• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Galaxy Interactions in Filaments and Sheets: Insights from EAGLE Simulations

    2024-01-06 06:40:58ApashankaDasBiswajitPandeyandSumanSarkar
    Research in Astronomy and Astrophysics 2023年11期

    Apashanka Das, Biswajit Pandey, and Suman Sarkar

    1 Department of Physics, Visva-Bharati University, Santiniketan, Birbhum, 731235, India; a.das.cosmo@gmail.com, biswap@visva-bharati.ac.in

    2 Department of Physics, Indian Institute of Science Education and Research Tirupati, Tirupati—517507, India

    3 Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; suman2reach@gmail.com

    Abstract We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation <50 kpc are bluer and more star-forming in filamentary environments compared to those hosted in sheet-like environments.This trend reverses beyond a pair separation of ~50 kpc.The interacting pairs with larger separations (>50 kpc) in filaments are on average redder and low-star-forming compared to those embedded in sheets.The galaxies in filaments and sheets may have different stellar mass and cold gas mass distributions.Using a KS test, we find that for paired galaxies with pair separation <50 kpc, there are no significant differences in these properties in sheets and filaments.The filaments transport gas toward the cluster of galaxies.Some earlier studies find preferential alignment of galaxy pairs with the filament axis.Such alignment of galaxy pairs may lead to different gas accretion efficiency in galaxies residing in filaments and sheets.We propose that the enhancement of star formation rate at smaller pair separation in filaments is caused by the alignment of galaxy pairs.A recent study with SDSS data reports the same findings.The confirmation of these results by the EAGLE simulations suggests that the hydrodynamical simulations are powerful theoretical tools for studying galaxy formation and evolution in the cosmic web.

    Key words: methods: data analysis – methods: statistical – galaxies: evolution – galaxies: interactions –(cosmology:) large-scale structure of universe

    1.Introduction

    Galaxies are the fundamental units of the observed largescale structures in the Universe.Understanding their formation and evolution is one of the primary goals of modern cosmology.The growth of primordial density perturbations via gravitational instability eventually leads to the formation of dark matter halos.Dark matter halos represent peaks in the density field.The halos are surrounded by a diffuse neutral hydrogen distribution after the recombination.They accrete the gas, a process which radiates away their kinetic energy and causes gas to settle down at their centers.The cooling and condensation of gas at the centers of these halos are believed to be the primary mechanism for galaxy formation (Silk 1977;White & Rees 1978).

    The formation and evolution of galaxies are expected to be influenced by both the initial conditions at the location of their formation and their interactions with the surrounding environment.Galaxies interact with other galaxies in their neighborhood.The galaxy-galaxy interactions are known to amplify the star formation rate (SFR) in galaxies (Barton et al.2000;Nikolic et al.2004;Woods&Geller 2007;Ellison et al.2010;Patton et al.2011).The environments of galaxies have crucial roles in their evolution.The colors and SFRs of galaxies are strongly affected by the local density of their environment(Gómez et al.2003; Lewis et al.2002).The galaxies become redder and low-star-forming in the higher density environments(Kauffmann et al.2004).The suppression of star formation can be driven by different physical mechanisms.Ram pressure stripping is a common phenomenon in galaxy clusters(Gunn&Gott 1972).Galaxies in high density regions are more likely to encounter harassment (Moore et al.1996, 1998), starvation(Larson et al.1980;Somerville&Primack 1999),strangulation(Gunn & Gott 1972; Balogh et al.2000) and gas expulsion by supernovae, AGN or stellar winds (Cox et al.2004; Murray et al.2005; Springel et al.2005).Star formation in a galaxy may also be quenched through several other routes.The mass(Birnboim & Dekel 2003; Dekel & Birnboim 2006), morphology (Martig et al.2009), presence of a bar (Masters et al.2010) and high angular momentum (Peng 2020) can cause the star formation activity in galaxies to cease.

