• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Update of the Catalog of Radial Velocity Standard Stars from the APOGEE DR17

    2024-01-06 06:41:24QingZhengLiYangHuangXiaoBoDongJianJunChenandLiLuo
    Research in Astronomy and Astrophysics 2023年11期

    Qing-Zheng Li , Yang Huang , Xiao-Bo Dong , Jian-Jun Chen , and A-Li Luo

    1 Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011, China

    2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China; huangyang@ucas.ac.cn

    3 CSA Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    4 Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    Abstract We present an updated catalog of 46,753 radial velocity (RV) standard stars selected from the APOGEE DR17.These stars cover the Northern and Southern Hemispheres almost evenly, with 62% being red giants and 38%being main sequence stars.These RV standard stars are stable on a baseline longer than 200 days(with 54%longer than one year and 10%longer than five years)with a median stability better than 215 m s?1.The average number of observations of those stars is 5 and each observation is required to have signal-to-noise ratio greater than 50 and RV measurement error smaller than 500 m s?1.Based on the new APOGEE RV standard star catalog,we have checked the RV zero-points (RVZPs) for current large-scale stellar spectroscopic surveys including RAVE, LAMOST, GALAH and Gaia.By careful analysis, we estimate their mean RVZP to be +0.149 km s?1,+4.574 km s?1 (for LRS), ?0.031 km s?1 and +0.014 km s?1, respectively, for the four surveys.In the RAVE,LAMOST (for MRS), GALAH and Gaia surveys, RVZP exhibits a systematic trend with stellar parameters(mainly [Fe/H], Teff, log g, GBP ?GRP and GRVS).The corrections to those small but clear RVZPs are of vital importance for these massive spectroscopic surveys in various studies that require extremely high RV accuracies.

    Key words: stars: fundamental parameters – (stars:) binaries: general – stars: general – catalogs

    1.Introduction

    The velocity component of a star in the line of sight direction can be defined by the Doppler shift of the spectrum captured by the telescope.It can be converted into the framework of the solar system’s center of mass, called the “barycentric” or“heliocentric” radial velocity (RV).The “barycentric” or“heliocentric”RV represents the rate of change of the distance between the Sun and the star (for a detailed definition of RV,see Lindegren & Dravins 2003).The measurement of RV is essential to the construction of complete stellar 6D information(3D position and 3D velocity).Its accuracy is required to be better than several km s?1, or even a few m s?1, for various Galactic studies such as understanding the structure and assembly history of the Milky Way (Binney & Tremaine 1987; Bovy et al.2012b; Bovy 2015; Belokurov et al.2018;Gaia Collaboration et al.2018b; Helmi et al.2018; Helmi 2020),estimating the mass of the Milky Way(Xue et al.2008;Bovy et al.2012a; Huang et al.2016; Eilers et al.2019; Zhou et al.2022), defining orbital parameters and characteristics of binary systems (Mayor & Queloz 1995; Gao et al.2017; El-Badry et al.2018; Tian et al.2018; Liu et al.2019; Li et al.2022b), identification of exoplanets (Xie et al.2016; Trifonov et al.2020)and systematically searching for hypervelocity stars(Brown et al.2005, 2014; Huang et al.2017, 2021; Koposov et al.2020;Li et al.2021,2022a,2022c;Marchetti et al.2022).

    In the past decades, RVs have been measured for over tens of millions of stars from a series of large-scale spectroscopic surveys, including, ground-based surveys, such as GALactic Archaeology with HERMES (GALAH, De Silva et al.2015;Buder et al.2018), Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment(SDSS/APOGEE,Blanton et al.2017; Majewski et al.2017; Abdurro’uf et al.2022), RAdial Velocity Experiment (RAVE, Steinmetz et al.2006;Kunder et al.2017),SDSS/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE, Yanny et al.2009;Eisenstein et al.2011;Dawson et al.2013;Rockosi et al.2022), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Cui et al.2012; Deng et al.2012; Zhao et al.2012;Luo et al.2015)and space-based surveys,i.e.,Gaia Radial Velocity Spectrometer (Gaia RVS, Katz et al.2004;Cropper et al.2018;Gaia Collaboration et al.2018a,2018b).In the near future,more stellar RVs will be obtained thanks to the ongoing/planning?massive spectroscopic surveys, such as the SDSS-V (Kollmeier et al.2017), 4-metre Multi-Object Spectrograph Telescope (4MOST, de Jong et al.2019)and Dark Energy Spectroscopic Instrument (DESI, DESI Collaboration et al.2016; Dey et al.2019).

