• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts

    2024-01-25 07:14:36SuYuXu徐宿雨MiaoYu于淼DongYangYuan袁東陽BoPeng彭博LeiYuan元磊YuMingZhang張玉明andRenXuJia賈仁需
    Chinese Physics B 2024年1期
    關(guān)鍵詞:東陽彭博

    Su-Yu Xu(徐宿雨), Miao Yu(于淼),?, Dong-Yang Yuan(袁東陽), Bo Peng(彭博),Lei Yuan(元磊), Yu-Ming Zhang(張玉明), and Ren-Xu Jia(賈仁需),?

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    2The 13th Research Institute China Electronics Technology Group Corporation,Shijiazhuang 050051,China

    Keywords: Ga2O3,Ohmic contacts,oxygen diffusion,density functional theory

    1.Introduction

    Gallium oxide (Ga2O3) is an ultra-wide bandgap semiconductor material that has garnered significant attention as a candidate for next-generation power electronics and optoelectronic devices.[1–10]It is characterized by its excellent chemical and thermal stability,high visible light transmission rate,and Si-compatible preparation process that enables mass production.Nevertheless, the development of Ga2O3-based devices is still in its infancy, and numerous challenges, including the formation of good Ohmic contacts, persist.[11–16]The formation of Ohmic contacts between metal electrodes and semiconductors is a fundamental prerequisite for any semiconductor device to operate successfully.The magnitude of the contact resistance between the metal and semiconductor is a crucial factor that influences the performance of the device, particularly its power, noise frequency, and thermal stability.However,the precise mechanism governing the formation of Ohmic contacts between metals and Ga2O3remains incompletely understood.Prior research has demonstrated that the Au-covered Ti(Ti/Au)electrode, annealed at 400°C,exhibits the lowest Ohmic contact resistance with Ga2O3, and thus is the most commonly used approach to achieve Ohmic contact with gallium oxide.[17–21]Although the rapid annealing of Ti/Au electrodes is known to result in interdiffusion at the interface between the electrode and Ga2O3,the exact role played by the diffusion of various elements in the formation of Ohmic contacts in Ga2O3is not yet clear.[22]As oxygen diffusion is the most pronounced interfacial diffusion,studying the contribution of oxygen element diffusion to the formation of Ohmic contacts is critical for gallium oxide.

    This study investigates the contribution of oxygen atom diffusion to the formation of Ohmic contacts in Ga2O3.Specifically, we prepared titanium/gold electrodes on a single crystal gallium oxide substrate and evaluated their currentvoltage characteristics, energy dispersive x-ray elemental mapping spectrum,and electron energy loss spectroscopy.We constructed interface models of gallium oxide and titanium and calculated their charge density, partial density of state,planar electrostatic potential energy,and current–voltage characteristics.Our results reveal that oxygen atoms at the Ga2O3interface diffuse into the titanium layer,where they oxidize the Ti and leave oxygen vacancies near the interface.The presence of these vacancies lowers the interfacial potential barrier, enhances the overlap degree of electron cloud at the interface,and ultimately facilitates the flow of electrons across the interfacial potential barrier, enabling Ohmic properties.These findings provide valuable insights into the underlying mechanisms governing the formation of Ohmic contacts and underscore the importance of considering oxygen atom diffusion in the design of Ga2O3-based electronic devices.

    2.Methods

    The Ti/Au electrodes were deposited on a single crystal commercial Ga2O3substrate with a (ˉ201) phase using direct current magnetron sputtering.The Ti electrode was sputtered at a power of 50 W for 1200 s, while the Au electrode was sputtered at a power of 20 W for 3600 s.In this work, the thickness of Ti is about 50 nm and the thickness of Au is about 110 nm.Subsequently, the samples underwent rapid thermal annealing(RTA)for 120 s under a nitrogen atmosphere at an annealing temperature of 470°C, in accordance with established protocols.[22]The current–voltage(I–V)characteristics were measured using a cascade probe table fitted with an Agilent B1500A.The structural and elemental features of the electrodes and the interface were characterized using Thermo Scientific Tecnai F20 transmission electron microscopy.In this study,all calculations were performed using density functional theory with the linear combination of atomic orbitals(LCAO)method, as implemented in the Quantum ATK package.The MGGA-TB09 exchange–correlation functional was employed to describe the exchange–correlation energy between electrons, while the PseudoDojo pseudopotential was used to model the electron–ion interaction potential.[23,24]Brillouin zone integration in reciprocal space was carried out using a grid density ofk-points of 12×2×1, and the cut-off energy was set to 550 eV.The convergence criteria for energy,force,stress, and displacement during the calculations were set at 5×10?6eV, 0.03 eV/?A, 0.02 GPa, and 5×10?4?A, respectively,to ensure high accuracy and reliability of the results.

