• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distinct behavior of electronic structure under uniaxial strain in BaFe2As2

    2024-01-25 07:14:36JiajunLi李佳俊GiaoNgocPhanXingyuWang王興玉FazhiYang楊發(fā)枝QuanxinHu胡全欣KeJia賈可JinZhao趙金WenyaoLiu劉文堯RenjieZhang張任杰YouguoShi石友國ShiliangLi李世亮TianQian錢天andHongDing丁洪
    Chinese Physics B 2024年1期
    關(guān)鍵詞:石友

    Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王興玉), Fazhi Yang(楊發(fā)枝), Quanxin Hu(胡全欣),Ke Jia(賈可),4, Jin Zhao(趙金), Wenyao Liu(劉文堯), Renjie Zhang(張任杰), Youguo Shi(石友國),4,5,Shiliang Li(李世亮),5, Tian Qian(錢天), and Hong Ding(丁洪)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physics,University of Chinese Academy of Sciences,Beijing 100190,China

    3CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    4Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    5Songshan Lake Materials Laboratory,Dongguan 523808,China

    6Tsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai 201210,China

    Keywords: iron-based superconductor,angle-resolved photoelectron spectroscopy,uniaxial strain,symmetry breaking

    1.Introduction

    BaFe2As2,well known for its rich phase diagram and interplay among various orders, provides a good material system for studying many novel properties, such as the superconducting mechanism of iron-based superconductors.[1–7]In BaFe2As2, as the temperature decreases, the sample undergoes an antiferromagnetic phase transition as well as a structural phase transition.[8,9]With the structural phase transition,the sample changes from an original single-domain state to two orthogonal twinned crystal phase compositions and exhibits a new electronic nematic order near the phase transition temperature,which has been observed in previous studies on iron-based superconductors by a scanning tunneling microscope(STM)and angle-resolved photoemission spectroscopy(ARPES) at low temperatures.[10–13]Considering the simultaneous appearance of nematic order, antiferromagnetic order and superconductivity, it is challenging to independently study these strongly correlated intertwined properties.Therefore,finding a method to independently study the nature of the nematic order without introducing the influence of other orders is highly desirable.In previous studies, a single domain state has been obtained in detwinned BaFe2As2by applying a small uniaxial strain wherein an electronic nematic order was observed.[14–16]By further applying a considerable uniaxial strain to BaFe2As2, the in-plane anisotropy of the resistance,which is closely related to the nematic order, would be further enhanced.[17,18]On the other hand,while a study on FeSe has revealed that the band positions corresponding to different electric orbitals shift differently under a larger strain,[19]it is still worth studying how band positions shift when a larger uniaxial strain is applied to BaFe2As2.

    In this paper, we present the evolution of the electronic properties of BaFe2As2under uniaxial strains.The observed transport results demonstrate that uniaxial strains can enhance the nematic order.On the other hand,at theMYpoint,the upper electron band is drastically shifted toward the lower one.Consequently,the energy splitting between these two electron bands diminishes under a large uniaxial strain,even though the nematic order is enhanced.These surprising behaviors suggest that the band splitting at theMYpoint is not induced by the nematic order in BaFe2As2.

    2.Methods

    Single crystals of BaFe2As2were grown by a self-flux method.The samples with better single-crystal quality were selected,which could withstand larger strains and show clearer band dispersions.Considering that a strain would be applied along the[1 1 0]direction in theabplane,crystal structure of BaFe2As2in theabplane is shown in Fig.1(a).The upper inset in Fig.1(a)shows the strain device, which can continuously apply uniaxial strains to the mounted sample by turning the screw.With this design, anin situstrain along one desirable direction can be applied to the sample.Here,we use the Brillouin zone(BZ)notations corresponding to the true crystallographic unit cell of two Fe atoms,in whichΓ–MYis along the[1 1 0]direction andΓ–MXis along the[1?1 0]direction,as shown in Fig.1(b).