    Many other galaxy properties depend on the environment.Elliptical galaxies are more commonly observed in dense groups and clusters (Oemler 1974; Dressler 1980; Davis &Geller 1976; Guzzo et al.1997; Goto et al.2003).Spiral galaxies mostly occupy intermediate and low density regions of the Universe.These environmental dependencies of clustering are reflected in different statistical measures such as the correlation function (Zehavi et al.2005), genus (Park et al.2005), filamentarity (Pandey & Bharadwaj 2005, 2006), local dimension (Pandey & Sarkar 2020) and mutual information(Pandey & Sarkar 2017; Bhattacharjee et al.2020; Sarkar &Pandey 2020).The environment of a galaxy is generally characterized by the local density.The local density undoubtedly plays a decisive role in galaxy evolution.However, it cannot completely characterize the environment of a galaxy.Early generation redshift surveys revealed that galaxies are part of an all-inclusive network comprising clusters, filaments and sheets surrounded by vast empty regions (Joeveer &Einasto 1978; Gregory & Thompson 1978; Einasto et al.1980; Zeldovich & Shandarin 1982).Galaxies and their host halos are embedded in different environments of the cosmic web (Bond et al.1996).Pandey & Bharadwaj (2008) find that star-forming blue galaxies trace a more filamentary distribution compared to red galaxies.More than 80% of the baryonic budget in the Universe is accounted for by low density gas(warm-hot intergalactic medium,WHIM)in filaments(Tuominen et al.2021;Galarraga-Espinosa et al.2021).Consequently,the gas accretion efficiency of dark matter halos in different environments may differ in a significant manner.Thus, the cosmic web can have a significant impact on the galaxy properties and their evolution.The galaxies that are located in different parts of the cosmic web can experience different physical conditions,such as different densities of gas,different levels of tidal forces, and different frequencies of interactions and mergers.

    The interactions between galaxies with comparable masses are known as major interactions.Such interactions trigger new star formation in galaxies.Interacting pairs can be hosted in different morphological environments of the cosmic web.Galaxy pairs are more frequently observed in denser regions.The filaments and sheets, being the denser parts of the cosmic web, can host a significant number of major galaxy pairs.In a recent work, Das et al.(2023) analyze Sloan Digital Sky Survey (SDSS) data to compare the SFR and color of major pairs hosted in filaments and sheets.They find that the major galaxy pairs with separation <50 kpc are relatively high starforming and bluer when hosted in filaments.Contrarily, the major pairs at separations larger than 50 kpc show a significantly higher SFR and bluer color in sheet-like environments.This behavior may be related to the preferential alignment of galaxy pairs with the filament axis reported in a number of recent works (Tempel & Tamm 2015; Mesa et al.2018).Star formation in a galaxy is primarily regulated by its available gas mass.The inflows and outflows (Dekel et al.2009;Davé et al.2012)can significantly modulate the gas mass in a galaxy.Transient events like interactions and mergers can drive the galaxies out of equilibrium.The alignment of galaxy pairs with filament spines may lead to anisotropic accretion and higher gas accretion efficiency in these galaxies.In this work,we intend to verify these findings using hydrodynamical simulations.

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation (McAlpine et al.2016) is a hydrodynamical simulation that studies the galaxy formation and evolution in a cosmological volume.It describes the formation of galaxies by gas falling into dark matter halos and their subsequent cooling and condensation.It would be interesting to study the color and SFR in major pairs in filaments and sheets using EAGLE simulations.In observations, galaxy pairs are usually identified by applying simultaneous cuts on the projected separation and the velocity difference of the galaxies in the rest frame.However, all these pairs may not be undergoing interactions.Some of the pairs identified in observations may not be close in three-dimensions due to chance superpositions in high-density regions like groups and clusters (Alonso et al.2004).Also, we cannot construct a mock catalog for the observational sample of galaxy pairs used in Das et al.(2023)due to the smaller volume of the EAGLE simulations.So, we decided to use the real-space positions of galaxies available in simulation to identify the major pairs.This would avoid any errors in identification of galaxy pairs due to the projection effects.We identify the geometric environments of galaxy pairs using the local dimension (Sarkar & Bharadwaj 2009).Our primary aim of this work is to study interaction induced star formation in filaments and sheets using EAGLE simulations.This would help us to assess the roles of filaments and sheets in galaxy evolution.

    We organize the structure of the paper as follows: we describe the data and method of analysis in Section 2 and present the results and conclusions in Section 3.

    2.Data and Method of Analysis

    2.1.EAGLE simulation data

    The EAGLE simulation (McAlpine et al.2016) is a set of cosmological hydrodynamical simulations in periodic, cubic comoving volumes ranging from side of length 25 to 100 Mpc.Such a simulation tracks the evolution of both baryons and dark matter in the Universe from a redshift of 127 to 0.The simulation adopts a flat ΛCDM cosmology with ΩΛ=0.693,Ωm=0.307, Ωb=0.04825 and H0=67.77 km?1s?1Mpc?1(Planck Collaboration et al.2014).

    We determine the morphological environment of the galaxies in the EAGLE simulation by estimating their local dimension (Section 2.2).We use GalaxyID to cross match these galaxies with our pair sample.The cross-matching yields a total of 2537 galaxies in major pairs.We find that 373 and 276 out of these galaxies are residing in filaments and sheetsrespectively.It may be noted that we cannot determine the local dimension of all the galaxies in the simulation.