    3.Results and discussion

    In this study, we fabricated Ti/Au electrodes on a single crystal Ga2O3substrate oriented along the(ˉ201)direction.The electrical behavior of the device before and after rapid thermal annealing (RTA) was evaluated usingI–Vmeasurements,as illustrated in Fig.1(a).TheI–Vcurve prior to RTA exhibited distinct Schottky characteristics,while theI–Vcurve following RTA displayed clear Ohmic behavior, indicating a significant change in the quality of the interface.To determine the specific contact resistance of the RTA-treated sample,we employed the transmission line model(TLM)method.[25]The electrode structure utilized for this measurement is depicted in Fig.1(b).By varying the electrode spacing, we obtained theI–Vcharacteristics as shown in Fig.1(c), from which we extracted the specific contact resistanceρcand plotted it against electrode spacing,as shown in Fig.1(d).The specific contact resistance of the RTA-treated sample was found to be 2.21×10?5?·cm2.These results reveal that the initial Ti/Ga2O3contact is Schottky in nature, and that the RTA treatment is critical in transforming it to an Ohmic contact.The change in the electrical behavior of the interface is likely attributed to the reduction of the barrier height at the Ti/Ga2O3junction caused by the thermal treatment.

    Fig.1.(a) Comparison of I–V characteristics for Ti/Au electrodes with and without rapid annealing; (b) electrode structure for contact resistance measurement using TLM method; (c) effect of electrode spacing on I–V characteristics; (d) fitting curve for extracting contact resistance of Ti/Au electrodes.

    Figure 2 displays the x-ray photoelectron spectroscopy(XPS)spectrum of the interface between Ti and Ga2O3in the unannealed sample.The binding energies of all peaks are calibrated to the C 1s peak located at 284.8 eV.The spectrum exhibits distinct peaks of Ga at approximately 1116 eV, O at approximately 530 eV, and Ti at approximately 460 eV.The XPS spectrum of Ti at the interface is presented in the inset,revealing a double-peak spacing of 5.7 eV between the Ti 2p1/2and Ti 2p3/2orbital peaks.This indicates that Ti in its elemental state is present at the interface of the unannealed sample,and no reactions have occurred at the interface.[26]

    Fig.2.The XPS analysis of the interface between unannealed Ti and Ga2O3,with insert showing the Ti XPS spectrum at the interface.

    Fig.3.The EDX elemental mapping spectrum of the Ti/Au–Ga2O3 interface after rapid thermal annealing.

    The energy-dispersive x-ray (EDX) element mapping spectrum of the annealed sample is displayed in Fig.3.The spectrum demonstrates the distribution of O, Ti, Ga, and Au elements.The deep blue area indicates the distribution of O elements, the light blue area indicates the distribution of Ti elements, the purple area indicates the distribution of Ga elements,and the orange area indicates the distribution of Au elements.It is evident that a substantial amount of oxygen exists in the Ti metal layer at the interface.To further examine the valence state of Ti at the interface,we conducted electron energy loss spectroscopy(EELS)on the sample after rapid thermal annealing and thoroughly analyzed the high-energy loss region of the EELS.[27,28]

    The EELS results are illustrated in Fig.4,where the three peak values marked as A,B,and C correspond to energy values of 458.3 eV, 460.7 eV, and 463.3 eV, respectively.These results demonstrate that the Ti at the interface is in the Ti3+state after rapid annealing.[29]

    Fig.4.The electron energy loss spectroscopy of Ti at the Ti/Au interface after rapid annealing.

    Table 1 presents the elemental proportion distribution of the Ga2O3layer at the interface.The O-to-Ga ratio is close to 1:1, much less than 2:3.Since the preparation and structural characterization of the sample were carried out under anoxic conditions,the oxygen in the Ti layer is attributed to the diffusion of oxygen atoms in the Ga2O3caused by rapid annealing.The findings of the related tests support this hypothesis.The current–voltage testing results,when combined with the previously discussed results, indicate that rapid annealing changes the Ti/Au electrode and Ga2O3from a Schottky contact to an Ohmic contact.The diffusion of oxygen atoms at the interface can be regarded as the most prominent change caused by rapid annealing.This indicates that the diffusion of oxygen at the interface of Ga2O3may have a significant influence on the formation of Ohmic contact.

    Table 1.Element ratio distribution at the Ti/Au–Ga2O3 interface after rapid annealing.

