• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Continuum Observations of the Andromeda galaxy M31 with FAST

    2024-01-06 06:41:08WenjunZhangXiaohuiSunandJieWang
    Research in Astronomy and Astrophysics 2023年11期

    Wenjun Zhang , Xiaohui Sun , and Jie Wang

    1 School of Physics and Astronomy, Yunnan University, Kunming 650500, China; zhangwenjun@mail.ynu.edu.cn, xhsun@ynu.edu.cn

    2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    Abstract We present a new total intensity image of M31 at 1.248 GHz, observed with the Five-hundred-meter Aperture Spherical radio telescope(FAST)with an angular resolution of4′and a sensitivity of about 16 mK.The new FAST image clearly reveals weak emission outside the ring due to its high sensitivity on large-scale structures.We derive a scale length of 2.7 kpc for the cosmic ray electrons and find that the cosmic ray electrons propagate mainly through diffusion by comparing the scale length at 4.8 GHz.The spectral index of the total intensity varies along the ring, which can be attributed to the variation of the spectra of synchrotron emission.This variation is likely caused by the change of star formation rates along the ring.We find that the azimuthal profile of the non-thermal emission can be interpreted by an axisymmetric large-scale magnetic field with varying pitch angle along the ring,indicating a complicated magnetic field configuration in M31.

    Key words: galaxies: ISM – galaxies: magnetic fields – radiation mechanisms: general – (ISM:) cosmic rays

    1.Introduction

    The Andromeda galaxy (M 31) is a prominent spiral galaxy that is the nearest to the Milky Way(Beck et al.1998).Due to its proximity and outstanding“ring”of star formation,M31 has been widely studied in various bands, such as X-ray (Pietsch et al.2005),UV(Gil de Paz et al.2007),near-IR (Jarrett et al.2003), far-IR (Rice et al.1988), and optical (Sarkisyan et al.2020).These observations have improved our understanding of the formation and evolution of M31.

    The radio total intensity of M31 is concentrated in a ring about 7–13 kpc from the center (Beck et al.1998).In this ring,there are also concentrations of cold molecular gas(Nieten et al.2006),warm neutral gas(Chemin et al.2009),warm ionized gas(Devereux et al.1994), and dust (Smith et al.2012).All these indicate that the M31 ring is an important star-forming region and contributes most of the brightness of the galaxy.

    There have been many studies based on the radio observations of M31.The first radio observation of M31 was conducted with the Cambridge one-mile radio telescope at 408 and 1407 MHz with resolutions of 80′ ×120′ and23′ ×35 ′,respectively(Pooley 1969).With the continuing improvement of angular resolution and sensitivity, the follow-up observations of M31 reveal more detailed emission structures, such as the observations by the Effelsberg 100 m telescope at 4850 MHz with a resolution of2.′6 (Berkhuijsen et al.1983).In addition, the combination of interferometric observations from the Very Large Array and the single-dish observations from the Effelsberg radio telescope at 1.5 GHz yielded an image with a high resolution of 45″ covering all the spatial scales (Beck et al.1998).

    The spectrum of M31 has been studied based on the radio observations.The radio emission consists of synchrotron emission (non-thermal) and free–free emission (thermal).At frequencies below 10 GHz, the non-thermal emission is dominant(Battistelli et al.2019), and the fraction of thermal emission is only about 24%at 1 GHz(Berkhuijsen et al.2003).Based on the observations at 1.46 and 4.85 GHz, Berkhuijsen et al.(2003) obtained an overall non-thermal spectral index of α=?1±0.1 (Sν∝να, with Sνbeing the flux density at frequency ν).Beck et al.(2020) derived a total intensity spectral index of ?0.71±0.02, and a synchrotron emission spectral index of ?0.81±0.03 using the observations at 2.645 GHz, 4.85 GHz, and 8.35 GHz.The spectral index toward the ring increases to ?0.5 because the thermal fraction is large and the spectrum thus tends to be flat (Fatigoni et al.2021).

    The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is well suited to image extended sources such as M31 with its high sensitivity(Jiang et al.2020).The observations of M31 Halo are one of the key projects currently being conducted by FAST with guaranteed time (PI: Jie Wang),which focuses on HI mapping in the region of about 800 square degree around the M31 and pulsar searching in the M31 galaxy.The continuum and polarization data have also been recorded simultaneously.This allows us to analyze the total intensity distribution and the spatial variation of spectral index to infer the properties of M31.