    High-resolution ARPES measurements were carried out at the Institute of Physics,Chinese Academy of Sciences,with an R4000 analyzer with a He discharge lamp(hν=21.2 eV).The angular and momentum resolutions were set to 0.2°and 4 meV, respectively.To clearly study the electron band characteristics at the boundary of the BaFe2As2Brillouin zone,the direction of applied strain was set to be perpendicular to the electron-receiving slit of the ARPES analyzer,as shown in Fig.1(c).In order to keep the same cleave surfaces, all samples in this paper were cleavedin situat room temperature in a chamber with a vacuum of 1×10?10Torr, and As dimer surfaces were obtained.[20–22]For all of the ARPES measurements described below, the temperature is 14 K and the vacuum is better than 3×10?11Torr.

    The in-plane uniaxial strains were applied to a single crystal of BaFe2As2by turning the screw of a strain device on which the sample is mounted, and thus the screw movements could be deemed to be the deformationsδLof the sample in the direction of applied strains.[23]The uniaxial strain strengthδL/Lis defined as the ratio of the screw movement to the original lengthLof the sample, which was measured directly before mounting it.

    The changes in lattice constants indicated by XRD results prove that it is reliable to regard the screw movements as the deformations of the sample.The specific calculation method is as follows.Considering that the lattice constant along the[2 2 0] direction of the sample cannot be directly measured by XRD due to the sample holder,we indirectly calculated the deformation and lattice constant along the[2 2 0]direction by measuring the lattice constants along the[0 0 12]and[2 2 12]directions.Figures 1(d)and 1(e)show the corresponding XRD results.

    It is known that the interplanar spacing for the strain-free sample, denoted byd, is 1.08618 ?A along the[0 0 12]direction and 0.8573 ?A along the[2 2 12]direction.Strains S1,S2,S3 and S4,which represent four gradually increasing uniaxial strains,were applied to the samples in turn.Taking strain S1 as an example,by substituting diffraction anglesθbefore and after applying uniaxial strain into the Bragg diffraction formula,2d×sin(θ)=nλ,the interplanar spacing for the strained sample,denoted bydS1,is 1.08497 ?A along the[0 0 12]direction and 0.8551 ?A along the[2 2 12]direction.

    Fig.1.(a)Crystal structure of BaFe2As2 in the ab plane with a uniaxial strain applied along the[1 1 0]direction.Upper inset: picture of the in situ strain device(with sample).A red arrow indicates the direction in which strain is applied.Strain can be sequentially enhanced by turning the screw.(b)Schematic of the corresponding in-plane Brillouin zone for two Fe atoms per unit cell.(c)Schematic of the ARPES experiment.The direction of applied strain is perpendicular to the electron-receiving slit of the ARPES analyzer.[(d),(e)]XRD results at room temperature for(d)[0 0 12]and(e)[2 2 12]Bragg peaks under different applied strains of 0,S1 and S2 at room temperature.Shifts of the Bragg peak indicate the changes in lattice constants.(f)XRD results at 90 K for the sample under zero strain and under the minimum uniaxial strain S1.

    According to the formula

    whereh,kandldenote Miller indices,cS1for the[0 0 1]direction is derived as 13.0196 ?A whendS1[0012]is 1.08497 ?A,and thenaS1for the[1 1 0]direction is derived as 5.5574 ?A.Thus,the change in lattice constant(aS1?a)/ais?0.49%.On the other hand,for strain S1,the screw movement is 0.0175 mm,the original lengthLof the sample is 3.5 mm and the ratio of the two is 0.5%, which is consistent with (aS1?a)/a0of?0.49%calculated from the XRD results.

    Similarly, for strain S2, (aS2?a)/acalculated from the XRD results is?0.84%.The screw movement for strain S2 is 0.025 mm, the original lengthLof the sample is 2.8 mm and the ratio of the two is 0.89%, which is consistent with(aS2?a)/aof?0.84%.