    To investigate the impact of interfacial oxygen diffusion on the formation of Ohmic contact between Ti and gallium oxide, we selected the (ˉ201) crystal phase of gallium oxide and the (100) crystal phase of Ti to construct various nanodevice models with different contact interfaces.Prior to building the interface models,we optimized the Ga2O3bulk material,and the results are illustrated in Fig.5(a).The bulk material parameters,namelya=12.43 ?A,b=3.08 ?A,c=5.87 ?A,α=γ=90°,andβ=103.68°,respectively,were determined.Furthermore, the energy band structure of Ga2O3is depicted in Fig.5(b),revealing a quasi-direct band gap of 4.87 eV.Both the lattice constant and the band gap width are consistent with previously reported experimental and calculated values.[30–32]

    After optimizing the lattice structure of Ga2O3, we used 5 layers of Ga2O3in the(ˉ201)direction and 5 layers of Ti in the(100)direction as metal electrodes to build a device model.The parameter of the device model isa=3.08 ?A,b=14.96 ?A,c= 37 ?A,α=β=γ= 90°.Our study involved the generation of three interface models to describe the interaction between Ga2O3and Ti.These models included a direct contact model, a low concentration oxygen diffusion model, and a high concentration oxygen diffusion model.The direct contact model (M-direct) describes the absence of oxygen atom diffusion into the Ti layer upon contact with Ga2O3.In contrast, the low concentration oxygen diffusion model (M-low)represents the diffusion of oxygen atoms at a low concentration into the Ti layer, while the high concentration oxygen diffusion model (M-high) represents the diffusion of oxygen atoms at a high concentration into the Ti layer.The interface model between Ti and Ga2O3in direct contact is depicted in Fig.6(a).Due to differences in lattice constants,the interface experiences a slight degree of lattice distortion,while remaining well-matched.Figures 6(b)and 6(c)illustrate the oxygen diffusion models.Oxygen atoms from Ga2O3diffuse into the Ti layer,leaving oxygen vacancies at the interface.Figure 6(b)represents oxygen diffusion at a low concentration, with one oxygen atom diffusing into the Ti layer.Figure 6(c)represents oxygen diffusion at a high concentration, with two oxygen atoms diffusing into the Ti layer.In M-low,the Ti atoms at the oxygen vacancies move towards adjacent Ti atoms and share an oxygen atom with them,thus pulling the oxygen atoms on the Ga2O3side towards the Ti layer.In contrast, M-high is characterized by a more significant lattice distortion at the interface due to the Ti atoms moving larger distances.Ti atoms at the vacant sites take oxygen atoms from the deeper layers of Ga2O3, leading to a more pronounced tendency towards mutual diffusion at the interface.The high reactivity of Ti with oxygen results in Ti being more reductive than Ga.[33]Rapid annealing tends to move oxygen atoms towards the Ti layer,leading to the diffusion of oxygen atoms at the interface.

    Fig.6.Optimization of Ga2O3/Ti interface model with varying oxygen diffusion concentrations.(M-direct: no oxygen diffusion,M-low: low oxygen diffusion concentration,M-high: high oxygen diffusion concentration).

    Electron cloud density is a key electronic property that characterizes the spatial distribution of electrons in a material.It quantifies the probability of finding an electron at a given point in space and is a fundamental parameter for understanding the electronic structure of materials.[34]Figure 7 presents the electron cloud density distributions for three distinct systems, namely, M-direct, M-low, and M-high, which are shown in panels(a),(b),and(c),respectively.The yellow regions in the figure represent the areas with non-zero electron cloud density, while the equivalence surface of the electron cloud density is set to a constant value of 0.025e/Bohr3for all systems,thereby enabling a direct comparison of the electron cloud distributions across the different systems.Fluctuations in the electron cloud density at the interface have a significant impact on the barrier height.Our results reveal that M-low and M-high exhibit significantly higher electron density at the interface as compared to M-direct,indicating that there are more available electron orbitals near the interface that facilitate easier electron transport between the two materials.Specifically,the presence of oxygen atoms on the surface of Ga2O3entering the Ti layer contributes to an increase in the electron cloud density at the interface,resulting in the formation of new electron orbitals that enable electron transport between the interfaces.

    Fig.7.Distribution of electron cloud density for Ga2O3/Ti interface models with varying oxygen diffusion concentrations.(a)M-direct: no oxygen diffusion,(b)M-low: low oxygen diffusion concentration,and(c)M-high:high oxygen diffusion concentration.

