig.9.

    Fig.9.Predicted porosity in U3Si2 versus previous experimentally measured data.[29] LEU represents low enriched uranium, MEU represents medium enriched uranium,HEU represents highly enriched uranium.

    The bubble-containing microstructure can highly degrade the thermal property since the heat transfer capability of gas is much lower than that of solid matrix.To evaluate the effect of Xe gas-filled bubble on the thermal conductivity,the steady heat transfer according to the Fourier’s law is utilized.The effective thermal conductivity is expressed as

    Here, ˉJis the average heat flux per unit area, dT/dris the mean temperature gradient along therdirection.To numerically solve Eq.(15), the finite difference method is used.To authors’ knowledge, the temperature-dependent thermal conductivity of U3Si2is[39]

    The temperature-dependent thermal conductivity of Xe is[40]

    Therefore, the thermal conductivities of U3Si2at 473 K,673 K, and 873 K are 10.540 W/m·K, 13.198 W/m·K, and 15.704 W/m·K, respectively, and those of Xe at 473 K,673 K,and 873 K are 0.00861 W/m·K,0.01166 W/m·K,and 0.01452 W/m·K, respectively.From the comparison of thermal conductivities, it is found that the thermal conductivity of U3Si2is 3–4 orders of magnitude higher than that of Xe.According to the existing thermal conductivity model,[41]the variation rule of thermal conductivity can be described by the empirical formulaK=K0(1+P)ε, whereK0is the thermal conductivity of the matrix,Pis the porosity,εis the fitting parameter.Accordingly, the expression of thermal conductivity can be extended to

    Figure 10(a)shows the comparison between the simulated results and the fitting data.It confirms that the empirical model can well describe the thermal conductivity evolution with changing porosity.From the predicted results, the thermal conductivity decreases linearly with the increase of porosity, and the overall thermal conductivity increases with increasing temperature as expected.

    The thermal conductivity of U3Si2under different fission rates (e.g., 3.0×1020m?3·s?1, 5.0×1020m?3·s?1, and 7.0×1020m?3·s?1) can also be fitted by the empirical formulaK=K0(1+P)ε, and the corresponding expression is shown in the following format:

    To further consider the effect of fission rate on thermal conductivity, the formula can be derived intoK=K0(1+P)(A˙f+B),whereAandBare fitting parameters and ˙fis the fission rate.On a basis of the simulated thermal conductivity, the thermal conductivity can be fitted as follows:

    Figure 10(b)presents our predicted effective thermal conductivity of U3Si2using the classical Fourier’s law,compared with the data calculated from Eq.(22).It shows that the results match well with each other from these two simulation and modeling approaches, and the effective thermal conductivity as a function of fission rate decreases linearly since a higher fission rate leads to more generation of gas bubble.

    Fig.10.Thermal conductivity predictions of bubble-containing U3Si2 vary with(a)porosity and(b)fission rate,and predicted thermal conductivity as functions of(c)grain size and(d)porosity in polycrystalline U3Si2.

    3.2.2.Intergranular bubble

    GB is usually considered as the trapping position to vacancies, self-interstitial and gas atoms.Hence, the grain size plays an important role in the evolution of bubble.In this section, we investigated the interaction between GB and gas bubble in UO2and U3Si2with three different grain sizes(i.e.,10 μm, 25 μm, and 40 μm).The evolutions of intergranular bubbles in UO2and U3Si2are shown in Figs.11 and 12,respectively.

    Fig.11.Morphologies of intergranular bubble as a function of grain size in UO2 under different time points.

    A remarkable characteristic is captured that gas bubbles preferentially form at the trigonal GBs regardless of fuel type.This is because the incorporation energies of defects at the trigonal GBs are much lower,where point defects tend to cluster.On the other hand, bubbles formed on the straight GBs tend to be elliptical shape, which is closely related to minimize the interface energy between bubble surface and matrix.

    Fig.12.Morphologies of intergranular bubble as a function of grain size in U3Si2 under different time points.

    Fig.13.Grain size effect on the fraction of intergranular bubbles in(a)UO2 and(b)U3Si2.