    The paper is organized as follows: the observations and results are described in Section 2,and the results are discussed in Section 3, and summarized in Section 4.

    Figure 1.Total intensity (I) image of M31 at 1.248 GHz from FAST.The resolution is4′ and the rms noise is 16 mK.

    2.Observations and Results

    M31 was observed in drifting-scan mode(Jiang et al.2020).In this mode,the 19-beam receiver is rotated by 23°.4 so that a decl.strip of about22′ can be completed in Nyquist sampling for each individual scan.In total, 11 drifting scans were conducted during 2020 October 1–18.In order to calibrate the system variations, a linearly polarized noise of about 12.5 K(Jiang et al.2019) is injected into the system for 2 s every 1000 s.The frequency range of the receiving system is 1.0–1.5 GHz, which is divided into 65,536 channels.The width of each channel is about 7.63 kHz.The backend outputs four channels with two for total intensity I1and I2,and the other two for Stokes U and V.

    We follow the data processing procedure developed by Sun et al.(2021).To obtain the images at a single frequency channel,the following steps were taken:(1)mitigation of radio frequency interference (RFI); (2) correction of instrumental polarization leakage and angle, and temperature scale with injected noise; (3) combination of all the 11 scans; (4)conversion to the brightness temperature scale (Tb).We repeat this procedure and obtain the maps of about 29,000 frequency channels.These maps are then smoothed to a common resolution of4′.

    2.1.Total Intensity Maps

    We average all the frequency channel maps by taking the median values and obtained the total intensity image at 1.248 GHz, as shown in Figure 1.Some scanning effects are indicated by the stripes along decl.direction still remain in the image, which were caused by drifting of the system.It would require scans in alternative directions to remove these effects, as shown by Sun et al.(2022).The rms noise is about 16 mK.

    A smaller area containing M31 is cut out from Figure 1,rotated by 53° following Beck et al.(1998) and shown in Figure 2 (top panel).For comparison, the map by Beck et al.(1998) combining the interferometer and single-dish observations at 1.46 GHz is also shown in Figure 2 (middle panel).

    As can be seen from Figures 1 and 2, there is strong radio emission toward the center and the ring area.The FAST image clearly reveals weak emission extending outside the ring toward the southwest.In contrast, this extended emission is almost absent in the image by Beck et al.(1998).

    To study the emission from M31, we remove the bright compact sources marked in Figure 2(top panel)by subtracting Gaussian fittings of these sources.The resulting image is shown in Figure 2(bottom panel),which is used to investigate the variations of total intensity below.Note that there still remain background point sources that cannot be resolved with FAST.We retrieve the flux intensities of these sources from the NVSS survey with a higher resolution of 45″(Condon et al.1998), and find that their contribution to the intensity of the ring is less than about 5%.Their influence on the analyses below can thus be ignored.

    Figure 2.Total intensity(I)image of M31 from FAST(top panel),from the combination of the VLA and Effelsberg 100 m telescope(middle panel,Beck et al.1998),and from FAST with point sources marked in the upper panel removed (bottom panel).The galaxy is rotated by ?53°.

    Figure 3.Intensity I with the angular distance from the galactic center.The red line indicates a Gaussian fitting with a scale length of 3.7 kpc after correcting the influence of beamwidth.

    2.2.Radial Profile of the Total Intensity

    The radial variation of the total intensity can be used to constrain the propagation of cosmic ray electrons.We derive the average intensity of 6′-width annuli from the center until the radius of about 110′.The intensity versus radius is shown in Figure 3.The standard deviation from each annulus is calculated as the error bar.

    The sharp peak near radius 0 is contributed by the nucleus of M31.The broad peak from the radius of about27′to the radius of about57′indicates the ring area with bright emission.With a distance to M31 of about 780 kpc(Stanek & Garnavich 1998),this angular range corresponds to about 6–13 kpc.The total intensity gradually decreases with increasing radius and flattens out beyond the radius of about93′.

    We fit the total intensity radial profile for radii larger than27′to a Gaussian, namelyT∝ exp[- (r-r0)22L2], where r is the radius,r0is the peak radius,and L is the scale length.After accounting for the influence of beamwidth,we obtain the scale length of about 16.′2 ± 0.3′ or 3.7±0.1 kpc.