    In order to conduct a thorough analysis of the impact of diffusing oxygen atoms at the interface on the electronic structure of the system during electron transport,we have performed calculations of the partial density of states(PDOS)at the interface.The PDOS results for M-direct, M-low, and M-high are presented in Figs.8(a), 8(b), and 8(c), respectively.Given that the conduction band electrons at the interface mainly stem from Ti-3d orbital electrons and the valence band electrons are primarily contributed by O-2p orbital electrons,we have focused our investigation on these two regions.The density of states for O-2p and Ti-3d electrons in the Mdirect, M-low, and M-high systems are depicted in Fig.8(d).For the M-direct system, the cut-off energy of O-2p orbital electrons is?5.30 eV, and that of Ti-3d orbital electrons is?3.23 eV, giving rise to a potential barrier of 2.07 eV.Analogously, the potential barrier between O-2p orbital electrons and Ti-3d orbital electrons for the M-low system is 1.80 eV,and that for the M-high system is 0.58 eV.The results demonstrate that the diffusion of oxygen atoms into the Ti layer at the interface leads to a reduction in the potential barrier for electron transport, and this reduction becomes more pronounced as the concentration of diffusing oxygen atoms increases.This phenomenon arises due to the creation of new electron-occupied states for O-2p orbital electrons in Ga2O3at higher energy levels,resulting from the oxygen vacancies that are formed by the oxygen atoms at the interface.Concurrently,the oxygen atoms that enter the Ti layer combine with Ti to generate new electron-occupied states for Ti-3d orbital electrons at lower energy levels, thereby decreasing the potential barrier, which promotes the formation of Ohmic properties.The diffusion of oxygen atoms at the interface is a promising strategy for effectively reducing the interfacial potential barrier of the Ti–Ga2O3interface.

    Fig.8.Partial density of states (PDOS) at the Ga2O3/Ti interface with varying oxygen diffusion concentrations.(a) PDOS for M-direct, (b) PDOS for M-low,(c)PDOS for M-high,and(d)PDOS of O-2p orbital electrons and Ti-3d orbital electrons at the interface for M-direct,M-low,and M-high.

    The planar electrostatic potential was calculated for different interface models, and the results are presented in Fig.9(a).The differences in electrostatic potential between Ti and Ga2O3in M-direct, M-low, and M-high are 5.35 eV,4.9 eV,and 4 eV respectively.Upon contact,a notable potential difference was observed between the Ti and Ga2O3interfaces, with the Ga2O3side exhibiting a lower potential.This phenomenon indicates that free electrons from the Ga2O3migrated towards the Ti, generating a built-in electric field that demonstrated Schottky properties.Comparatively, the potential difference between M-low and M-high interfaces was significantly lower than that of M-direct.Furthermore,the greater the concentration of diffused oxygen atoms, the more pronounced the potential difference reduction, which was consistent with density of states calculations.The planar electrostatic potential is directly linked to the charge transferred at the interface.To determine this, Bader charges of M-direct,M-low, and M-high at the interface were calculated, and the results are presented in Fig.9(b).The Bader charge values of M-low,and M-high are 10.62e,8.75e,and 7.80erespectively.The charge transferred at the interface was significantly lower for M-low and M-high compared to M-direct.This was due to the bonding of oxygen atoms with Ti atoms in the Ti layer, which resulted in a reduction in the number of charges transferred at the interface,thereby lowering the potential difference at the interface.

    Fig.9.Planar electrostatic potential and Bader charge at the interface between Ga2O3 and Ti for M-direct,M-low,and M-high models.

    We employed a combined approach based on density functional theory and non-equilibrium Green’s function to investigate the current–voltage(I–V)characteristics of M-direct,M-low, and M-high systems.[35,36]The results, presented in Fig.10, indicate a distinct difference in theI–Vbehavior between the three systems.Specifically, theI–Vcurve of Mdirect exhibited a Schottky-like behavior with an order of magnitude smaller current compared to that of M-low and M-high.This observation strongly suggests the presence of a Schottky contact at the interface between Ti and Ga2O3in direct contact.In contrast,M-low and M-high displayed distinct Ohmic characteristics, with theI–Vcurve’s slope for M-low being lower than that of M-high, indicating a lower contact resistance and superior Ohmic properties.Our theoretical analysis further revealed that the observed interfacial characteristics can be attributed to the diffusion of oxygen atoms from the Ga2O3surface into the Ti layer.This process creates new electron orbitals at the interface, lowering the interfacial barrier, and increasing the probability of electron tunneling at the interface, resulting in the Ohmic behavior observed in M-low and M-high.Our findings highlight the importance of oxygen diffusion in tuning the interfacial properties of the Ti/Ga2O3system and provide new insights into the design of high-performance electronic devices.

    Fig.10.First principles calculation of the current–voltage characteristics for Ga2O3/Ti interface models with varying oxygen diffusion concentrations.