    Figure 13 shows the GBs covered by bubble as a function of time in UO2and U3Si2, respectively, under different grain sizes.Relatively speaking, small grain size could induce more bubbles to form on the GBs.The porosity in UO2and U3Si2with the smaller grain size is higher than that with the larger grain size, which is more obvious in the case of U3Si2(Fig.13(b)).The results of in-pile irradiation test also demonstrate that the large-grained UO2fuel can improve the irradiation swelling performance.[6,7]The intergranular porosity in the large-grained UO2is much lower than that in the small-grained one.[5]As aforementioned, GB is the trapping location of point defects and gas atom.More GB proportions mean more bubble formation on the GB.In addition, previously formed bubbles are preferred to trap point defects and fission gas atoms to accelerate bubble growth or shrinkage.In summary,UO2and U3Si2with the mean grain size of 10μm show higher bubble coverage than the microstructures with the grain sizes of 25μm and 40μm.

    As is known, the thermal conductivity depends on the morphology of microstructure.On a basis of the phase-field simulated structure,we calculate the effective thermal conductivity of polycrystalline U3Si2.The effective thermal conductivity model and the thermal conductivities of the U3Si2matrix and Xe bubble at 473 K,673 K,and 873 K have been described in Subsection 3.2.1.The thermal conductivity of GB is used as 5 W/m·K in this study,which is the same as the previous work on polycrystalline UO2and U–Mo alloy.[42,43]Millettet al.[44]presented a general formula for estimating the effective thermal conductivity of polycrystals, and the specific expression is as follows:

    wherePmis the intergranular bubble occupancy,αandnare the fitting parameters,dis the mean grain size,G0kis the Kalcha conductivity coefficient.IfPmis equal to zero, the values ofβ,G0k, andmare 0.0158, 156.76 MW/m2·K, and 0.192,respectively,according to the fitted thermal conductivities related to different grain sizes.Consequently,the thermal conductivity considering grain size effect is given as

    Figure 10 plots the effective thermal conductivity as functions of(a)grain size and(b)porosity.In Fig.10(a),the effective thermal conductivity increases rapidly if the grain size is less than 10 μm; when the grain size exceeds 10 μm, the effective thermal conductivity increases in a slow rate.Different from grain size effect,the effective thermal conductivity varies with increasing porosity in a decrement.As expected, more gas bubbles are created in the microstructure with a smaller grain size,leading to a lower effective thermal conductivity as shown in Fig.10(b).To quantitatively evaluate the porosity effect,the thermal conductivities of polycrystalline U3Si2under the grain sizes of 10μm,25μm,and 40μm are described by the following expressions:

    4.Conclusions

    In this study,ab initiocalculations are carried out to assess the stabilities of point defects and fission gas atom, and the phase-field model are established to simulate gas bubble evolution in both UO2and U3Si2.The stabilities of vacancy,interstitial atom and fission gas atom,the interaction between vacancy and fission gas atom,the role of temperature, fission rate,and grain size on the bubble evolution as well as the corresponding effective thermal conductivities of irradiated microstructures have systematically investigated.The main findings can be summarized as follows:

    (i) The formation energy of vacancy and the incorporation energy of Xe atom in UO2are higher than those in U3Si2,and the vacancies can decrease the incorporation energy of Xe atom in both UO2and U3Si2.

    (ii) Higher fission rate indicates that more point defects are generated in the fuel, leading to more bubbles formation.Hence, the porosity increases with the increment of fission rate.

    (iii) The porosities of UO2and U3Si2with 40-μm grain size are much lower than those in the smaller one, since the diffusion distance of fission gas atom from the interior grain to the GB increases in larger grain size.

    (iv) The effective thermal conductivity strongly depends on the grain size,which influence the size and density of intergranular bubble.Higher porosity in the irradiated microstructure with smaller grain size can obviously degrade the thermal transfer capability.

    Our comprehensive calculations enhance the understanding on the intra- and inter-granular gas bubble evolutions in UO2and U3Si2, which is critical for the prediction of gas swelling of large-grained fuel pellet.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.U2167217, 12205286, and 11905025) and the National MCF Energy Research and Development Program of China(Grant No.2018YFE0308105).