    2.3.Azimuthal Profile of the Total Intensity

    The variation of total intensity versus direction reflects the structure of magnetic field.From the Gaussian fitting of the radial profile, we obtain the peak position of the ring atr0= 40.′9.We use the annulus of r0±L to derive the azimuthal profile of total intensity in the ring.The azimuthal angle starts from the major axis toward the north east and increases eastwards (Figure 1) or starts from the major axis toward the left and increases counter-clockwise (Figure 2).An average intensity is derived for every 10° sector, and the profile is shown in Figure 4.

    The emission is the brightest for the azimuthal angle between 30° and 90°, and becomes weaker for the azimuthal angle between 150° and 270°, as can also be seen from Figure 2.There is no clear pattern for the azimuthal profile.

    2.4.Spectral Index

    The spectral index is related with the emission properties,such as non-thermal and thermal fraction and cosmic ray electrons aging.We do not derive the spectral index for all the pixels by fitting the brightness temperature against frequency because of the influence of background emission.Instead, we divide the whole M31 area into eight regions(Figure 5) and obtain the spectral index using the Temperature–Temperature plot (TT-plot) method(Turtle et al.1962) which is immune to the background emission.

    We take the median values of the first 10,000 and the last 10,000 channels to calculate the spectral index with TT-plot.The corresponding frequencies are 1.055 and 1.420 GHz,which has the largest frequency separation and hence allows for a more accurate determination of spectral index.The TT-plot results for the seven regions are shown in Figures 5 and 6.Note that the brightness temperature spectral index β, as we obtain,can be connected to the flux density spectral index α as α=β+2.

    Figure 4.The total intensity in the ring of M31 vs.azimuthal angle.

    Figure 5.Area marked for deriving spectral index with the TT-plot method and the resulted flux density spectral indices α=β+2.

    The spectral index for the total intensity is not uniform for M31.Toward the areas marked as 6,1,2 in Figure 5 where the total intensity emission is weak, the spectra are steep with spectral index α between ?0.8 and ?0.7.In contrast,the areas marked as 3,4,5 in Figure 5 where the emission is stronger,the spectra are shallower with spectral index α up to ?0.44±0.09.There seems a tendency of larger intensity with flatter spectrum.The nucleus region marked as 7 has the smallest spectral index of ?0.90±0.03.The area outside M31 marked as 8, detected because of the high sensitivity of FAST, has a spectral index of α=?0.64±0.08, and has not been well studied before.

    3.Discussion

    3.1.Properties of Cosmic Ray Electrons

    Figure 6.TT-plots for the areas marked in Figure 5.The resulted brightness temperature spectral indices β are also shown.

    Figure 7.Thermal fraction obtained from Tabatabaei et al.(2013) vs.the azimuthal angle.

    The total intensity is composed of both thermal emission from free–free radiation and non-thermal emission from synchrotron radiation.We take the images of thermal and nonthermal emission derived by Tabatabaei et al.(2013)and obtain the thermal fraction versus the azimuthal angle for the ring of M31, as shown in Figure 7.The thermal fraction is up to 20%for the azimuthal angle between 30°and 90°,and is about 10%for the rest.The thermal emission has a flat spectrum with αth≈?0.1 which is much larger than that of non-thermal emission.Therefore the mixture of thermal and non-thermal emission will bring the spectral index of the total emission to a larger value.Typically,for a thermal fraction of 10%and 20%,the spectral index of total intensity calculated from the frequency pair of 1.055 and 1.420 GHz is increased by 0.1 and 0.2 in comparison with the spectral index of non-thermal emission αn, respectively.

    For the emission ring of M31,the spectra for total intensity toward the north part in Figure 1 or the regions 3, 4, 5 on the left part in Figure 5 are shallower than those toward the south part.Taking into account the influence of thermal emission,the spectral index of the non-thermal emission could be estimated by subtracting 0.1 or 0.2 from the total intensity spectral index depending on the thermal fraction.For example, the non-thermal spectral index could reach αn≈?0.64 for region 5 with a thermal fraction of about 20%.This implies that the non-thermal spectral index toward the northern part is larger than that toward the southern part of M31.

    The asymmetry of the non-thermal spectral index between the northern and southern part of M31 was also found by Fatigoni et al.(2021) based on the observations at frequencies between 1.5 and 6.6 GHz.The star formation rate is also higher toward the north(Fatigoni et al.2021).A higher star formation rate results in a larger number of stars and consequently a larger number of supernovae and supernova remnants that can produce more cosmic ray electrons.Therefore the spectrum is flatter toward the north.Moreover, the presence of higher cosmic ray electron density results in stronger synchrotron radiation, which explains the correlation between large intensity and large spectral index.