    The measurement of RV can be influenced by various factors, including the type of instrument, spectral resolution,accuracy of wavelength calibration, methodology used to derive RV,and even observation conditions and environments.These factors can lead to significant variations in RV measurements.To correct for these effects, it is necessary to construct a set of RV standard stars which are stable enough in a long observation baseline.

    At present,over tens of thousands of RV standard stars have been defined by various efforts, including about 5000 bright RV standard stars with extreme stability of 15 m s?1over an average baseline of six years constructed by a long monitoring project (Udry et al.1999a, 1999b; Crifo et al.2007, 2010;Chubak et al.2012; Soubiran et al.2013, 2018) and over 18,000 standard stars with a median stability of 240 m s?1over a one-year baseline with a large color and magnitude range constructed from the APOGEE Data Release (DR)14 (Huang et al.2018, hereafter H18).However, the number spatial density of current RV standard stars is so low that it is hard to calibrate the RV zero-points(RVZPs)of the RV measurements from future massive spectroscopic surveys.

    This paper is an update to H18.Thanks to the long-term repeated observations and more southern stars observed during SDSS-IV, the number of RV standard stars has been trebled with a much larger sky coverage from APOGEE DR17,compared to the previous version of H18.The paper is structured as follows.In Section 2, we correct the possible RVZPs of the RV measurements of APOGEE DR17.In Section 3,we describe the details of selections of RV standard stars from APOGEE DR17.In Section 4, we use the selected APOGEE RV standard stars to calibrate the RVZPs of the RAVE, GALAH, LAMOST and Gaia surveys.Finally, we conclude in Section 5.

    2.Corrections to APOGEE RV Measurements

    As found in H18, the measured RVs of APOGEE surveys exhibit a systematic trend as a function of Teff.To correct this trend, 1611 reference RV standard stars, collected from the various literatures (Udry et al.1999a, 1999b; Nidever et al.2002;Chubak et al.2012;Soubiran et al.2013),are adopted to calibrate the RVZP of APOGEE DR14(Abolfathi et al.2018).In this paper, we apply these reference RV standard stars to check the RVZP of APOGEE DR17 (Abdurro’uf et al.2022).The details of the compilation of these reference RV standard stars are described in H18.Generally, the RVs of these 1611 reference stars are required to have stability better than 100 m s?1over a baseline of at least one year.

    By cross-matching the 1611 reference RV standard stars to APOGEE DR17, 118 common stars are found to check the RVZPs of APOGEE DR17.The RV differences between APOGEE and reference RV standard stars show a significant systematic trend along stellar effective temperature (see Figure 1).To describe this trend,a simple linear fit is adopted:

    Figure 1.The differences between the APOGEE RV(RVAPOGEE)and the RV standard star (RVREF) collected from the literature as a function of effective temperature (Teff).Stars with different colors are reference RV standard stars selected from different catalogs, as marked in the bottom-left corner.The dashed red line is the best linear-fit to the data points.

    The coefficients found here are similar to those reported in H18, implying the robustness of the instruments and RV measurements.

    We also cross-matched a set of 4813 RV standard stars constructed by Soubiran et al.(2018)with APOGEE DR17 and 205 common stars were left.The systematic trend found by these common stars is generally consistent with that displayed in Figure 1 for stars with Teff>4000 K.For cold stars with Tff<4000 K, few stars are found.