    猜你喜歡
    周毅高士陳平
    美文(2024年12期)2024-06-07 12:21:06
    張負的慧眼
    張負的慧眼
    Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating*
    閑心
    讀者(2019年19期)2019-09-24 02:00:55
    閑情
    高 士
    寶藏(2019年6期)2019-01-15 14:52:30
    蘇州主廚挑戰(zhàn)世界,有一種蛋糕叫“古典美人”
    分憂(2018年3期)2018-04-28 09:52:28
    陳平過河
    周毅:做個有親和力的氣質(zhì)女
    優(yōu)雅(2015年9期)2015-09-07 19:08:32
    国产不卡一卡二| 成人三级黄色视频| 国产亚洲精品综合一区在线观看 | av中文乱码字幕在线| 亚洲成人免费电影在线观看| 韩国av一区二区三区四区| 免费av中文字幕在线| 在线观看免费午夜福利视频| 香蕉丝袜av| 久久精品aⅴ一区二区三区四区| 在线观看www视频免费| 久久午夜亚洲精品久久| 午夜影院日韩av| 我的亚洲天堂| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 黄片大片在线免费观看| 国产深夜福利视频在线观看| 午夜成年电影在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 18禁裸乳无遮挡免费网站照片 | 亚洲欧美精品综合一区二区三区| 9热在线视频观看99| 亚洲va日本ⅴa欧美va伊人久久| 香蕉久久夜色| 日日夜夜操网爽| 天堂影院成人在线观看| 伦理电影免费视频| 两个人看的免费小视频| 国产aⅴ精品一区二区三区波| www.精华液| 制服人妻中文乱码| 黑人欧美特级aaaaaa片| 国产成人av激情在线播放| 黄片播放在线免费| 我的亚洲天堂| 色播在线永久视频| 久久精品亚洲精品国产色婷小说| 美国免费a级毛片| 日韩免费高清中文字幕av| 国产伦一二天堂av在线观看| 亚洲精品av麻豆狂野| 91精品国产国语对白视频| 免费一级毛片在线播放高清视频 | 女人被狂操c到高潮| 日韩一卡2卡3卡4卡2021年| 成年女人毛片免费观看观看9| 99久久综合精品五月天人人| 成人18禁在线播放| 久久久久久久久免费视频了| 日韩大尺度精品在线看网址 | 亚洲国产欧美网| 亚洲自偷自拍图片 自拍| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 亚洲中文字幕日韩| 精品国产超薄肉色丝袜足j| 欧美成人午夜精品| 精品久久久精品久久久| 国产成人啪精品午夜网站| 中文欧美无线码| 午夜精品久久久久久毛片777| 精品乱码久久久久久99久播| 伊人久久大香线蕉亚洲五| 国产亚洲精品综合一区在线观看 | 黄色 视频免费看| 久久久久久久久中文| 热99re8久久精品国产| 日韩视频一区二区在线观看| 亚洲国产精品sss在线观看 | 人妻久久中文字幕网| 国产激情久久老熟女| 久久精品国产99精品国产亚洲性色 | 999精品在线视频| 午夜免费成人在线视频| 巨乳人妻的诱惑在线观看| 国产精品久久久人人做人人爽| 日本精品一区二区三区蜜桃| 亚洲精品美女久久av网站| 久久中文字幕人妻熟女| 亚洲av熟女| 如日韩欧美国产精品一区二区三区| 日本一区二区免费在线视频| 国产区一区二久久| 国产片内射在线| av国产精品久久久久影院| 一级毛片高清免费大全| 成人永久免费在线观看视频| 一边摸一边抽搐一进一出视频| 精品少妇一区二区三区视频日本电影| 久久精品91蜜桃| 日韩欧美国产一区二区入口| 亚洲欧美日韩无卡精品| 一进一出好大好爽视频| 亚洲精品粉嫩美女一区| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 这个男人来自地球电影免费观看| 久久久久国内视频| 欧美成狂野欧美在线观看| 日韩有码中文字幕| 老司机午夜福利在线观看视频| 国产高清videossex| 看片在线看免费视频| 一本大道久久a久久精品| 国产精品98久久久久久宅男小说| 国产高清视频在线播放一区| 亚洲国产看品久久| 精品乱码久久久久久99久播| 国产精品av久久久久免费| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 50天的宝宝边吃奶边哭怎么回事| 日韩免费高清中文字幕av| 一级a爱视频在线免费观看| 久久久久久人人人人人| 国产又爽黄色视频| 亚洲第一青青草原| 久久久精品欧美日韩精品| 欧美在线一区亚洲| 在线观看日韩欧美| 亚洲精品国产一区二区精华液| 高清在线国产一区| 美女福利国产在线| a级毛片黄视频| 欧美日韩亚洲高清精品| 精品久久久久久,| 在线免费观看的www视频| 成在线人永久免费视频| 99国产精品一区二区蜜桃av| 男人操女人黄网站| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 热re99久久国产66热| 亚洲午夜精品一区,二区,三区| 悠悠久久av| 在线观看一区二区三区激情| 久久精品国产清高在天天线| 欧美日韩亚洲综合一区二区三区_| 一级,二级,三级黄色视频| 