    For area 8 in Figure 5, it cannot be the extension from the ring.Otherwise its spectrum should be steeper because of the aging of cosmic ray electrons as they propagate from the ring.From the Herschel image at 250 μm(Viaene et al.2014),there is strong emission corresponding to this area, which seems to be part of a large ring structure surrounding M31.There could be star-forming activities that produce high energy electrons.High resolution observations are needed to detect radio emission related with the infrared emission observed by Herschel.

    The scale length of the total emission is 3.7 kpc.The thermal emission is highly concentrated in the ring(Tabatabaei et al.2013), and therefore has little influence on the scale length of non-thermal emission.In practice, we derive a scale length of 3.8 kpc for the non-thermal emission after removing the contribution of thermal emission.This corresponds to an exponential scale length of 2 × 3.8 ≈ 5.4 kpc.Assuming an energy equipartition between magnetic field and cosmic rays,the scale length of the non-thermal emission is equal to that of cosmic ray electrons multiplied by the factor (3 ?αn)/2 ≈2(Berkhuijsen et al.2013).The scale length of cosmic ray electrons is thus about 2.7 kpc.

    Figure 8.The azimuthal profile of the non-thermal emission within the ring.The lines indicate the profiles expected from an axisymmetric magnetic field with a pitch angle of ?15° and 30°, respectively.

    3.2.The Magnetic Field in the Ring

    We obtain the azimuthal profile of the non-thermal emission within the bright ring after subtracting the thermal emission(Figure 7) from the total emission(Figure 4).The result is shown in Figure 8.The non-thermal emission is from synchrotron radiation and its profile thus reflects the magnetic field configuration in M31.

    The large-scale regular magnetic field in M31 mainly follows an axisymmetric pattern(Han et al.1998; Fletcher et al.2004).In this configuration, the magnetic field perpendicular to the line of sight can be derived as,

    where φ is the azimuth angle, ξ is the pitch angle, and i is the inclination angle of M31.The non-thermal intensity (I) can be assessed as(Beck & Krause 2005),

    Here the energy equipartition between magnetic field and cosmic rays is assumed.

    The random magnetic field has recently been classified into ordered field and isotropic field to interpret the polarization observations of M31(Beck et al.2020).The ordered field can be generated from shear of differential rotation or compression of spiral arm shocks(Jaffe 2019).However, there are no indications of such large-scale structures inside the ring from radio observations.We therefore only consider the isotropic random magnetic fields.Since the path length along different line of sight toward the ring is similar, the synchrotron emission from the random fields is independent of the azimuthal angle.The azimuthal variation of non-thermal emission is thus caused by the large-scale regular field.

    The intensity of synchrotron radiation can be derived using Equations (1) and (2).The inclination angle i=75°(Chemin et al.2009) is used.The pitch angle is uncertain.Berkhuijsen et al.(2003) obtained a pitch angle of ξ=?13°±7° by analyzing polarization observations at 6 cm.Fletcher et al.(2004)found a radial change of the pitch angle from ?17° to ?8° based on multi-frequency polarization observations.Whereas, the recent analysis by Beck et al.(2020) suggested a large variation of the pitch angle versus azimuthal angle for the total magnetic field including both regular and ordered field.

    Assuming a constant pitch angle for M31, we would expect the separation of the two intensity peaks to be 180°, which is clearly inconsistent with the observed profile shown in Figure 8.This implies variations of the pitch angle.We thus propose a simple model of the large scale magnetic field with a pitch angle of ?15°for the azimuthal angle range of 0°–190°,and a pitch angle of 30°for the azimuthal angle range of 190°–360°.Additionally,we impose a factor of 0.95 for the ratio of the two peaks, which we attribute to the variation of cosmic ray electron density.The resulting profile is presented in Figure 8,which reasonably reproduces the observed profile.A more sophisticated model of magnetic field requires both total intensity and polarization observations at multiple frequencies,which is beyond the scope of this paper.

    4.Summary

    We obtain the total intensity images from the FAST legacy survey of M31, covering the frequency range of 1.0–1.5 GHz.By averaging over all the frequency channels, we derive the total intensity image at 1.248 GHz, which reveals weak extended emission outside the ring because of the high sensitivity.The image allows us to analyze the propagation of cosmic ray electrons and the magnetic field configuration.

    The main conclusions are as follows:

    1.We derive a scale length of about 2.7 kpc for the cosmic ray electrons by fitting the radial profile of non-thermal emission.In comparison with the scale length at higher frequencies, we find that the cosmic ray electrons propagate mainly through diffusion.