    Therefore, it is reliable to define uniaxial strain strengthδL/Las the ratio of screw movement to the original length of the sample at room temperature.For cases at low temperature we take the thermal expansion coefficients into account,which are 17.0×10?6for BeCu (C17200) in the strain device and 18.9×10?6for BaFe2As2; we found the difference caused by thermal expansion coefficients is 0.995 at 14 K.Thus,δL/Lat 14 K is?0.498%under strain S1 and?0.889%under strain S2.By the same method, strain strengthsδL/Lcorresponding to strains S3 and S4 can be obtained as 1.357%and 2.001%,respectively.

    XRD at a low temperature of 90 K,for both the strain-free sample and the S1 strained sample,was measured as shown in Fig.1(f).It can be clearly observed that under zero strain,the[2 2 12] Bragg peak splits due to the twinning effect at low temperatures,showing two structural domains in a strain-free sample.For the S1 strained sample,there is only one[2 2 12]Bragg peak at low temperature,indicating that the sample remains in a single-domain state under the minimum uniaxial strain S1.It is worth mentioning that the strains in this report are much stronger than those in previous reports for detwinned samples that exhibit nematic order.[24]

    With increasing strains,the in-plane transport anisotropy of BaFe2As2becomes stronger,as shown in Fig.2,which implies a stronger nematic order in strained BaFe2As2, in good agreement with previous reports.[17,18]In Fig.2,RbandRacorrespond to the resistances measured along the [1 1 0] direction and the [1?1 0] direction respectively on the same samples and normalized by the resistances at 300 K.

    Fig.2.The in-plane resistance anisotropy indicated by(a)Rb ?Ra and(b)Rb/Ra for five typical strained samples.The more heavily strained samples S4 and S3 exhibit stronger anisotropy than the moderately strained samples S2 and S1.

    Fig.3.ARPES intensity plots measured around the Γ point for(a)strain-free and(b)–(e)increasingly strained BaFe2As2 samples.S1,S2,S3 and S4 represent four gradually increasing uniaxial strains.The three hole bands shift downward under the increasing uniaxial strains.

    Fig.4.ARPES intensity plots measured around the MY point for(a)strain-free and(b)–(e)increasingly strained BaFe2As2 samples.The two electron bands shift downward under the increasing uniaxial strains.The upper electron band(α band)is more sensitive to the strains,while the lower one(β band)shifts slightly under the applied strains.The black dashed lines are guides for the eyes.

    3.Experimental results

    Figure 3 shows the evolution of electronic structure with increasing uniaxial strains around theΓpoint.A strain-free sample exhibits three hole bands near the Fermi level similar to previous reports.[15,25]With increasing uniaxial strains,the three hole bands shift downward by less than 13 meV,similar to the previous report on the variation of hole bands near theΓpoint under uniaxial strains in iron-based superconductors.[19]It is well known that the splitting of hole bands at theΓpoint is independent of the nematic order.[13]Therefore, the downward shifts of the three hole bands here can be considered to be a result of lattice distortions caused by the uniaxial strains.

    Figure 4 shows the evolution of electronic structure with increasing uniaxial strains around theMYpoint.A strain-free sample exhibits two electron bands near the Fermi level,similar to previous reports.[15,25]With increasing uniaxial strains,the electron bands shift downward at different rates.The upper electron band(αband)shifts downward significantly while the lower one(βband)shifts slightly.As a result,the upper band shifts toward the lower one, and eventually these two bands merge into each other at theMYpoint.

    In previous studies of the detwinned sample under a smaller uniaxial strain, it was reported that the positions of the bottoms of the two electron bands at theMYpoint do not shift significantly before or after the detwinning.[14,15]However, in this paper, when a larger strain is applied to the sample,it is directly observed from the spectra that the bottoms of two electron bands gradually merge under the increasing uniaxial strains.Moreover, the transport results in Fig.2 imply that a larger uniaxial strain leads to a stronger nematic order.That is,with the increasing strains,the splitting of two electron bands decreases although the nematic order becomes stronger.Therefore, it can be concluded that the splitting of these two electron bands is not induced by the nematic order.