精品无人区乱码1区二区| 国产精品永久免费网站| 黄色毛片三级朝国网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品成人av观看孕妇| 欧美日韩黄片免| 新久久久久国产一级毛片| 他把我摸到了高潮在线观看| 女性生殖器流出的白浆| 亚洲五月天丁香| 又大又爽又粗| 午夜老司机福利片| svipshipincom国产片| 国产1区2区3区精品| 欧美 亚洲 国产 日韩一| 色哟哟哟哟哟哟| 国产亚洲精品第一综合不卡| 黄色女人牲交| tocl精华| 久久久精品国产亚洲av高清涩受| 成人三级做爰电影| 人人妻人人添人人爽欧美一区卜| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区mp4| 一进一出抽搐gif免费好疼 | 午夜精品久久久久久毛片777| 精品日产1卡2卡| 欧美久久黑人一区二区| 欧美乱码精品一区二区三区| 女同久久另类99精品国产91| 精品久久久久久,| 久久久水蜜桃国产精品网| 母亲3免费完整高清在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲成国产人片在线观看| av网站在线播放免费| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲| 麻豆成人av在线观看| 神马国产精品三级电影在线观看 | av在线播放免费不卡| 久久精品影院6| 国产精品 国内视频| 亚洲人成伊人成综合网2020| svipshipincom国产片| 咕卡用的链子| 悠悠久久av| avwww免费| 久久中文字幕人妻熟女| 国产精品偷伦视频观看了| 欧美中文日本在线观看视频| 亚洲欧美日韩高清在线视频| 香蕉久久夜色| 黄网站色视频无遮挡免费观看| 精品国产乱码久久久久久男人| 亚洲视频免费观看视频| 日韩免费av在线播放| 国产精品亚洲一级av第二区| 国产伦一二天堂av在线观看| 美女福利国产在线| 精品国内亚洲2022精品成人| 法律面前人人平等表现在哪些方面| 成人国语在线视频| 日本vs欧美在线观看视频| 波多野结衣一区麻豆| 亚洲国产精品一区二区三区在线| 国产精品二区激情视频| 一进一出好大好爽视频| 亚洲精品久久成人aⅴ小说| 精品人妻1区二区| 日本五十路高清| 欧美日韩黄片免| 美女午夜性视频免费| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站 | 色综合婷婷激情| 亚洲精品国产区一区二| 在线观看一区二区三区激情| 免费高清在线观看日韩| 成人手机av| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 欧美在线黄色| 国产一区二区三区在线臀色熟女 | av免费在线观看网站| 天天影视国产精品| 午夜福利在线免费观看网站| 国产成人影院久久av| 午夜成年电影在线免费观看| 高清欧美精品videossex| 少妇粗大呻吟视频| av欧美777| 成在线人永久免费视频| 国产成人av教育| 国产精品电影一区二区三区| 夜夜看夜夜爽夜夜摸 | 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 久久亚洲精品不卡| 久久中文字幕一级| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 亚洲一码二码三码区别大吗| x7x7x7水蜜桃| 91在线观看av| 久久人人97超碰香蕉20202| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影观看| 欧美久久黑人一区二区| 日韩中文字幕欧美一区二区| 免费av毛片视频| 亚洲精华国产精华精| 久久草成人影院| 久久精品亚洲精品国产色婷小说| 欧美日本亚洲视频在线播放| 亚洲男人天堂网一区| 国产黄色免费在线视频| 在线播放国产精品三级| 精品少妇一区二区三区视频日本电影| 国产高清激情床上av| 亚洲一区二区三区欧美精品| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 欧美日本亚洲视频在线播放| 他把我摸到了高潮在线观看| 午夜亚洲福利在线播放| 后天国语完整版免费观看| 99久久国产精品久久久| 免费观看精品视频网站| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 超色免费av| 9色porny在线观看| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| 一个人观看的视频www高清免费观看 | 欧美另类亚洲清纯唯美| svipshipincom国产片| 亚洲欧美一区二区三区黑人| 麻豆久久精品国产亚洲av | 俄罗斯特黄特色一大片| 一区二区三区精品91| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美在线二视频| 国产精品免费视频内射| a级片在线免费高清观看视频| 久久久久九九精品影院| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 啦啦啦 在线观看视频| 