    2.The spectral index of the total intensity in the ring,calculated from TT-plots, clearly exhibits an azimuthal variation,which can be attributed to the spectral variation of synchrotron radiation.The variation is likely caused by the change in star formation rates along the ring.

    3.The weak emission detected outside the ring might not be the extended emission from the ring.Instead, it might be produced by star-forming activities.

    4.The azimuthal profile of non-thermal emission can be reproduced with an axisymmetric large-scale magnetic field pattern with pitch angle varying with azimuthal angle, indicating that the magnetic field configuration in the ring is complicated.

    Acknowledgments

    W.Z.and X.S.are supported by the National SKA Program of China (grant No.2022SKA0120101).We thank the anonymous referee for the comments that helped improve the paper.We thank Dr.Fatemeh Tabatabaei for providing us the thermal fraction map of M31.

    ORCID iDs

    Wenjun Zhang https://orcid.org/0000-0003-3136-7756 Xiaohui Sun https://orcid.org/0000-0002-3464-5128

    国产一区二区激情短视频| 老汉色∧v一级毛片| 免费搜索国产男女视频| 97碰自拍视频| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| 一个人免费在线观看的高清视频| 久久天堂一区二区三区四区| 男男h啪啪无遮挡| 亚洲黑人精品在线| 免费高清视频大片| 热re99久久精品国产66热6| 国产激情久久老熟女| 人人妻人人添人人爽欧美一区卜| 欧美国产精品va在线观看不卡| 窝窝影院91人妻| 丰满人妻熟妇乱又伦精品不卡| 欧美成狂野欧美在线观看| 亚洲精华国产精华精| 国产精品 国内视频| 在线av久久热| 午夜91福利影院| 国产精品综合久久久久久久免费 | 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品19| 久久中文字幕一级| 日韩欧美三级三区| 国产亚洲精品第一综合不卡| 18禁观看日本| 深夜精品福利| 亚洲人成电影免费在线| 久久精品国产综合久久久| 好男人电影高清在线观看| 免费av毛片视频| 成人亚洲精品一区在线观看| 亚洲九九香蕉| 久久中文字幕人妻熟女| 免费av毛片视频| 国产免费av片在线观看野外av| 91字幕亚洲| 亚洲三区欧美一区| 国产一区二区三区视频了| 999久久久国产精品视频| 欧美黑人欧美精品刺激| 国产欧美日韩综合在线一区二区| 午夜久久久在线观看| 黄色丝袜av网址大全| 久久伊人香网站| 国产黄色免费在线视频| 国产精品久久视频播放| 日日干狠狠操夜夜爽| 亚洲九九香蕉| 欧美成人性av电影在线观看| 亚洲国产中文字幕在线视频| 老司机在亚洲福利影院| 黄片小视频在线播放| 亚洲黑人精品在线| 在线观看日韩欧美| 久久九九热精品免费| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人免费av在线播放| 国产深夜福利视频在线观看| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| www.精华液| 黄片播放在线免费| 91大片在线观看| 丰满人妻熟妇乱又伦精品不卡| 狂野欧美激情性xxxx| 视频在线观看一区二区三区| 男女之事视频高清在线观看| 欧美中文综合在线视频| 欧美日韩精品网址| 深夜精品福利| 操美女的视频在线观看| 欧美国产精品va在线观看不卡| 久久国产精品男人的天堂亚洲| 免费高清在线观看日韩| 1024视频免费在线观看| 日韩欧美免费精品| 91成年电影在线观看| 精品国产乱码久久久久久男人| 亚洲精品美女久久久久99蜜臀| 亚洲男人天堂网一区| 香蕉丝袜av| 欧美一级毛片孕妇| 在线观看66精品国产| av欧美777| 久久精品人人爽人人爽视色| 交换朋友夫妻互换小说| 久久精品国产清高在天天线| 日本 av在线| 一区二区日韩欧美中文字幕| 日韩欧美一区视频在线观看| 人人妻人人爽人人添夜夜欢视频| 精品无人区乱码1区二区| 亚洲av片天天在线观看| 亚洲自拍偷在线| 在线看a的网站| 在线观看免费午夜福利视频| 夫妻午夜视频| 少妇的丰满在线观看| 一级作爱视频免费观看| 