    4.Conclusion

    In this investigation,we examined the critical role of oxygen diffusion in the development of Ohmic contact between Ti and Ga2O3.Specifically, we fabricated Ti/Au electrodes on single crystal Ga2O3substrates, and our results revealed that direct contact between Ti and Ga2O3is initially Schottky in nature,transitioning to Ohmic behavior after rapid thermal annealing(RTA).We further observed via energy-dispersive xray spectroscopy(EDX)and electron energy loss spectroscopy(EELS)the diffusion of oxygen atoms from Ga2O3into the titanium layer after RTA, which caused the Ti to oxidize to a+3-valence state.To gain deeper insights into the underlying mechanisms driving the formation of Ohmic contacts,we employed density functional theory to construct several interface models.Our analysis of charge density, partial density of state, planar electrostatic potential energy, andI–Vcharacteristic calculations showed that oxygen diffusion decreases the interface potential barrier and enhances electron tunneling through the interface potential barrier.These outcomes explain the observed Ohmic behavior of the Ti/Ga2O3system.The experimental findings were in good agreement with the calculated results.This study provides valuable insights into the mechanisms behind the formation of Ohmic contacts between Ti and Ga2O3, which could have implications for the development of high-performance electronic devices.Further studies could explore the impact of variations in processing parameters on the formation and properties of Ohmic contacts.

    Acknowledgment

    Projects supported by the National Natural Science Foundation of China (Grant Nos.61874084, 61974119, and U21A20501).