一进一出抽搐动态| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 电影成人av| 久久人妻av系列| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 最新在线观看一区二区三区| 高清欧美精品videossex| 男女做爰动态图高潮gif福利片 | 国产一区二区在线av高清观看| 热99re8久久精品国产| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 最近最新免费中文字幕在线| 最新美女视频免费是黄的| 大型黄色视频在线免费观看| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品98久久久久久宅男小说| 在线免费观看的www视频| 视频区图区小说| 日韩免费高清中文字幕av| 久热这里只有精品99| 波多野结衣一区麻豆| 色播在线永久视频| 美女大奶头视频| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清 | 少妇粗大呻吟视频| 国产又爽黄色视频| 国产黄色免费在线视频| 可以在线观看毛片的网站| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 校园春色视频在线观看| 老司机在亚洲福利影院| 黄片小视频在线播放| 日韩有码中文字幕| 国产精品乱码一区二三区的特点 | 久热这里只有精品99| 国产精品成人在线| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 亚洲精品中文字幕一二三四区| 丰满迷人的少妇在线观看| 久久久久久人人人人人| 91av网站免费观看| 级片在线观看| 欧美+亚洲+日韩+国产| 久久99一区二区三区| 国产人伦9x9x在线观看| 大型黄色视频在线免费观看| 天堂中文最新版在线下载| 高清在线国产一区| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3 | 99国产精品一区二区蜜桃av| 国产aⅴ精品一区二区三区波| 日韩精品青青久久久久久| 久久久久久久久久久久大奶| 高潮久久久久久久久久久不卡| av天堂在线播放| 交换朋友夫妻互换小说| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 午夜福利在线免费观看网站| 久久久国产一区二区| 免费在线观看影片大全网站| 中文字幕人妻丝袜制服| 正在播放国产对白刺激| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 国产在线精品亚洲第一网站| 午夜影院日韩av| 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 波多野结衣av一区二区av| 18禁裸乳无遮挡免费网站照片 | 国产高清激情床上av| 亚洲色图 男人天堂 中文字幕| 高清欧美精品videossex| 在线免费观看的www视频| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 日韩三级视频一区二区三区| 97超级碰碰碰精品色视频在线观看| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| av片东京热男人的天堂| 变态另类成人亚洲欧美熟女 | 淫秽高清视频在线观看| 亚洲avbb在线观看| 12—13女人毛片做爰片一| 日韩欧美免费精品| 中文字幕最新亚洲高清| 18禁观看日本| a级毛片在线看网站| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 在线观看日韩欧美| 日韩精品中文字幕看吧| 长腿黑丝高跟| 老司机福利观看| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 婷婷六月久久综合丁香| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 99国产精品免费福利视频| 中文字幕色久视频| 亚洲中文字幕日韩| 一夜夜www| 亚洲色图综合在线观看| av欧美777| 午夜精品久久久久久毛片777| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 亚洲欧美精品综合久久99| 曰老女人黄片| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 国产在线观看jvid| 少妇裸体淫交视频免费看高清 | 亚洲精品中文字幕在线视频| 久久中文看片网| 久久精品成人免费网站| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区精品| 国产精品美女特级片免费视频播放器 | www.999成人在线观看| 久久精品91无色码中文字幕| 国产1区2区3区精品| 免费av毛片视频| 最新在线观看一区二区三区| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看| 中文字幕av电影在线播放| 黄色女人牲交| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 