    In order to quantitatively analyze the effect of strains at theMYpoint,we extract the energy distribution curves(EDCs)and energy positions of the bottoms of the two electron bands under different strains,as shown in Figs.5(a)and 5(b),respectively.As the uniaxial strain increases from S1 to S4,the bottom of theβband shifts from?60 meV to?72 meV,which is consistent with the trend at theΓpoint as shown in Figs.3(a)–3(e).However,the energy position of the bottom of theαband shows a different shift when the uniaxial strain is applied to the sample.It gradually shifts from?10 meV to?33 meV — a change of 23 meV—when the uniaxial strain increases from S1 to S3.Finally, under the uniaxial strain of S4, the bottom of theαband merges with the bottom of theβband.It can be seen thatαband exhibits significantly more sensitivity to strain.

    Fig.5.(a)Comparison of EDCs extracted from Figs.4(a)–4(e).Different colored lines indicate different applied strains of 0,S1,S2,S3 and S4,as shown in the diagram.(b)The energy positions of the bottoms of the α band and the β band and the energy distance δE between two bottoms of the electron band are plotted as functions of strain strength defined as the ratio between the deformation and the sample’s size δL/L in BaFe2As2.(c) Schematic of the band structure at the MY point in BaFe2As2.Also depicted is a diagram of the evolution in the two electron bands as the strain increases.

    The difference between the bottoms of the two electron bands and their energy distanceδEare also extracted in Fig.5(b).When no strain was applied to the sample, the energy distanceδEbetween the two bottoms of the two electron bands was about 50 meV.When the strain is large enough,δEgradually decreases with increasing strains.This also proves that the two electron bands do not change uniformly under increasing strains.

    4.Conclusion and perspectives

    In previous studies of uniaxial strains in the BaFe2As2system, it was found that the energy positions of different bands along two in-plane directions before and after detwinning changed only modestly.In this paper, varying uniaxial strains were applied to BaFe2As2samples.Under increasing strains, three hole bands at theΓpoint show similar shifts,which are affected by the lattice distortions.However, two electron bands at theMYpoint exhibit different properties: the shift of theβband is similar to that of the three hole bands at theΓpoint.In contrast,a more significant shift of theαband is observed.Under a large strain,the two electron bands tend to close together even though the nematic order is enhanced.This clearly suggests that the splitting of these two electron bands is not induced by the nematic order.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.11888101 and U1832202), the Chinese Academy of Sciences (Grant Nos.QYZDB-SSWSLH043, XDB28000000, and XDB33000000), the K.C.Wong Education Foundation(Grant No.GJTD-2018-01),and the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102).