日韩有码中文字幕| av片东京热男人的天堂| 校园春色视频在线观看| 啦啦啦在线免费观看视频4| 曰老女人黄片| av电影中文网址| 窝窝影院91人妻| 免费一级毛片在线播放高清视频 | 精品欧美一区二区三区在线| 亚洲精品国产色婷婷电影| 色综合婷婷激情| 搡老熟女国产l中国老女人| 美国免费a级毛片| 欧美日韩瑟瑟在线播放| 真人做人爱边吃奶动态| 高清欧美精品videossex| 曰老女人黄片| 一级黄色大片毛片| 变态另类成人亚洲欧美熟女 | 日韩欧美国产一区二区入口| 国产精品 国内视频| 9色porny在线观看| 激情视频va一区二区三区| 亚洲第一av免费看| 亚洲少妇的诱惑av| 国产亚洲精品第一综合不卡| 国产又色又爽无遮挡免费看| 美女高潮喷水抽搐中文字幕| 免费高清在线观看日韩| 国产精品久久久久久人妻精品电影| 久久草成人影院| 亚洲欧洲精品一区二区精品久久久| 熟女少妇亚洲综合色aaa.| 欧美另类亚洲清纯唯美| 最近最新中文字幕大全电影3 | 97人妻天天添夜夜摸| 身体一侧抽搐| 免费在线观看视频国产中文字幕亚洲| 欧美精品啪啪一区二区三区| 亚洲五月色婷婷综合| 成人特级黄色片久久久久久久| 18禁观看日本| 免费在线观看完整版高清| 欧美在线一区亚洲| 日韩有码中文字幕| 法律面前人人平等表现在哪些方面| 美女扒开内裤让男人捅视频| 国产在线精品亚洲第一网站| 两个人看的免费小视频| 淫妇啪啪啪对白视频| 啦啦啦在线免费观看视频4| 成人永久免费在线观看视频| 老司机亚洲免费影院| 亚洲欧美激情在线| 女人高潮潮喷娇喘18禁视频| 亚洲男人天堂网一区| 亚洲精品国产精品久久久不卡| 日韩三级视频一区二区三区| videosex国产| 久久久久久久精品吃奶| 精品国产一区二区久久| 国产激情久久老熟女| 看免费av毛片| a级毛片黄视频| 中文亚洲av片在线观看爽| 99久久久亚洲精品蜜臀av| 神马国产精品三级电影在线观看 | 免费在线观看影片大全网站| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 这个男人来自地球电影免费观看| 中文字幕人妻熟女乱码| 亚洲成国产人片在线观看| 淫妇啪啪啪对白视频| 久久精品国产综合久久久| 免费一级毛片在线播放高清视频 | 欧美不卡视频在线免费观看 | 国产精品免费一区二区三区在线| 国产午夜精品久久久久久| 中文字幕人妻丝袜一区二区| 免费高清视频大片| 亚洲黑人精品在线| x7x7x7水蜜桃| 淫妇啪啪啪对白视频| 国产成人欧美| 免费av毛片视频| 中文字幕人妻丝袜制服| 满18在线观看网站| 久久久久国内视频| 久久久久久亚洲精品国产蜜桃av| 黑人猛操日本美女一级片| 久久 成人 亚洲| 亚洲 欧美 日韩 在线 免费| 国产一卡二卡三卡精品| 亚洲成国产人片在线观看| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 日本wwww免费看| 淫妇啪啪啪对白视频| 香蕉久久夜色| 九色亚洲精品在线播放| 精品电影一区二区在线| ponron亚洲| 在线永久观看黄色视频| 国产精品自产拍在线观看55亚洲| 丝袜人妻中文字幕| 欧美色视频一区免费| 亚洲avbb在线观看| 国产成人精品久久二区二区免费| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 成人亚洲精品av一区二区 | 国产一卡二卡三卡精品| 国产av精品麻豆| 高清黄色对白视频在线免费看| 久久香蕉激情| www国产在线视频色| 看片在线看免费视频| 国产xxxxx性猛交| 十八禁网站免费在线| 香蕉国产在线看| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| www日本在线高清视频| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 在线观看午夜福利视频| 久久午夜综合久久蜜桃| 午夜激情av网站| 纯流量卡能插随身wifi吗| 亚洲片人在线观看| 亚洲av电影在线进入| 国产黄色免费在线视频| 国产亚洲欧美98| 91大片在线观看| 又紧又爽又黄一区二区| 乱人伦中国视频| 亚洲国产看品久久| 国产精品日韩av在线免费观看 | 国产一区二区激情短视频| 男人的好看免费观看在线视频 | 在线av久久热| 精品久久久久久久久久免费视频 | 国产av在哪里看| 亚洲精品在线观看二区| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久综合精品五月天人人| 可以在线观看毛片的网站| 欧美日韩精品网址| 嫩草影视91久久| 亚洲第一青青草原| 欧美在线一区亚洲| 91麻豆av在线| 韩国av一区二区三区四区| 国产av一区二区精品久久| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 国产精品二区激情视频| 超色免费av| 黑人猛操日本美女一级片| 精品卡一卡二卡四卡免费| 神马国产精品三级电影在线观看 | 一a级毛片在线观看| 后天国语完整版免费观看| 老熟妇乱子伦视频在线观看| 女性生殖器流出的白浆| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 99久久久亚洲精品蜜臀av| 国产精品久久久av美女十八| 一个人免费在线观看的高清视频| 精品熟女少妇八av免费久了| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 欧美午夜高清在线| 一级,二级,三级黄色视频| 