    3.APOGEE Radial Velocity Standard Stars

    3.1.APOGEE Survey

    APOGEE (Zasowski et al.2013, 2017; Majewski et al.2016; Majewski et al.2017) is a large-scale high-resolution(R ~22,500) spectroscopic survey in the near-infrared (Hband 1.51–1.70 μm),provided by the 2.5 m Sloan Foundation Telescope (Gunn et al.2006) and the 1 m New Mexico State University (NMSU) Telescope (Holtzman et al.2010) at Apache Point Observatory (APO) in the Northern Hemisphere, and the 2.5 m Irénée du Pont Telescope (Bowen &Vaughan 1973) at Las Campanas Observatory (LCO) in the Southern Hemisphere.The APOGEE survey is an important part of the SDSS-III (Eisenstein et al.2011) and SDSS-IV(Blanton et al.2017)programs.The APOGEE survey is called“APOGEE” or “APOGEE-1” in SDSS-III, and it is called“APOGEE-2” in SDSS-IV.APOGEE-1 started its data collection in 2011 and ended it in 2014.The SDSS DR10 publicly released the APOGEE-1 three-year data set, which was subsequently followed by two additional releases in 2015 and 2016.This accomplishment successfully fulfilled the stated objective of observing over 100,000 stars with a limiting magnitude of H=12.2 mag and spectral signal-tonoise ratio (S/N) greater than 100.APOGEE-2 is a constituent program of the SDSS-IV initiative, which commenced in 2014 and finished in 2021.In addition to collecting the data in the Northern Hemisphere, APOGEE-2 also adopted data from the 2.5 m Irénée du Pont Telescope mounted on LCO to expand the observation sky coverage to the Southern Hemisphere.The recently released SDSS DR17(Abdurro’uf et al.2022) incorporates the latest version of the APOGEE survey,including more than 657,000 stars,and this version is also the final version of all APOGEE-1 and APOGEE-2 data.The measurement of RV has an uncertainty of 100 m s?1and a zero-point offset of 500 m s?1(Nidever et al.2015).Typical uncertainties for Teff,loggand [Fe/H]are better than 150 K, 0.2 dex and 0.1 dex, respectively(Mészáros et al.2013; García Pérez et al.2016).

    Figure 2.Hammer projection in R.A.and decl.of the APOGEE RV standard stars.The black line signifies the Galactic plane,on which we mark the positions of the Galactic center(GC)and the Galactic anti-center(GAC).The positions of M31,Large Magellanic Cloud(LMC)and Sagittarius Dwarf Spheroidal Galaxy(Sgr dSph)are also marked.

    3.2.Selecting RV Standard Stars from the APOGEE DR17

    We utilize the symbol ΔT to denote the time baseline and MJD to represent the mean Modified Julian Date of the n observations.In the following step, we select RV standard stars based on the following criteria: ΔT>200 days, n ≥3,S/Nlow≥50 and σRV≤200 m s?1,where S/Nlowrepresents the lowest S/N for the multiple spectroscopic visits to each star.

    Through the above cuts, a total of 46,753 APOGEE RV standard stars were selected.The spatial distribution is depicted in Figure 2, with full sky coverage.The distributions of time baseline ΔT, number of observations n and σRVfor these RV standard stars are plotted in Figure 3.Their ΔT are all greater than 200 days(with 54%longer than one year and 10%longer than five years).The average number of observations for these stars is 5.The median σRVof all standard stars is 71.75 m s?1,corresponding to a median stability (3σRV) of 215.25 m s?1,better than 240 m s?1of the H18 sample.We show the color-(absolute) magnitude distributions of these stars, see Figure 4 for H against J ?Ks, and Figure 5 for absolute MGagainst GBP?GRP.Due to the selection effect of the APOGEE survey,81% of RV standard stars are redder than 0.5 in terms of J ?Ks.Figure 5 contains 30,268 RV standard stars with measurable distances, all of which have been corrected for interstellar extinction using the 2D dust map from Schlegel et al.(1998).We employ the empirical relation MG=3.53×(GBP?GRP)?0.06 to distinguish giants from main sequence dwarf stars (see dashed line).Among them,62%are red giants and 38%are main sequence dwarf stars.We list 46,753 APOGEE RV standard stars including their name,H, J ?Ks, Teff,RV (after RVZP correction by Equation (1)),IERV,σRV,n,σRV,ΔT and mean MJD information in Table 1.