    猜你喜歡
    石友
    本期石友通訊錄
    寶藏(2021年7期)2021-08-28 08:18:14
    本期石友通訊錄
    寶藏(2021年6期)2021-07-20 06:12:30
    本期石友通訊錄
    寶藏(2021年11期)2021-01-01 06:17:42
    石友天地
    寶藏(2020年10期)2020-11-19 01:47:58
    本期石友通訊錄
    寶藏(2020年4期)2020-11-05 06:49:06
    本期石友通訊錄
    寶藏(2020年6期)2020-10-15 15:38:02
    石友天地
    寶藏(2020年6期)2020-10-15 15:37:58
    本期石友通訊錄
    寶藏(2019年8期)2019-08-22 08:24:20
    本期石友通訊錄
    寶藏(2018年12期)2019-01-29 01:51:38
    本期石友通訊錄
    寶藏(2018年8期)2018-08-31 07:28:12
    日本成人三级电影网站| 精品免费久久久久久久清纯| 99久久久亚洲精品蜜臀av| 欧美绝顶高潮抽搐喷水| 亚洲精品av麻豆狂野| 50天的宝宝边吃奶边哭怎么回事| 十分钟在线观看高清视频www| 99久久无色码亚洲精品果冻| 在线永久观看黄色视频| 欧美日韩中文字幕国产精品一区二区三区| a级毛片在线看网站| 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| 午夜精品在线福利| 精品国产乱子伦一区二区三区| 一边摸一边做爽爽视频免费| 亚洲精品色激情综合| 亚洲精华国产精华精| 色av中文字幕| 成年版毛片免费区| 国产主播在线观看一区二区| 欧美黑人巨大hd| 欧美另类亚洲清纯唯美| 国产精品一区二区精品视频观看| 男女下面进入的视频免费午夜 | 亚洲人成伊人成综合网2020| av电影中文网址| 男人舔奶头视频| 亚洲中文av在线| 一级作爱视频免费观看| 一区二区三区国产精品乱码| 久久人人精品亚洲av| 黑丝袜美女国产一区| 热99re8久久精品国产| 中文字幕av电影在线播放| 久久久久久免费高清国产稀缺| 宅男免费午夜| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 久热这里只有精品99| 动漫黄色视频在线观看| 亚洲熟妇熟女久久| 三级毛片av免费| 午夜久久久久精精品| 91大片在线观看| 19禁男女啪啪无遮挡网站| 久久香蕉国产精品| 在线天堂中文资源库| 欧美日韩亚洲综合一区二区三区_| 亚洲五月天丁香| 18禁裸乳无遮挡免费网站照片 | 欧美国产日韩亚洲一区| 亚洲av中文字字幕乱码综合 | 一夜夜www| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 色尼玛亚洲综合影院| 麻豆一二三区av精品| 777久久人妻少妇嫩草av网站| 18禁观看日本| 国产亚洲精品久久久久5区| 国产97色在线日韩免费| 黄色成人免费大全| 老汉色av国产亚洲站长工具| 国产视频内射| 搡老熟女国产l中国老女人| 久久久久亚洲av毛片大全| 90打野战视频偷拍视频| 国产亚洲欧美精品永久| 精品国产亚洲在线| 国产精品爽爽va在线观看网站 | 久久婷婷成人综合色麻豆| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 色播在线永久视频| 99re在线观看精品视频| 日韩高清综合在线| 国产成人av激情在线播放| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 国产麻豆成人av免费视频| 在线国产一区二区在线| 美女午夜性视频免费| 69av精品久久久久久| 欧美国产日韩亚洲一区| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 中文字幕人妻熟女乱码| 国产伦一二天堂av在线观看| 国产野战对白在线观看| 一级片免费观看大全| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播放欧美日韩| 亚洲精品美女久久久久99蜜臀| 久久午夜亚洲精品久久| 亚洲国产日韩欧美精品在线观看 | 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 久久香蕉国产精品| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 欧美日韩瑟瑟在线播放| 欧美激情 高清一区二区三区| 91国产中文字幕| 国产精品电影一区二区三区| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 麻豆成人av在线观看| 亚洲成av片中文字幕在线观看| 中文字幕人妻熟女乱码| 女性被躁到高潮视频| 丰满的人妻完整版| x7x7x7水蜜桃| av免费在线观看网站| 亚洲成人国产一区在线观看| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 一二三四社区在线视频社区8| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| av在线播放免费不卡| 中国美女看黄片| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看 | 欧美成人免费av一区二区三区| 国产精品免费视频内射| videosex国产| www.