    Table 1 This Table Shows the Definition of Different Geometric Environments Based on the Local Dimension (D) of the Galaxies

    2.2.Geometry of the Local Environment

    We characterize the different geometric environments of the cosmic web using the local dimension (Sarkar & Bharadwaj 2009).The local dimension is a simple measure based on the galaxy counts within spheres of different radii centered on a galaxy.The galaxy counts within a sphere of radius R centered on a galaxy can be written as,

    where D is the local dimension and A is an arbitrary constant.The number counts N(

    The local dimension D describes the morphology of the embedding environment.Ideally, a filamentary environment should have D=1 and a sheet-like environment should have D=2.A homogeneous distribution in three-dimensions is represented by D=3.However, the filaments, sheets, clusters and voids are not idealized structures and they can have a wide variety of shapes and sizes.Each geometric environment is assigned a range of local dimension as listed in Table 1.A nearly straight filament is represented by a D1 type environment.Similarly, a D2 type environment represents a twodimensional sheet-like structure.A D3 type environment is embedded in a 3D distribution with a homogeneous nature.The galaxies can also reside near the junction of different types of morphological environments.D1.5 and D2.5 can be treated as intermediate environments.

    Figure 1.The left panel of this figure plots the cumulative mean u–r color as a function of pair separation for major pairs residing in D1 and D2 type environments.The right panel displays the cumulative mean SFR for the same pairs in two different environments.We use 10 Jackknife samples to estimate the 1σ error bars shown at each data point.

    3.Results and Conclusions

    The cumulative mean of the u–r color for the major galaxy pairs as a function of the pair separation is plotted in the left panel of Figure 1.We compare the results for the major pairs in filaments and sheets in the same panel.

    This affirms that the major pairs with pair separation r<50 kpc are on average bluer in a filamentary environment compared to those residing in a sheet-like environment.However, this trend only persists up to a pair separation of~50 kpc.A crossover of the two curves corresponding to D1 and D2 type environments is observed at r ~50 kpc.The major pairs with pair separation r>50 kpc are significantly redder in filaments compared to those located in sheets.We also analyze the SFR in major pairs residing in filaments and sheets and show the results in the right panel of Figure 1.We find that the major pairs at closer pair separation(<50 kpc)in filaments are comparatively more star-forming than those located in sheets.We see an exactly opposite trend for the major pairs with larger pair separation (>50 kpc).The colors of the galaxies are strongly correlated with their SFR (Baldry et al.2009) and the results depicted in the two panels of Figure 1 are consistent with each other.It is also interesting that the crossover is observed at nearly the same pair separation(~50 kpc)for both color and SFR.We estimate the 1σ error bars at each pair separation using 10 Jackknife samples drawn from the original data sets.

    The stellar mass (Birnboim & Dekel 2003; Dekel &Birnboim 2006; Bamford et al.2009) and the available cold gas mass content (Saintonge et al.2012; Violino et al.2018;Thorp et al.2022) also play a very important role in deciding the SFR in galaxies.We test if the differences occurring in u–r color and SFR of galaxies in major pairs residing in D1 and D2 type environments arise due to the differences in their stellar mass and cold gas content.We apply a Kolmogorov-Smirnov(KS) test to compare the distributions of stellar mass and cold gas mass of major paired galaxies in D1 and D2 type environments.The probability distribution functions of the two properties in D1 and D2 type environments are visualized in the two panels of Figure 2.We first carry out the test for the major pairs with all possible pair separations.We then conduct separate tests for the major pairs with pair separation >50 kpc and <50 kpc.The results for the KS test are tabulated in Table 2.We note that the null hypothesis for all the major pairs can be rejected at the 90%and 99%confidence levels for stellar mass and cold gas mass respectively.This implies that the stellar mass distribution of galaxies in major pairs residing in D1 and D2 type environments is likely to be drawn from the same parent population.However, the galaxies in major pairs from filaments and sheets have a significantly different cold gas mass distribution.We also arrive at the same conclusions for the major pairs with r>50 kpc.Interestingly,the results for the major pairs with r<50 kpc suggest that the null hypothesis for stellar mass can be rejected at a very low confidence level(<60%), whereas for cold gas mass, it can be rejected at the≤90% confidence level.Thus, stellar mass of major pair galaxies with r<50 kpc in D1 and D2 type environments is highly likely to be drawn from the same underlying population.This clearly shows that stellar mass and available cold gas mass of the paired galaxies are not responsible for the differences observed in their u–r color and SFR in D1 and D2 type environments at smaller pair separations (r<50 kpc).