    Figure 3.The time baseline distribution (left panel), observation number distribution (middle panel) and RV weighted standard deviation (σRV) distribution (right panel) of 46,753 APOGEE RV standard stars.

    Figure 4.The color J ?Ks-magnitude H diagram of APOGEE RV standard stars.The top and right insets are histogram distributions along the J ?Ks and H axes, respectively.

    4.Calibrations of Radial Velocity Scales for Largescale Stellar Spectroscopic Surveys

    Next, we use these 46,753 APOGEE RV standard stars to check the RVZPs of the RAVE,LAMOST,GALAH and Gaia surveys.The calibration results are shown in Figures 6, 7 and Table 2.

    Figure 5.The color GBP ?GRP-magnitude MG distribution of APOGEE RV standard stars.The black dashed line is the empirical line to separate giants and main sequence dwarf stars.

    (i) The RAVE survey: The RAVE survey has collected 520,781 medium-resolution spectra (MRS, R ~7500) centered on the Ca I triplet (8410–8795 ?) range.The survey has released 457,588 individual stars randomly selected from the Southern Hemisphere stars with 9

    We cross-matched RAVE DR5 with our 46,753 APOGEE RV standard stars, resulting in a total of 1284 common stars with S/N>10.The comparisons show a mean ΔRV(APOGEE RVs minus RAVE) of +0.149 km s?1, with a standard deviation of 1.358 km s?1.We display the systematic trends of ΔRV with Teff, log g, [Fe/H] and S/N in Figure 6.There is no obvious systematic trend of ΔRV with Teff,log g or S/N,however,ΔRV exhibits a weak linear trend with[Fe/H].This trend can be described by ΔRV=0.1058+0.4175×[Fe/H] (see Table 2).

    (ii)The LAMOST survey:LAMOST is a 4 m quasi-meridian reflecting Schmidt telescope(Cui et al.2012).The telescope is equipped with 4000 fibers distributed in a field of view with a diameter of 5°.Within one exposure, LAMOST can obtain 4000 optical low-resolution spectra (LRS; R ~2000; with wavelength coverage between 3700 and 9000 ?) or MRS(R ~7500;with two wavelength windows of 4950–5350 ? and 6300–6800 ?, respectively).

    The MRS parameter catalog released in LAMOST DR9 contains measurements of stellar atmospheric parameters and RV for over 1.6 million stars from 8 million MRS.To check the RVZPs of the LAMOST MRS RVs, we cross-matched the LAMOST DR9 MRS parameter catalog with the RV standard stars,resulting in 6431 common stars with S/N>10(see Table 2).By comparing their RVs (measurements from LASP) with the standard stars, multiple peaks are found in the RV difference distribution.There are two dominant main peaks,one occurring before 2018 October 19(MJD=58,410)and the other after this date.Prior to 2018 October 19, the mean ΔRV(APOGEE RVs minus LAMOST) was 6.843 km s?1with a standard deviation of 1.202 km s?1, while after that date, the mean ΔRV was 0.727 km s?1with a standard deviation of 1.183 km s?1.The main reason for such a significant transition in mean ΔRV arises from the use of different wavelength calibration lamps.Prior to 2018 October 19, the Sc lamp was employed to calibrate the wavelengths of the LAMOST test observation spectra, whereas the Th–Ar lamp has been used since then (Wang et al.2019; Zhang et al.2021).LAMOST MRS provide zero-point corrected RV measurements, with the aforementioned offsets largely corrected.If considering the formal survey started from 2018 October 19, the offsetcorrected RVs from LAMOST MRS agree very well with those of the APOGEE RV standard stars, with a nil zero-point and a scatter of 1.05 km s?1(see middle panel of Figure 6).However,the mean RV differences still show a systematic trend with Teff(see middle panels of Figure 6).This trend can be described by a fourth-order polynomial in Teff(see Table 2).