精华液| 黄网站色视频无遮挡免费观看| av有码第一页| 成人18禁在线播放| 老司机靠b影院| 色综合站精品国产| www.精华液| 亚洲中文字幕一区二区三区有码在线看 | 亚洲va日本ⅴa欧美va伊人久久| 久热这里只有精品99| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器 | 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看 | 老汉色av国产亚洲站长工具| 午夜福利成人在线免费观看| 欧美日韩黄片免| 91成年电影在线观看| 老司机午夜福利在线观看视频| 一级a爱视频在线免费观看| 黄色女人牲交| 亚洲国产欧美一区二区综合| 欧美日韩一级在线毛片| 99热只有精品国产| 亚洲美女黄片视频| 亚洲精品美女久久av网站| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9| 亚洲 欧美一区二区三区| 岛国在线观看网站| 国产精品久久久人人做人人爽| 麻豆成人午夜福利视频| 岛国在线观看网站| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 亚洲av片天天在线观看| 免费av毛片视频| 亚洲黑人精品在线| 中文字幕人妻熟女乱码| 日韩欧美三级三区| 欧美黑人巨大hd| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 日本免费a在线| 91大片在线观看| 国产精品久久久久久亚洲av鲁大| 久久性视频一级片| www日本在线高清视频| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 国语自产精品视频在线第100页| 十八禁网站免费在线| 成年女人毛片免费观看观看9| 在线观看www视频免费| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 男女做爰动态图高潮gif福利片| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| 视频区欧美日本亚洲| www.精华液| 日本免费一区二区三区高清不卡| 高清毛片免费观看视频网站| 欧美性长视频在线观看| a级毛片a级免费在线| 国产久久久一区二区三区| 亚洲全国av大片| 欧美在线一区亚洲| 久久久久免费精品人妻一区二区 | 男人操女人黄网站| 国产精品乱码一区二三区的特点| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看| 国产又爽黄色视频| 精品一区二区三区四区五区乱码| 在线观看66精品国产| 一个人免费在线观看的高清视频| 日本在线视频免费播放| 亚洲美女黄片视频| 人人妻人人澡人人看| 国产精品一区二区精品视频观看| 日本免费a在线| 午夜免费鲁丝| 黄色女人牲交| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看 | 日本一本二区三区精品| 久久国产乱子伦精品免费另类| 两性夫妻黄色片| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久久久久 | 国产熟女午夜一区二区三区| 少妇 在线观看| 听说在线观看完整版免费高清| 国产aⅴ精品一区二区三区波| 无遮挡黄片免费观看| 精品欧美国产一区二区三| 日本熟妇午夜| 听说在线观看完整版免费高清| 久久国产精品人妻蜜桃| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 免费在线观看影片大全网站| 大香蕉久久成人网| 国产精品免费视频内射| 欧美zozozo另类| 99国产精品99久久久久| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 亚洲自拍偷在线| 麻豆国产av国片精品| 成人国产综合亚洲| 久久中文字幕一级| 看免费av毛片| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| av天堂在线播放| 国产亚洲av嫩草精品影院| 岛国在线观看网站| 一夜夜www| 精品久久久久久久人妻蜜臀av| 国产欧美日韩一区二区三| 国产区一区二久久| 神马国产精品三级电影在线观看 | 亚洲 欧美一区二区三区| 久久精品国产亚洲av香蕉五月| 99久久精品国产亚洲精品| 色哟哟哟哟哟哟| 成人午夜高清在线视频 | 母亲3免费完整高清在线观看| 在线国产一区二区在线| 久久久久久国产a免费观看| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 首页视频小说图片口味搜索| 亚洲精品在线观看二区| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| av电影中文网址| 日韩三级视频一区二区三区| 中文字幕久久专区| 天堂动漫精品| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 精品久久蜜臀av无| 无遮挡黄片免费观看| 