    猜你喜歡
    東陽彭博
    青年文學(xué)家(2023年24期)2023-10-12 11:57:30
    古韻東陽
    人大代表約見制度的東陽實踐
    牛敏、崔旌濤、孫海姣、彭博作品選
    美術(shù)界(2017年3期)2017-06-22 17:06:39
    莆田東陽:兩朝“進(jìn)士村”的前世今生
    Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat
    東陽:大樹底下長出草
    東陽木雕選等
    雕塑(1995年1期)1995-07-15 02:38:16
    久久精品91蜜桃| 999久久久国产精品视频| 亚洲欧美激情综合另类| 午夜精品久久久久久毛片777| 久久香蕉激情| 最新在线观看一区二区三区| 狂野欧美激情性xxxx| 女人被狂操c到高潮| 国产精品 国内视频| 国产黄色小视频在线观看| 十八禁网站免费在线| 久久天堂一区二区三区四区| 亚洲 国产 在线| 亚洲全国av大片| 免费在线观看影片大全网站| 12—13女人毛片做爰片一| 老汉色∧v一级毛片| 国产野战对白在线观看| 免费高清在线观看日韩| 在线av久久热| 一区二区三区国产精品乱码| 久久久久久人人人人人| 天堂动漫精品| 日韩有码中文字幕| 91在线观看av| 巨乳人妻的诱惑在线观看| 久久久久久久午夜电影| e午夜精品久久久久久久| 日韩大尺度精品在线看网址| 悠悠久久av| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av| 一a级毛片在线观看| 窝窝影院91人妻| 欧美日韩黄片免| 国产精品,欧美在线| 一级片免费观看大全| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看.| 国产又色又爽无遮挡免费看| 久久精品成人免费网站| 一本精品99久久精品77| 久久婷婷成人综合色麻豆| 日韩欧美三级三区| 日韩有码中文字幕| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| 高清在线国产一区| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| a在线观看视频网站| 高清在线国产一区| 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 国产精华一区二区三区| 日韩大尺度精品在线看网址| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 黄色片一级片一级黄色片| 一级毛片精品| 色在线成人网| 夜夜爽天天搞| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 欧美在线黄色| 午夜免费激情av| 精品第一国产精品| 久久久久久人人人人人| 日韩欧美免费精品| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 精品久久蜜臀av无| 国产精品1区2区在线观看.| 黄色女人牲交| 久久久久九九精品影院| 欧美久久黑人一区二区| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 男人操女人黄网站| 欧美日本视频| 精品国产一区二区三区四区第35| 亚洲精品久久国产高清桃花| 啦啦啦韩国在线观看视频| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 免费在线观看黄色视频的| 波多野结衣巨乳人妻| 欧美+亚洲+日韩+国产| 日韩视频一区二区在线观看| 亚洲avbb在线观看| 亚洲欧美精品综合一区二区三区| 亚洲成av片中文字幕在线观看| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 男女午夜视频在线观看| 男女视频在线观看网站免费 | 欧美丝袜亚洲另类 | 国产激情欧美一区二区| 国产亚洲精品第一综合不卡| a级毛片在线看网站| 午夜久久久久精精品| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 国产又爽黄色视频| www.www免费av| 国内精品久久久久精免费| 男人舔女人的私密视频| 国产成人精品久久二区二区91| 国产久久久一区二区三区| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 无人区码免费观看不卡| 手机成人av网站| 国产精品免费一区二区三区在线| 中文字幕人妻熟女乱码| 又黄又爽又免费观看的视频| 男女床上黄色一级片免费看| 国产97色在线日韩免费| 久热爱精品视频在线9| 十八禁网站免费在线| 中文字幕精品亚洲无线码一区 | 中文字幕人妻丝袜一区二区| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 波多野结衣高清作品| 国产麻豆成人av免费视频| 女人爽到高潮嗷嗷叫在线视频| 97人妻精品一区二区三区麻豆 | 午夜激情福利司机影院| 无人区码免费观看不卡| 国产aⅴ精品一区二区三区波| 色综合婷婷激情| 日韩欧美国产一区二区入口| 亚洲精品久久成人aⅴ小说| 欧美午夜高清在线| av天堂在线播放| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 一本大道久久a久久精品| 婷婷六月久久综合丁香| 女警被强在线播放| 国产精品99久久99久久久不卡| 99热只有精品国产| 国产精品亚洲av一区麻豆| 国语自产精品视频在线第100页| 国产精品免费一区二区三区在线| 欧美黄色淫秽网站| 亚洲精品在线美女| а√天堂www在线а√下载| 久久久久精品国产欧美久久久| 少妇粗大呻吟视频| 亚洲一码二码三码区别大吗| 看片在线看免费视频| 亚洲自拍偷在线| 国产精品 国内视频| 人妻丰满熟妇av一区二区三区| av天堂在线播放| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 久久国产乱子伦精品免费另类| 99久久无色码亚洲精品果冻| 久久青草综合色| 男女午夜视频在线观看| 制服诱惑二区| 午夜视频精品福利| 69av精品久久久久久| 久久久久久久久免费视频了| 国产又爽黄色视频| bbb黄色大片| 色婷婷久久久亚洲欧美| videosex国产| 91大片在线观看| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 伦理电影免费视频| 国内少妇人妻偷人精品xxx网站 | 久久人妻福利社区极品人妻图片| xxx96com| 99re在线观看精品视频| 