    Figure 2.The left panel displays the probability distribution function of log( M s tellar Msun )for major pairs in D1 and D2 type environments.The right panel features the probability distribution function of Masscoldgas for the same pairs.

    Table 2 This Table Shows the Summary of the Kolmogorov–Smirnov Tests carried out for a Comparison of log( M s tellar Msun )and Masscoldgas of major pairs in filaments and sheets

    Each galaxy is believed to have formed within a dark matter halo.The properties of the galaxy are expected to be intimately connected to the mass of the dark matter halo.In fact,the mass of the dark matter halo is believed to be the most important parameter that determines the properties of a galaxy(Corray&Sheth 2002).The amount of substructures in dark matter halos increases with increasing halo mass (Gao et al.2004; Pandey et al.2013).There are observational evidences in favor of the correlations between substructure and star formation fraction in galaxy clusters (Bravo-Alfaro et al.2009; Cohen et al.2014).Substructures can also influence the stellar population in the galaxy (Helmi 2020).We depict the distributions of halo masses in the paired galaxies in filaments and sheets in Figure 3.The halo masses are obtained within the same aperture as the galaxies.We perform a KS test to find that the halo mass distributions of the paired galaxies in sheets and filaments are significantly different(Table 3).We ascertain that the halo masses of the paired galaxies in sheets are relatively more massive than those residing in the filaments.The effects of the halo mass may also come from the virial shock heating of the halo gas that becomes important at masses greater than 1012MSun(Birnboim & Dekel 2003).Such heating can suppress the supply of cold gas by preventing cold streams from the intergalactic medium.However, we find that none of the paired galaxies in filaments and sheets in our sample reside in such a massive dark matter halo.At low masses, the supernova feedback may expel or heat the gas reservoir and quench the star formation (Kaviraj et al.2007).The halo mass may have a role in shaping the physical properties of the galaxy pairs in filaments and sheets, but it is difficult to explain the crossovers observed in Figure 3 using these differences in the halo mass distributions.

    Figure 3.This figure displays the distributions of the halo mass of paired galaxies in sheets and filaments.

    Table 3 This Table Shows Kolmogorov–Smirnov Statistic DKS for Comparison of log( M h alo Msun )of Major Pairs Residing in D1 and D2 type Environments

    The filaments appear at the intersection of sheets and are generally denser compared to the sheets.Studies with N-body simulations suggest a successive flow of matter from voids to sheets,sheets to filaments and filaments to clusters(Ramachandra & Shandarin 2015; Galárraga-Espinosa et al.2023).A number of earlier studies find that the galaxy pairs are preferentially aligned with the filament axis (Tempel &Tamm 2015; Mesa et al.2018).The alignment signal is reported to be stronger for closer pairs residing near the filament spine.The anisotropic accretion along the filaments may significantly influence the gas accretion efficiency in these aligned galaxy pairs and trigger interaction induced star formation in them.Contrarily, the major pairs with r>50 kpc show less star-formation in filaments than in sheets.The filaments are generally denser than the sheets.The D1 type galaxies are embedded in a high density environment as compared to the D2 type galaxies(Pandey&Sarkar 2020).The galaxies in denser environments are known to be redder and less star-forming (Lewis et al.2002; Gómez et al.2003;Kauffmann et al.2004).So, naively one would expect the galaxies in a filamentary environment to be less star-forming and redder compared to the galaxies in a sheet-like environment.We find that this is true for the galaxies in major pairs with separation larger than 50 kpc.However, the galaxies in major pairs at closer pair separation exhibit a strikingly opposite behavior.

    We do not analyze the alignment of the galaxy pairs in our study.The individual sheets and filaments cannot be identified using the local dimension.We plan to carry out a detailed study of the galaxy pair alignment with different identification techniques of the cosmic web in a future work.

    The EAGLE simulation provides two definitions for the position of galaxies.These are based on the center of mass and the location of the minimum of the gravitational potential.The two positions do not coincide for some galaxies.In this work,we use the center of mass to define the position of galaxies.We also repeat our analysis considering the minimum of the gravitational potential as the position of a galaxy.We show the results of this analysis in Figure 4.The main findings of our analysis remain unchanged with this alternative definition of galaxy position.Further,it is important to ensure that the major pairs considered in our analysis do not belong to the galaxy groups.We measure the distances to the 5th nearest neighbors for the paired galaxies in sheets and filaments and find that ~20% of them have their 5th nearest neighbor within a distance of 500 kpc–1 Mpc.We discard these galaxy pairs and repeat our analysis.The results of this analysis are displayed in Figure 5.We find that discarding such galaxy pairs does not alter our results.