国产国语露脸激情在线看| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产伦在线观看视频一区| 十八禁网站免费在线| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 国产激情久久老熟女| 久久国产乱子伦精品免费另类| 国产精品美女特级片免费视频播放器 | 国产精品永久免费网站| 一a级毛片在线观看| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 国产国语露脸激情在线看| 不卡一级毛片| 给我免费播放毛片高清在线观看| 成人特级黄色片久久久久久久| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩乱码在线| 亚洲自偷自拍图片 自拍| 免费高清在线观看日韩| 色播在线永久视频| 美女高潮到喷水免费观看| 黄色a级毛片大全视频| 国产91精品成人一区二区三区| 国产成人欧美在线观看| 村上凉子中文字幕在线| 成年免费大片在线观看| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| 亚洲全国av大片| 国产熟女午夜一区二区三区| 国产高清视频在线播放一区| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 国产成人影院久久av| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 亚洲国产精品合色在线| 满18在线观看网站| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 久久精品亚洲精品国产色婷小说| 少妇裸体淫交视频免费看高清 | 女同久久另类99精品国产91| 一个人免费在线观看的高清视频| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 成人免费观看视频高清| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲| 一区二区日韩欧美中文字幕| 精品熟女少妇八av免费久了| 中文资源天堂在线| 国产精品香港三级国产av潘金莲| 男人操女人黄网站| 欧美乱色亚洲激情| 他把我摸到了高潮在线观看| 精品欧美国产一区二区三| 91九色精品人成在线观看| 婷婷六月久久综合丁香| 欧美人与性动交α欧美精品济南到| 国产精品亚洲美女久久久| 亚洲成人国产一区在线观看| 很黄的视频免费| 国产精品免费视频内射| 90打野战视频偷拍视频| 亚洲avbb在线观看| 午夜a级毛片| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品电影 | www.999成人在线观看| 人人澡人人妻人| 亚洲第一青青草原| 中文字幕久久专区| 亚洲无线在线观看| 一本综合久久免费| 亚洲一码二码三码区别大吗| 国产黄片美女视频| 俺也久久电影网| 麻豆成人av在线观看| 视频在线观看一区二区三区| 熟女电影av网| 1024手机看黄色片| 999久久久国产精品视频| 日本一区二区免费在线视频| 国产精品久久久久久亚洲av鲁大| 在线av久久热| avwww免费| svipshipincom国产片| 日本 av在线| 亚洲第一电影网av| 亚洲精品色激情综合| 我的亚洲天堂| 国产一区二区在线av高清观看| 久久青草综合色| 久久久久久国产a免费观看| 成人精品一区二区免费| 99国产综合亚洲精品| 国产精品亚洲美女久久久| 国产黄色小视频在线观看| 超碰成人久久| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 999久久久精品免费观看国产| 两性夫妻黄色片| 麻豆久久精品国产亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 神马国产精品三级电影在线观看 | 免费在线观看视频国产中文字幕亚洲| 久久亚洲真实| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 欧美一区二区精品小视频在线| 国产成人av教育| 日本五十路高清| 夜夜夜夜夜久久久久| 色在线成人网| 亚洲男人的天堂狠狠| 日韩欧美一区视频在线观看| 国产在线精品亚洲第一网站| 视频区欧美日本亚洲| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美免费精品| 国产精品99久久99久久久不卡| 99riav亚洲国产免费| 欧美三级亚洲精品| 无人区码免费观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 国内精品久久久久精免费| 久久久久久久午夜电影| 欧美 亚洲 国产 日韩一| 亚洲黑人精品在线| 国产午夜福利久久久久久| 日韩有码中文字幕| 免费看a级黄色片| 特大巨黑吊av在线直播 | 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| 精品久久久久久久末码| 老司机靠b影院| 中文字幕精品亚洲无线码一区 | av视频在线观看入口| 激情在线观看视频在线高清| 亚洲五月婷婷丁香| 男人舔奶头视频| 可以免费在线观看a视频的电影网站| 国内揄拍国产精品人妻在线 | 亚洲片人在线观看| 我的亚洲天堂| 亚洲九九香蕉| 少妇 在线观看| 