国产欧美日韩综合在线一区二区| 亚洲精品国产色婷婷电影| 91九色精品人成在线观看| 久久香蕉精品热| 男女做爰动态图高潮gif福利片 | 亚洲美女黄片视频| 黄色女人牲交| 久久人妻福利社区极品人妻图片| 如日韩欧美国产精品一区二区三区| 欧美一级毛片孕妇| 欧美不卡视频在线免费观看 | 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 少妇的丰满在线观看| 亚洲三区欧美一区| 午夜福利在线免费观看网站| 99精品久久久久人妻精品| av网站在线播放免费| 中文字幕高清在线视频| 激情视频va一区二区三区| av视频免费观看在线观看| 麻豆av在线久日| 男女高潮啪啪啪动态图| 精品国产亚洲在线| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| 极品人妻少妇av视频| 我的亚洲天堂| 亚洲欧美日韩另类电影网站| 在线免费观看的www视频| 中国美女看黄片| xxxhd国产人妻xxx| 天堂√8在线中文| 久久伊人香网站| 国产成人系列免费观看| 97超级碰碰碰精品色视频在线观看| 国产激情欧美一区二区| 免费在线观看影片大全网站| 亚洲国产精品999在线| 婷婷六月久久综合丁香| 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 成人免费观看视频高清| 桃色一区二区三区在线观看| 成年版毛片免费区| 少妇被粗大的猛进出69影院| 国内毛片毛片毛片毛片毛片| 成人手机av| 国产精品一区二区在线不卡| 国产精品一区二区精品视频观看| 日韩欧美一区视频在线观看| 一区二区三区精品91| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 免费观看精品视频网站| 美女福利国产在线| 午夜两性在线视频| www.999成人在线观看| 久久精品亚洲av国产电影网| 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 国产亚洲精品一区二区www| 亚洲激情在线av| aaaaa片日本免费| 九色亚洲精品在线播放| 久久天堂一区二区三区四区| 久久九九热精品免费| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 丁香六月欧美| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 欧美另类亚洲清纯唯美| 无限看片的www在线观看| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| svipshipincom国产片| 身体一侧抽搐| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 国产精品免费视频内射| 国产一区二区在线av高清观看| 午夜精品久久久久久毛片777| 制服人妻中文乱码| 动漫黄色视频在线观看| 国产欧美日韩精品亚洲av| 女警被强在线播放| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 精品一区二区三区四区五区乱码| 日韩免费高清中文字幕av| 丝袜在线中文字幕| 亚洲精品美女久久av网站| www.www免费av| 久久青草综合色| 99久久人妻综合| 日日干狠狠操夜夜爽| 最新美女视频免费是黄的| 天天躁夜夜躁狠狠躁躁| av在线天堂中文字幕 | 国产精品美女特级片免费视频播放器 | 日韩大码丰满熟妇| 制服人妻中文乱码| 97人妻天天添夜夜摸| 欧美黑人欧美精品刺激| 成人黄色视频免费在线看| 亚洲av片天天在线观看| 欧美午夜高清在线| 在线av久久热| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 久久久国产一区二区| 久久国产精品影院| 亚洲男人天堂网一区| 国产国语露脸激情在线看| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区久久| 久久国产精品男人的天堂亚洲| 国产精品偷伦视频观看了| 亚洲一区二区三区不卡视频| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 一级毛片精品| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| 视频区图区小说| 一本大道久久a久久精品| 男人舔女人下体高潮全视频| 久久久久九九精品影院| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 正在播放国产对白刺激| 99久久人妻综合| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 亚洲av熟女| 国产精品一区二区免费欧美| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 国产熟女xx| 欧美激情 高清一区二区三区| 色综合欧美亚洲国产小说| 男人舔女人的私密视频| 啪啪无遮挡十八禁网站| 国产片内射在线| 久久香蕉精品热| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 亚洲国产看品久久| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 久久中文看片网| 欧美丝袜亚洲另类 | 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 