    The results reported in this work are very similar to the results obtained in a recent study(Das et al.2023)of the color and SFR of major pairs in filaments and sheets using the SDSS data.Das et al.(2023) rely on a volume limited sample of galaxies (Mr≤?19) for their analysis and find a crossover in these properties at nearly the same length scale(~50 kpc).It is interesting to note that we observe exactly the same trend in the EAGLE simulation data.This provides strong theoretical support to the observational findings that large-scale structures like sheets and filaments affect galaxy interactions.This also indicates that the galaxy properties are modulated by the geometry of their large-scale environment.

    Finally,we conclude that the filaments play a significant role in deciding the color and SFR in galaxies.The observed differences in the color and SFR of major pairs in filaments and sheets cannot be interpreted in terms of the differences in the local density and the stellar mass distributions.The interacting galaxy pairs with smaller pair separation can trigger star formation.The filaments provide a favorable environment for such interactions.This makes the interacting galaxies bluer in filaments compared to those found in sheets.

    Figure 4.Same as Figure 1 but when the galaxy positions are defined by the location of the minimum of the gravitational potential instead of the center of mass.

    Figure 5.Same as Figure 1 but after discarding the major pairs for which the 5th nearest neighbor lies within a distance of 500 kpc–1 Mpc.

    Acknowledgments

    B.P.acknowledges financial support from the SERB, DST,Government of India through the project CRG/2019/001110 and support from IUCAA, Pune through the associateship program.S.S.acknowledges DST, Government of India for support through a National Post Doctoral Fellowship(N-PDF).

    The authors acknowledge the Virgo Consortium for making their simulation data publicly available.The EAGLE simulations were performed using the DiRAC-2 facility at Durham,managed by the ICC, and the PRACE facility Curie based in France at TGCC, CEA, Bruyères-le-Chatel.