国产精品 国内视频| 搡老熟女国产l中国老女人| 国产99久久九九免费精品| 中文字幕av电影在线播放| 男人舔女人下体高潮全视频| 人人妻人人澡人人看| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看 | 欧美黑人精品巨大| 一进一出抽搐动态| 久久久久久免费高清国产稀缺| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 亚洲第一青青草原| e午夜精品久久久久久久| 操出白浆在线播放| 美国免费a级毛片| 国产高清激情床上av| a级毛片在线看网站| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 成年人免费黄色播放视频| 很黄的视频免费| 亚洲自偷自拍图片 自拍| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站| netflix在线观看网站| 天天影视国产精品| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 免费av毛片视频| 欧美日韩视频精品一区| 美女福利国产在线| 嫩草影视91久久| 美女高潮到喷水免费观看| 中文字幕色久视频| 曰老女人黄片| 天堂√8在线中文| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 9191精品国产免费久久| 天堂√8在线中文| 中文字幕最新亚洲高清| avwww免费| 成人三级做爰电影| 日韩精品青青久久久久久| 久久香蕉激情| 久久久久久免费高清国产稀缺| 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 91成年电影在线观看| 国产成人免费无遮挡视频| 99在线人妻在线中文字幕| 天堂影院成人在线观看| 国产精品国产av在线观看| 多毛熟女@视频| 美女大奶头视频| 夜夜夜夜夜久久久久| 91字幕亚洲| 中文字幕人妻熟女乱码| 亚洲精品在线美女| 在线观看午夜福利视频| 九色亚洲精品在线播放| 大型av网站在线播放| 欧美激情久久久久久爽电影 | 黑丝袜美女国产一区| 丁香六月欧美| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 男女做爰动态图高潮gif福利片 | 69av精品久久久久久| 久久久久国产精品人妻aⅴ院| 18禁美女被吸乳视频| 91九色精品人成在线观看| 国产一区二区三区在线臀色熟女 | 老汉色av国产亚洲站长工具| 精品久久久久久久久久免费视频 | 这个男人来自地球电影免费观看| 亚洲av五月六月丁香网| 精品免费久久久久久久清纯| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久午夜电影 | 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址 | 午夜免费观看网址| 国产人伦9x9x在线观看| 久久亚洲精品不卡| 久久久久国产一级毛片高清牌| 精品久久久久久,| 桃色一区二区三区在线观看| 91成人精品电影| 国产精品秋霞免费鲁丝片| 亚洲伊人色综图| 日本vs欧美在线观看视频| av天堂在线播放| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 国产野战对白在线观看| 亚洲免费av在线视频| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 亚洲自拍偷在线| 亚洲成国产人片在线观看| 亚洲自拍偷在线| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看 | 搡老熟女国产l中国老女人| 国产有黄有色有爽视频| 看黄色毛片网站| 国产一区二区三区在线臀色熟女 | 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 亚洲性夜色夜夜综合| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 曰老女人黄片| 在线观看午夜福利视频| 激情视频va一区二区三区| 欧美成狂野欧美在线观看| 久久婷婷成人综合色麻豆| 99在线视频只有这里精品首页| 18禁观看日本| 女人精品久久久久毛片| 国产真人三级小视频在线观看| 99久久综合精品五月天人人| 精品人妻在线不人妻| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 我的亚洲天堂| 19禁男女啪啪无遮挡网站| 看片在线看免费视频| 嫩草影院精品99| netflix在线观看网站| 精品国产乱码久久久久久男人| 757午夜福利合集在线观看| 国产精品久久视频播放| 麻豆成人av在线观看| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 久久这里只有精品19| 日本五十路高清| 欧美一级毛片孕妇| 亚洲国产毛片av蜜桃av| 色综合欧美亚洲国产小说| 免费av毛片视频| 黄片播放在线免费| 久久久国产精品麻豆| 欧美性长视频在线观看| 中亚洲国语对白在线视频| 999久久久精品免费观看国产|