在线观看日韩欧美| 亚洲专区国产一区二区| 亚洲精品国产色婷婷电影| 亚洲精品av麻豆狂野| 黄色女人牲交| 首页视频小说图片口味搜索| 老汉色∧v一级毛片| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 电影成人av| 韩国av一区二区三区四区| 久久久国产精品麻豆| 脱女人内裤的视频| 深夜精品福利| 高清av免费在线| 99久久人妻综合| 十八禁人妻一区二区| 又黄又爽又免费观看的视频| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 一区二区三区激情视频| 大型av网站在线播放| 亚洲av成人一区二区三| 亚洲av成人av| 两个人看的免费小视频| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 亚洲av成人av| 看免费av毛片| 亚洲久久久国产精品| www.熟女人妻精品国产| av在线播放免费不卡| 性少妇av在线| 亚洲成人久久性| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 国产精品日韩av在线免费观看 | 亚洲人成电影免费在线| 国产99白浆流出| 18禁裸乳无遮挡免费网站照片 | 欧美日韩一级在线毛片| 亚洲三区欧美一区| 国产精品av久久久久免费| 日日爽夜夜爽网站| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 大型黄色视频在线免费观看| 国产精华一区二区三区| 亚洲一区二区三区不卡视频| 成人免费观看视频高清| 看免费av毛片| 久久中文看片网| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 99久久综合精品五月天人人| 午夜福利欧美成人| 久久久久久亚洲精品国产蜜桃av| 91字幕亚洲| 欧美日韩视频精品一区| 成年版毛片免费区| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 午夜福利,免费看| 国产aⅴ精品一区二区三区波| 另类亚洲欧美激情| 免费av中文字幕在线| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 亚洲色图av天堂| 国产精品自产拍在线观看55亚洲| 一区二区三区国产精品乱码| 国产一区二区激情短视频| 亚洲在线自拍视频| 免费av毛片视频| 中文字幕色久视频| av天堂在线播放| 两性夫妻黄色片| 亚洲欧美激情在线| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 在线看a的网站| 757午夜福利合集在线观看| 一夜夜www| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久 | 午夜91福利影院| 叶爱在线成人免费视频播放| 热re99久久国产66热| 亚洲熟妇熟女久久| 91大片在线观看| 欧美午夜高清在线| 搡老乐熟女国产| 免费av毛片视频| 午夜成年电影在线免费观看| av欧美777| 久久久国产一区二区| 国产在线观看jvid| 亚洲avbb在线观看| 久久精品国产清高在天天线| 看免费av毛片| 成人免费观看视频高清| 亚洲午夜理论影院| 极品教师在线免费播放| 超碰成人久久| 日日干狠狠操夜夜爽| 超碰成人久久| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 色综合站精品国产| 高潮久久久久久久久久久不卡| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久久久99蜜臀| 午夜免费鲁丝| 成人免费观看视频高清| 精品久久久精品久久久| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 免费搜索国产男女视频| 老司机亚洲免费影院| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 黄色视频,在线免费观看| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 午夜免费鲁丝| 免费高清视频大片| 亚洲色图综合在线观看| 国产亚洲欧美在线一区二区| 国产成人免费无遮挡视频| av有码第一页| 丝袜美足系列| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 国产成年人精品一区二区 | 男人舔女人下体高潮全视频| 婷婷丁香在线五月| 免费看a级黄色片| www国产在线视频色| 午夜福利欧美成人| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 国产av一区在线观看免费| 久久精品影院6| 好看av亚洲va欧美ⅴa在| 久久99一区二区三区| 久久久久久免费高清国产稀缺| 无人区码免费观看不卡| 纯流量卡能插随身wifi吗| 成人国语在线视频| 一区福利在线观看| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 男女之事视频高清在线观看| 国产伦一二天堂av在线观看| 国产精品 国内视频| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 老熟妇乱子伦视频在线观看| 如日韩欧美国产精品一区二区三区| 丝袜在线中文字幕| 99久久国产精品久久久| 丁香欧美五月|