    久99久视频精品免费| 最近视频中文字幕2019在线8| 精品人妻视频免费看| 你懂的网址亚洲精品在线观看 | .国产精品久久| 国语自产精品视频在线第100页| 欧美日韩综合久久久久久| 日本五十路高清| АⅤ资源中文在线天堂| 亚洲av熟女| 免费在线观看成人毛片| 免费av观看视频| 免费一级毛片在线播放高清视频| 欧美日本视频| 国产亚洲精品久久久久久毛片| 久久国产乱子免费精品| 精品免费久久久久久久清纯| 听说在线观看完整版免费高清| 亚洲欧美日韩高清专用| 亚洲三级黄色毛片| 国产女主播在线喷水免费视频网站 | 一级黄片播放器| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 国产黄色视频一区二区在线观看 | 国产午夜福利久久久久久| 久久亚洲精品不卡| 精品久久久久久久末码| 午夜久久久久精精品| 国产精品一区二区三区四区免费观看| 一区福利在线观看| 好男人视频免费观看在线| 又爽又黄无遮挡网站| 在线国产一区二区在线| 久久99精品国语久久久| 观看美女的网站| 秋霞在线观看毛片| 国产伦在线观看视频一区| 国产成人精品一,二区 | 国产色爽女视频免费观看| 黄色日韩在线| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 国产日韩欧美在线精品| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 色尼玛亚洲综合影院| 国产黄色小视频在线观看| 在现免费观看毛片| 日本一本二区三区精品| 一进一出抽搐gif免费好疼| 亚洲18禁久久av| 亚洲av免费高清在线观看| 十八禁国产超污无遮挡网站| 中文亚洲av片在线观看爽| 99久久中文字幕三级久久日本| 中国美女看黄片| 高清在线视频一区二区三区 | 欧美一区二区精品小视频在线| 国产成年人精品一区二区| 高清毛片免费观看视频网站| 国产在线精品亚洲第一网站| 身体一侧抽搐| 乱人视频在线观看| 成人亚洲精品av一区二区| 大香蕉久久网| 久久中文看片网| 最近手机中文字幕大全| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 久久久精品94久久精品| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 欧洲精品卡2卡3卡4卡5卡区| 波野结衣二区三区在线| 亚州av有码| 欧美色视频一区免费| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 乱人视频在线观看| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 搡女人真爽免费视频火全软件| 亚洲五月天丁香| 国产在视频线在精品| 欧美日韩一区二区视频在线观看视频在线 | av卡一久久| 国产精品永久免费网站| 国产精品久久久久久久电影| 久久精品影院6| 国产成人aa在线观看| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 成人午夜高清在线视频| 亚洲第一电影网av| 久久久久久九九精品二区国产| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 亚洲一区二区三区色噜噜| 一边亲一边摸免费视频| 少妇人妻精品综合一区二区 | 亚洲av成人av| 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 久久韩国三级中文字幕| 日韩欧美国产在线观看| 12—13女人毛片做爰片一| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| av免费在线看不卡| 成人性生交大片免费视频hd| 亚洲欧美成人精品一区二区| 少妇被粗大猛烈的视频| 亚洲欧美清纯卡通| 91狼人影院| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 一级黄色大片毛片| 五月玫瑰六月丁香| 99久国产av精品| 黄色日韩在线| 91久久精品国产一区二区三区| 国产一级毛片在线| 国产亚洲精品久久久久久毛片| 床上黄色一级片| 青春草国产在线视频 | 久久久久久大精品| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 欧美区成人在线视频| 少妇的逼好多水| 久久99热6这里只有精品| 伦理电影大哥的女人| 久久中文看片网| 国产精品美女特级片免费视频播放器| 成年版毛片免费区| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐gif免费好疼| 免费大片18禁| 色尼玛亚洲综合影院| 悠悠久久av| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 国产精品永久免费网站| 亚洲真实伦在线观看| 少妇猛男粗大的猛烈进出视频 | 日本av手机在线免费观看| 免费黄网站久久成人精品| 精品熟女少妇av免费看| 精品免费久久久久久久清纯| 亚洲在线观看片| 亚洲真实伦在线观看| av卡一久久| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 久久九九热精品免费| 日韩欧美在线乱码| 久久精品国产清高在天天线| 99热全是精品| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 国产高清有码在线观看视频| 免费观看精品视频网站| 日韩欧美精品v在线| 午夜老司机福利剧场| 成人午夜精彩视频在线观看| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 青春草视频在线免费观看| 村上凉子中文字幕在线| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 美女黄网站色视频| 晚上一个人看的免费电影| 亚洲第一区二区三区不卡| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 又粗又爽又猛毛片免费看| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片| 精品一区二区免费观看| 国产69精品久久久久777片| 中文亚洲av片在线观看爽| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 