国产欧美日韩一区二区精品| 2021天堂中文幕一二区在线观 | 老汉色av国产亚洲站长工具| 久久久久免费精品人妻一区二区 | 美国免费a级毛片| 亚洲av第一区精品v没综合| 久热爱精品视频在线9| 真人一进一出gif抽搐免费| 波多野结衣高清无吗| 女人被狂操c到高潮| av欧美777| 精品久久久久久久久久久久久 | 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 99精品在免费线老司机午夜| 长腿黑丝高跟| 一区二区三区国产精品乱码| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av| 18禁裸乳无遮挡免费网站照片 | 免费看十八禁软件| 久热爱精品视频在线9| 国产精品九九99| 一夜夜www| 丁香六月欧美| 亚洲成av片中文字幕在线观看| 精品日产1卡2卡| 精品电影一区二区在线| 嫁个100分男人电影在线观看| 欧美绝顶高潮抽搐喷水| 日韩视频一区二区在线观看| 亚洲 欧美一区二区三区| 亚洲国产欧洲综合997久久, | 日韩欧美国产一区二区入口| 久99久视频精品免费| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 欧美三级亚洲精品| 一本久久中文字幕| 亚洲熟女毛片儿| 久久久久九九精品影院| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| 久热爱精品视频在线9| 亚洲国产欧美一区二区综合| 精品福利观看| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| 国产成人啪精品午夜网站| 久久久水蜜桃国产精品网| 天天一区二区日本电影三级| 欧美乱妇无乱码| av中文乱码字幕在线| 丰满人妻熟妇乱又伦精品不卡| 美女高潮到喷水免费观看| 色老头精品视频在线观看| 成人手机av| 91成人精品电影| 中文字幕最新亚洲高清| 国产一区二区三区在线臀色熟女| 一二三四在线观看免费中文在| 欧美日韩一级在线毛片| 国产精品香港三级国产av潘金莲| www日本黄色视频网| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 丁香六月欧美| 国产亚洲欧美在线一区二区| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| 日本在线视频免费播放| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 欧美一级毛片孕妇| 国产又爽黄色视频| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 久久久久精品国产欧美久久久| 国产精品免费一区二区三区在线| 国产又黄又爽又无遮挡在线| 国产精品一区二区三区四区久久 | 午夜激情av网站| 亚洲国产精品成人综合色| 少妇 在线观看| 两性夫妻黄色片| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 亚洲第一av免费看| 午夜成年电影在线免费观看| 精品国产美女av久久久久小说| 久久 成人 亚洲| 中亚洲国语对白在线视频| 此物有八面人人有两片| 亚洲天堂国产精品一区在线| 香蕉丝袜av| 国产一区二区三区视频了| 特大巨黑吊av在线直播 | 757午夜福利合集在线观看| 久久香蕉激情| 草草在线视频免费看| 久久久久久久久中文| www.www免费av| 久久人人精品亚洲av| 精品一区二区三区av网在线观看| 亚洲精品中文字幕一二三四区| 少妇粗大呻吟视频| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 亚洲国产高清在线一区二区三 | 久久精品人妻少妇| svipshipincom国产片| 黑丝袜美女国产一区| 精品国产超薄肉色丝袜足j| 亚洲欧美精品综合久久99| 亚洲中文av在线| 亚洲五月色婷婷综合| 亚洲一区高清亚洲精品| 亚洲av成人av| 国产精品99久久99久久久不卡| 免费在线观看亚洲国产| 亚洲精品色激情综合| 欧美激情久久久久久爽电影| 可以在线观看的亚洲视频| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 国产色视频综合| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 高清毛片免费观看视频网站| 搡老岳熟女国产| 麻豆一二三区av精品| 俺也久久电影网| 美女免费视频网站| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡免费网站照片 | 在线看三级毛片| 亚洲久久久国产精品| 亚洲午夜精品一区,二区,三区| 亚洲人成伊人成综合网2020| 国产成年人精品一区二区| 欧美不卡视频在线免费观看 | 欧美绝顶高潮抽搐喷水| 久99久视频精品免费| 国产一卡二卡三卡精品| 搞女人的毛片| 99久久国产精品久久久| 免费在线观看完整版高清| 亚洲一区中文字幕在线| 国产日本99.免费观看| 十八禁网站免费在线| 国产精品免费视频内射| 国产精品亚洲av一区麻豆| 国产精品九九99| 亚洲三区欧美一区| 国产亚洲欧美精品永久| 亚洲性夜色夜夜综合| 免费在线观看影片大全网站| 精品久久久久久久久久久久久 | 国产熟女xx|