国产真实乱freesex| 少妇熟女aⅴ在线视频| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 婷婷精品国产亚洲av| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 亚洲国产精品999在线| a在线观看视频网站| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 午夜视频精品福利| 俺也久久电影网| 午夜日韩欧美国产| 深夜精品福利| 色尼玛亚洲综合影院| 男人舔女人的私密视频| 久久性视频一级片| 成年版毛片免费区| 久久中文字幕一级| 中文字幕av电影在线播放| 国产又色又爽无遮挡免费看| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 丁香六月欧美| 亚洲精品色激情综合| 国产单亲对白刺激| 97碰自拍视频| 中亚洲国语对白在线视频| 成人精品一区二区免费| 波多野结衣高清作品| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 18禁美女被吸乳视频| 怎么达到女性高潮| 香蕉av资源在线| 精品无人区乱码1区二区| av免费在线观看网站| 色综合站精品国产| 老司机午夜福利在线观看视频| 一本大道久久a久久精品| 伊人久久大香线蕉亚洲五| 午夜免费观看网址| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面| 一级a爱视频在线免费观看| 男女下面进入的视频免费午夜 | 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看| 女人高潮潮喷娇喘18禁视频| av福利片在线| 999久久久精品免费观看国产| 满18在线观看网站| 亚洲av中文字字幕乱码综合 | 国产精品野战在线观看| 深夜精品福利| 天堂影院成人在线观看| 欧美黑人精品巨大| 91麻豆av在线| 韩国精品一区二区三区| 午夜精品在线福利| 久久国产精品影院| 欧美在线一区亚洲| 搞女人的毛片| 黑丝袜美女国产一区| 欧美大码av| 搡老岳熟女国产| 欧美人与性动交α欧美精品济南到| 欧美国产精品va在线观看不卡| 国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 黄网站色视频无遮挡免费观看| 一夜夜www| 久久 成人 亚洲| 一进一出好大好爽视频| 99热这里只有精品一区 | 在线国产一区二区在线| 亚洲精品美女久久av网站| 亚洲第一电影网av| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 日韩欧美 国产精品| 亚洲国产欧美一区二区综合| 岛国在线观看网站| 天天添夜夜摸| 看片在线看免费视频| 精品乱码久久久久久99久播| 国产av一区在线观看免费| 国产在线观看jvid| 久久久久久亚洲精品国产蜜桃av| 国内少妇人妻偷人精品xxx网站 | 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 久久亚洲真实| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 最近最新中文字幕大全电影3 | 亚洲欧美激情综合另类| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 国产伦一二天堂av在线观看| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| or卡值多少钱| 国产亚洲精品综合一区在线观看 | 久9热在线精品视频| 日本熟妇午夜| 制服丝袜大香蕉在线| 亚洲精品av麻豆狂野| 亚洲,欧美精品.| 日本三级黄在线观看| 99国产极品粉嫩在线观看| 久9热在线精品视频| 黄网站色视频无遮挡免费观看| 一个人观看的视频www高清免费观看 | 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 50天的宝宝边吃奶边哭怎么回事| 在线免费观看的www视频| 欧美中文综合在线视频| av在线播放免费不卡| 欧美黄色淫秽网站| 在线视频色国产色| 少妇的丰满在线观看| 神马国产精品三级电影在线观看 | 久久 成人 亚洲| 99精品欧美一区二区三区四区| 国产片内射在线| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频| 成人国产一区最新在线观看| 午夜老司机福利片| 男人舔奶头视频| 亚洲人成电影免费在线| 午夜福利高清视频| 99精品久久久久人妻精品| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| tocl精华| 亚洲成人久久性| 午夜免费激情av| 国产视频一区二区在线看| 香蕉丝袜av| 亚洲av中文字字幕乱码综合 | 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 成人亚洲精品一区在线观看| 精品国产国语对白av| 国产三级黄色录像| 亚洲av中文字字幕乱码综合 | 岛国在线观看网站| 啪啪无遮挡十八禁网站| 欧美精品亚洲一区二区| 国产高清有码在线观看视频 | 日韩中文字幕欧美一区二区| 国产精华一区二区三区| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 最近在线观看免费完整版| 身体一侧抽搐| 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 精品久久蜜臀av无| 国产高清激情床上av| 精品久久久久久成人av| 香蕉av资源在线| 一本精品99久久精品77| 亚洲精品美女久久久久99蜜臀| 日本一本二区三区精品| 免费高清视频大片| 一级毛片精品| 亚洲性夜色夜夜综合| 中文资源天堂在线| 亚洲精品中文字幕一二三四区| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 少妇 在线观看| 一边摸一边抽搐一进一小说| 精品一区二区三区视频在线观看免费| 99精品久久久久人妻精品| 日韩免费av在线播放| 女警被强在线播放| 久久人人精品亚洲av| 国产亚洲欧美98| 2021天堂中文幕一二区在线观 | 丰满的人妻完整版| 精品第一国产精品| 国产一区二区激情短视频| 一级毛片精品| 国产精品av久久久久免费| 亚洲一区二区三区不卡视频| 久久久久久久精品吃奶| 国产视频一区二区在线看| 久久性视频一级片| 好男人电影高清在线观看| 在线看三级毛片| 亚洲成人精品中文字幕电影| 