国产在线男女| 亚洲av免费在线观看| 久久99热6这里只有精品| 在线观看免费视频日本深夜| 嫩草影院精品99| 99久久成人亚洲精品观看| 亚洲精品乱码久久久久久按摩| 免费人成视频x8x8入口观看| 欧美最黄视频在线播放免费| 国产高清激情床上av| 最近2019中文字幕mv第一页| 亚洲人成网站在线播放欧美日韩| 深爱激情五月婷婷| 黄色视频,在线免费观看| 国产色爽女视频免费观看| 日韩欧美精品v在线| 亚洲四区av| 两性午夜刺激爽爽歪歪视频在线观看| a级毛片免费高清观看在线播放| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 免费人成在线观看视频色| 久久精品夜夜夜夜夜久久蜜豆| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av| 亚洲最大成人av| 国产又黄又爽又无遮挡在线| 成人三级黄色视频| 国产人妻一区二区三区在| 婷婷亚洲欧美| 青青草视频在线视频观看| 精品久久久噜噜| 欧美bdsm另类| 免费看av在线观看网站| 亚洲精品自拍成人| av女优亚洲男人天堂| 亚洲色图av天堂| 舔av片在线| 精品久久久久久久久久免费视频| 国产高清激情床上av| 久久久久性生活片| 日本黄色视频三级网站网址| 青青草视频在线视频观看| 大又大粗又爽又黄少妇毛片口| 亚洲欧美成人综合另类久久久 | 色5月婷婷丁香| 亚洲精品色激情综合| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 久99久视频精品免费| 欧美日韩综合久久久久久| 综合色丁香网| 久久亚洲国产成人精品v| 精品午夜福利在线看| 亚洲av不卡在线观看| 久久热精品热| 日韩欧美精品免费久久| 伦精品一区二区三区| 有码 亚洲区| 午夜久久久久精精品| 免费观看a级毛片全部| 国产精品美女特级片免费视频播放器| 亚洲中文字幕日韩| 男女视频在线观看网站免费| 成人永久免费在线观看视频| 九九热线精品视视频播放| 日本一本二区三区精品| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 蜜臀久久99精品久久宅男| 精品欧美国产一区二区三| 国产精品.久久久| 最近视频中文字幕2019在线8| 国产色婷婷99| 国产高清视频在线观看网站| 天堂影院成人在线观看| 日韩制服骚丝袜av| 亚洲国产精品久久男人天堂| 久久精品国产自在天天线| 欧美色欧美亚洲另类二区| 全区人妻精品视频| 午夜老司机福利剧场| 大香蕉久久网| 99国产精品一区二区蜜桃av| 欧美激情国产日韩精品一区| 听说在线观看完整版免费高清| 联通29元200g的流量卡| 亚洲综合色惰| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 91精品国产九色| 午夜福利在线在线| 少妇人妻精品综合一区二区 | 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| 亚洲七黄色美女视频| 日韩欧美在线乱码| or卡值多少钱| 欧美日本视频| 深爱激情五月婷婷| 欧美人与善性xxx| 九九热线精品视视频播放| 免费观看精品视频网站| АⅤ资源中文在线天堂| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 亚洲图色成人| 亚洲欧美成人综合另类久久久 | 婷婷精品国产亚洲av| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 国产精品日韩av在线免费观看| 国产高清三级在线| 国产精品人妻久久久影院| 国产乱人偷精品视频| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看| 青春草国产在线视频 | 99在线视频只有这里精品首页| 你懂的网址亚洲精品在线观看 | 亚洲在线自拍视频| 亚洲av.av天堂| 色尼玛亚洲综合影院| 国产不卡一卡二| 国产日本99.免费观看| 91久久精品电影网| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 男人的好看免费观看在线视频| 在线a可以看的网站| 免费人成视频x8x8入口观看| 国产白丝娇喘喷水9色精品| 成人午夜高清在线视频| 免费无遮挡裸体视频| 亚洲av熟女| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| .国产精品久久| 国产成人a∨麻豆精品| 国产毛片a区久久久久| 最近中文字幕高清免费大全6| 国产精品99久久久久久久久| 日本爱情动作片www.在线观看| 久久久久久久久久成人| av视频在线观看入口| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 黄色配什么色好看| 男女视频在线观看网站免费| av天堂中文字幕网| 高清毛片免费观看视频网站| 亚洲激情五月婷婷啪啪| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 熟女人妻精品中文字幕| 神马国产精品三级电影在线观看| 国产亚洲欧美98| 人人妻人人澡欧美一区二区| 一级av片app| 精品人妻视频免费看| 免费看日本二区| av免费观看日本| 久久草成人影院| 18禁黄网站禁片免费观看直播| 国产v大片淫在线免费观看| av免费观看日本| 精品日产1卡2卡| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| av免费观看日本| 欧美成人免费av一区二区三区| 91av网一区二区| 成熟少妇高潮喷水视频| 欧美日韩精品成人综合77777| 夜夜夜夜夜久久久久| 国产精品无大码| 免费看日本二区| 婷婷色综合大香蕉| 99久久人妻综合| 99久久精品热视频| 国产日韩欧美在线精品| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 男女边吃奶边做爰视频| 91狼人影院| 精品免费久久久久久久清纯| 人人妻人人澡人人爽人人夜夜 | 精品午夜福利在线看| 啦啦啦观看免费观看视频高清| 亚洲内射少妇av| 天堂av国产一区二区熟女人妻| 国产精品三级大全| 国产成人一区二区在线| 久久6这里有精品| 色综合色国产| 高清毛片免费观看视频网站| 国产精品综合久久久久久久免费| 