    Figure 6.RV differences of common stars(gray dots)between APOGEE RV standard stars and different surveys(top panel:RAVE;middle two panels: LAMOST LRS and MRS (zero-point corrected RV measurements after 2018 October 19); bottom panel: GALAH) as a function of Teff (first column), log g (second column),[Fe/H](third column)and S/N(fourth column).The black dots and their error bars in each subpanel signify the mean and standard deviation of ΔRV,respectively,in bins of individual parameters(Teff,log g,[Fe/H]and S/N).Blue dashed lines represent the mean difference as shown in Table 2.Red lines trace polynomial fits of the RV difference as functions of stellar parameters (the coefficients are given in Table 2).

    (iii)The GALAH survey:The GALAH survey is a large-scale stellar spectroscopic survey.The aim is to collect highresolution (R = 28,000) spectra of approximately one million stars in the optical band (four discrete optical wavelength ranges:4713–4903,5648–5873,6478–6737 and 7585–7887 ?)using the HERMES spectrograph installed on the 3.9 m Anglo-Australian Telescope (AAT) at the Siding Spring Observatory(De Silva et al.2015).In the third data release (DR3, Buder et al.2021), GALAH provided a total of 678,423 spectra of 588,571 unique stars, including measurements of RVs, stellar atmospheric parameters and individual element abundances.

    We cross-matched the APOGEE RV standard stars with GALAH DR3 to examine the RVZP of the GALAH RVs.A total of 1839 common stars with S/N>10 were found, with average S N of 40 (Table 2).The mean value and standard deviation of the ΔRV (APOGEE RVs minus GALAH) are?0.031 km s?1and 0.299 km s?1, respectively.Figure 6(bottom panel) shows the systematic trends of ΔRV with Teff,log g, [Fe/H] and S/N.It can be seen from the plot that ΔRV has no trend with [Fe/H] or S/N.However, ΔRV exhibited a curved trend with both Teffand log g.Through our validation,we find that the systematic trend of GALAH RVs is dominated by log g.The trend can be described by a sixth-order polynomial about log g,the coefficients of which are presented in Table 2.

    (iv) The Gaia survey: The European Space Agency (ESA)satellite Gaia(Gaia Collaboration et al.2016)recently released the DR3 (Gaia Collaboration et al.2022), which provides astrometric and photometric data for more than 1.8 billion sources.Compared with Gaia DR2, Gaia DR3 provides more than 33 million stars with measurements of RV (Katz et al.2022) and more than 470 million stars with measurements of atmospheric parameters (Fouesneau et al.2022).The median value of RV measurement accuracy is 1.3 km s?1at GRVS=12 mag and 6.4 km s?1at GRVS=14 mag.The RVZP of the Gaia DR2 has a systematic trend with GRVS, which shows ΔRV=0 km s?1at GRVS=11 mag and ΔRV=0.40 km s?1at GRVS=14 mag (Huang et al.2018; Katz et al.2022).

    Figure 7.Top panel: Similar to Figure 6, but this figure presents common stars between APOGEE RV standard stars and Gaia DR3, subplots of which show a systematic trend of ΔRV with GRVS(left),GBP ?GRP(middle)and Nobs(right).Red lines trace polynomial fits of ΔRV with GRVS or GBP ?GRP,and the coefficients are listed in Table 2.ΔRV′ in the middle panel signifies the RV differences after the corrections to GRVS dependent systematics.Cyan line is a second-order polynomial taken from Katz et al.(2022)to describe the systematic trend of ΔRV with GRVS when GRVS>11 mag.Bottom panel:The RV precision of Gaia DR3,as a function of GRVS,is reported through comparison with APOGEE RV standard stars,corresponding to metal-rich stars([Fe/H]≥?0.1,left),middle-level metallicity stars (?0.4 ≤[Fe/H]

    Table 2 Comparisons of RVs yielded by the APOGEE RV Standard Stars and RAVE, LAMOST, GALAH and Gaia Surveys