色综合欧美亚洲国产小说| www日本黄色视频网| 亚洲欧美精品综合久久99| av欧美777| 国产高清videossex| 欧美激情 高清一区二区三区| 日本一本二区三区精品| 女性生殖器流出的白浆| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 国产乱人伦免费视频| 日韩大码丰满熟妇| 午夜视频精品福利| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 长腿黑丝高跟| 在线国产一区二区在线| 两个人视频免费观看高清| 久久久久国产精品人妻aⅴ院| 久久人妻福利社区极品人妻图片| 一级毛片精品| 久久亚洲精品不卡| 99久久国产精品久久久| 国产精品99久久99久久久不卡| 久久久久久国产a免费观看| 看免费av毛片| 亚洲熟妇中文字幕五十中出| 正在播放国产对白刺激| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美一区二区综合| 亚洲一区二区三区色噜噜| 女警被强在线播放| 一级a爱片免费观看的视频| www.精华液| 午夜免费观看网址| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 国产精品99久久99久久久不卡| 国产精华一区二区三区| 国产精品久久久久久亚洲av鲁大| 色综合欧美亚洲国产小说| 欧美午夜高清在线| 国产精品野战在线观看| 免费无遮挡裸体视频| 亚洲五月天丁香| 国产一区二区三区视频了| 99久久国产精品久久久| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 女生性感内裤真人,穿戴方法视频| 女人爽到高潮嗷嗷叫在线视频| 大型av网站在线播放| 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 国产高清videossex| 啦啦啦 在线观看视频| 欧美乱码精品一区二区三区| a级毛片在线看网站| 麻豆久久精品国产亚洲av| 欧美色欧美亚洲另类二区| 午夜a级毛片| 亚洲在线自拍视频| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 久久午夜亚洲精品久久| 午夜福利18| 国产成人啪精品午夜网站| 亚洲国产欧洲综合997久久, | 一个人观看的视频www高清免费观看 | 三级毛片av免费| 巨乳人妻的诱惑在线观看| 国产aⅴ精品一区二区三区波| av有码第一页| 欧美 亚洲 国产 日韩一| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品电影 | 日本a在线网址| 亚洲五月色婷婷综合| 麻豆成人午夜福利视频| 一级a爱片免费观看的视频| 国产又黄又爽又无遮挡在线| 天天添夜夜摸| 女同久久另类99精品国产91| 操出白浆在线播放| 国产精品香港三级国产av潘金莲| 国内精品久久久久精免费| 久久人妻福利社区极品人妻图片| 一边摸一边做爽爽视频免费| 亚洲欧美激情综合另类| 一进一出好大好爽视频| 精品卡一卡二卡四卡免费| 大型av网站在线播放| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产精品麻豆| 亚洲国产精品合色在线| 99在线视频只有这里精品首页| 在线视频色国产色| 久久久久久久久免费视频了| 香蕉丝袜av| 亚洲成人免费电影在线观看| e午夜精品久久久久久久| 精品国产美女av久久久久小说| 亚洲av中文字字幕乱码综合 | 免费在线观看影片大全网站| 91麻豆av在线| 哪里可以看免费的av片| www日本在线高清视频| 久久性视频一级片| 日韩成人在线观看一区二区三区| 日本一本二区三区精品| 午夜亚洲福利在线播放| 亚洲精品中文字幕在线视频| 亚洲第一欧美日韩一区二区三区| www.999成人在线观看| 一本综合久久免费| 久久九九热精品免费| 亚洲精品一区av在线观看| 亚洲第一电影网av| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 精品一区二区三区四区五区乱码| 亚洲真实伦在线观看| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 婷婷精品国产亚洲av| 午夜激情福利司机影院| 在线永久观看黄色视频| 亚洲av片天天在线观看| www.www免费av| 国产三级在线视频| 久久国产精品人妻蜜桃| 午夜亚洲福利在线播放| 国产成人欧美| 成人三级做爰电影| 久久久久久国产a免费观看| 亚洲色图av天堂| 人人妻人人澡人人看| 婷婷六月久久综合丁香| 9191精品国产免费久久| 一边摸一边抽搐一进一小说| 一进一出抽搐gif免费好疼| 精品日产1卡2卡| 女生性感内裤真人,穿戴方法视频| 激情在线观看视频在线高清| 国产国语露脸激情在线看| 国产高清激情床上av| 亚洲中文日韩欧美视频| 国产成人影院久久av| 2021天堂中文幕一二区在线观 | 女生性感内裤真人,穿戴方法视频| 白带黄色成豆腐渣| 午夜老司机福利片| 亚洲成人国产一区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲色图 男人天堂 中文字幕| 美女午夜性视频免费| 看片在线看免费视频| 久久精品成人免费网站| 午夜福利18| 免费观看精品视频网站| 啪啪无遮挡十八禁网站| 人人妻,人人澡人人爽秒播| 一本精品99久久精品77| 精品免费久久久久久久清纯| 午夜视频精品福利| 精品久久久久久久久久久久久 | 久久国产精品人妻蜜桃| 亚洲精品中文字幕一二三四区| 国产99白浆流出| 欧美另类亚洲清纯唯美| 亚洲狠狠婷婷综合久久图片| 精品国产超薄肉色丝袜足j| www国产在线视频色| 19禁男女啪啪无遮挡网站| 一级a爱视频在线免费观看| 成年免费大片在线观看| 欧美黑人欧美精品刺激| 不卡av一区二区三区| 一级作爱视频免费观看| 日韩欧美一区二区三区在线观看| 国产精品亚洲美女久久久| 欧美人与性动交α欧美精品济南到| 国产主播在线观看一区二区| 搡老熟女国产l中国老女人| 后天国语完整版免费观看| 一区二区日韩欧美中文字幕| 好看av亚洲va欧美ⅴa在| 最近在线观看免费完整版| 两个人免费观看高清视频| netflix在线观看网站| 午夜福利在线观看吧| 亚洲国产精品999在线| 看片在线看免费视频| 大香蕉久久成人网| avwww免费| 搡老熟女国产l中国老女人| 最近在线观看免费完整版| 少妇被粗大的猛进出69影院| 亚洲一区二区三区不卡视频| 在线观看日韩欧美| 国产私拍福利视频在线观看| 免费在线观看视频国产中文字幕亚洲| 可以在线观看的亚洲视频| 亚洲第一青青草原| 婷婷亚洲欧美| 欧美色欧美亚洲另类二区|