久久久久性生活片| 少妇被粗大猛烈的视频| 国产又黄又爽又无遮挡在线| 色哟哟·www| 亚洲欧美成人精品一区二区| 成人午夜高清在线视频| 欧美区成人在线视频| 久久午夜亚洲精品久久| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| 免费观看a级毛片全部| 欧洲精品卡2卡3卡4卡5卡区| 黑人高潮一二区| 日韩一区二区视频免费看| 91久久精品国产一区二区三区| 麻豆成人av视频| av视频在线观看入口| 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| 91久久精品电影网| 亚洲一区高清亚洲精品| 国产高清激情床上av| 老女人水多毛片| 欧美精品国产亚洲| 在线国产一区二区在线| 久久6这里有精品| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 国产 一区 欧美 日韩| 国产黄a三级三级三级人| 久久亚洲国产成人精品v| av视频在线观看入口| 小说图片视频综合网站| 人妻少妇偷人精品九色| 少妇人妻一区二区三区视频| 中国国产av一级| 亚洲成av人片在线播放无| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| 国产精品久久视频播放| 男的添女的下面高潮视频| a级毛色黄片| 男女下面进入的视频免费午夜| 老女人水多毛片| 久久久久久国产a免费观看| 欧美人与善性xxx| 亚洲高清免费不卡视频| 久久久久久九九精品二区国产| 日本黄色片子视频| 丰满的人妻完整版| 国产精品电影一区二区三区| 综合色丁香网| 国产熟女欧美一区二区| 中文字幕精品亚洲无线码一区| 美女大奶头视频| 国产乱人偷精品视频| 少妇的逼好多水| 伦精品一区二区三区| 好男人视频免费观看在线| 我的老师免费观看完整版| 国产精品一二三区在线看| 热99在线观看视频| 精品国内亚洲2022精品成人| 一个人免费在线观看电影| 夫妻性生交免费视频一级片| 午夜爱爱视频在线播放| 婷婷色综合大香蕉| 亚洲在线观看片| 深爱激情五月婷婷| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 国产不卡一卡二| 亚洲在线观看片| 美女xxoo啪啪120秒动态图| 黄色日韩在线| 国产麻豆成人av免费视频| www日本黄色视频网| 国产 一区 欧美 日韩| 久久久久久大精品| 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 少妇被粗大猛烈的视频| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 人体艺术视频欧美日本| 韩国av在线不卡| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看 | 欧美激情国产日韩精品一区| 最近手机中文字幕大全| 日本与韩国留学比较| 亚洲第一电影网av| 九九热线精品视视频播放| 久久久久久久久久久免费av| 简卡轻食公司| 亚洲精品成人久久久久久| 亚洲在线自拍视频| 一个人免费在线观看电影| 日本黄色视频三级网站网址| 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 可以在线观看毛片的网站| 一区二区三区四区激情视频 | 性欧美人与动物交配| av免费在线看不卡| 亚洲无线观看免费| 插阴视频在线观看视频| av天堂在线播放| 99久久成人亚洲精品观看| 亚洲精品国产成人久久av| 国语自产精品视频在线第100页| 乱系列少妇在线播放| 国产一区二区在线观看日韩| 成人一区二区视频在线观看| 岛国在线免费视频观看| 边亲边吃奶的免费视频| 国产91av在线免费观看| 一边亲一边摸免费视频| 免费无遮挡裸体视频| 亚洲成人久久爱视频| 少妇丰满av| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 校园春色视频在线观看| 国产黄a三级三级三级人| 色综合色国产| 最近的中文字幕免费完整| 久久婷婷人人爽人人干人人爱| 成人午夜精彩视频在线观看| 一区二区三区免费毛片| 99国产极品粉嫩在线观看| 一本精品99久久精品77| 最近视频中文字幕2019在线8| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 变态另类成人亚洲欧美熟女| 久久国内精品自在自线图片| 1000部很黄的大片| 一级黄片播放器| 精华霜和精华液先用哪个| 国产乱人偷精品视频| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 日日干狠狠操夜夜爽| 变态另类成人亚洲欧美熟女| 三级毛片av免费| 久久精品国产清高在天天线| 久久久久久久久久成人| 亚洲欧美日韩高清专用| 少妇丰满av| 久久久欧美国产精品| 插阴视频在线观看视频| 亚洲国产精品sss在线观看| 青春草视频在线免费观看| 免费人成视频x8x8入口观看| 欧美又色又爽又黄视频| 观看免费一级毛片| 69人妻影院| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| av国产免费在线观看| 免费一级毛片在线播放高清视频| 中国美女看黄片| 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| 亚洲五月天丁香| 久久人人精品亚洲av| 日韩大尺度精品在线看网址| 69av精品久久久久久| 久久精品人妻少妇| 最近最新中文字幕大全电影3| 69人妻影院| 亚洲激情五月婷婷啪啪| 国产又黄又爽又无遮挡在线| 日本爱情动作片www.在线观看| 午夜福利高清视频| 日韩欧美国产在线观看| 69人妻影院| 亚洲精品自拍成人| 国产精品麻豆人妻色哟哟久久 | 久久久精品欧美日韩精品| 亚洲国产高清在线一区二区三| 女的被弄到高潮叫床怎么办| 91久久精品国产一区二区三区| 亚洲电影在线观看av| 亚洲av不卡在线观看| 亚洲最大成人av| 不卡一级毛片| 日本在线视频免费播放| 综合色丁香网| 日本免费一区二区三区高清不卡| 中文在线观看免费www的网站| а√天堂www在线а√下载| 亚洲精品亚洲一区二区| 久久久a久久爽久久v久久| 日日摸夜夜添夜夜爱| 蜜臀久久99精品久久宅男| 中文字幕久久专区| 欧美成人一区二区免费高清观看| 美女大奶头视频| 久久久欧美国产精品| 老司机影院成人|