    To check the RVZP of the Gaia DR3,we cross-matched our APOGEE RV standard stars with Gaia DR3 to obtain 43,214 common stars with 3200 K5.The comparison shows a tiny offset of +0.014 km s?1(APOGEE RVs minus Gaia), with a small scatter of 0.561 km s?1.The systematic trend of ΔRV with color GBP?GRP, magnitude GRVSand number of transits (Nobs) is depicted in Figure 7.Significant systematic trends for ΔRV with color and magnitude are detected.For GBP?GRP, systematic deviations are clearly detected at GBP?GRP<1 mag and GBP?GRP>2 mag.For GRVS, a systematic trend is significantly found at GRVS>11 mag.We first adopt a fourth-order polynomial to correct the trend along with GRVS.After corrections to GRVSdependent systematics, the trend along with GBP?GRPis further corrected by a fourth-order polynomial fit.The resulting coefficients are presented in Table 2.It is worth noting that Katz et al.(2022)also identified the GRVSdependent trend and provided a second-order polynomial to describe it for GRVS>11 mag (as shown in Figure 7).The second-order polynomial can partially capture the systematic trend as we discovered,but it cannot correct the systematic trend at the faint end (GRVS>13 mag).

    Based on the common stars of our APOGEE RV standard star and Gaia DR3, we study the precision of Gaia RV measurements.As displayed in the bottom panels of Figure 7,the precision of Gaia RV measurement generally decreases with Teffand GRVSand slightly increases with[Fe/H].The RV precision in the bright range (GRVS<10 mag) is several hundred m s?1, and is a few km s?1at the faint end (GRVS>12 mag).This result is consistent with the prediction of Katz et al.(2022).

    5.Summary

    We have constructed a catalog of 46,753 RV standard stars from the 657,000 near-infrared (H-band; 1.51–1.70 μm) highresolution (R ~22,500) spectra provided by APOGEE DR17.They are almost evenly distributed in the Northern and Southern Hemispheres, with 62% red giants, and 38% main sequence dwarf stars.They were observed with a time baseline of at least 200 days (with 54% longer than one year and 10%longer than five years) and were observed more than three times.The median RV stability was 215.25 m s?1.Using the catalog of RV standard stars, we calibrated the RVZPs of four large-scale stellar spectroscopic surveys: RAVE, LAMOST,GALAH and Gaia.By careful comparisons,we found the mean RVZPs are +0.149 km s?1, +4.574 km s?1(for LRS),?0.031 km s?1and +0.014 km s?1, for RAVE, LAMOST,GALAH and Gaia, respectively.In addition to an overall constant offset,RVZPs of part of these surveys show moderate dependences on stellar parameters (e.g., Teff, log g, [Fe/H],color or magnitude).We further provide corrections by simple polynomial fits with coefficients listed in Table 2.Our studies demonstrate that the small but clear RVZPs in these large-scale spectroscopic surveys can be well detected and properly corrected by our RV standard stars, which are believed to be useful for their further applications in various investigations.The complete APOGEE RV standard star catalog in Table 1 is publicly available at https://nadc.china-vo.org/res/r101244/.

    Acknowledgments

    This work is supported by National Key R & D Program of China No.2019YFA0405102, 2019YFA0405500, and National Natural Science Foundation of China (NSFC, Grant Nos.11903027, 11973001, 11833006, U1731108, 12090040 and 12090044).

    Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P.Sloan Foundation, the U.S.Department of Energy Office of Science, and the Participating Institutions.SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah.The SDSS website is www.sdss.org.

    Software:astropy(Astropy Collaboration et al.2013,2018),TOPCAT (Taylor 2005).

    ORCID iDs

    Qing-Zheng Li https://orcid.org/0000-0002-4033-2208 Yang Huang https://orcid.org/0000-0003-3250-2876 Xiao-Bo Dong https://orcid.org/0000-0002-2449-9550 Jian-Jun Chen https://orcid.org/0000-0003-4525-1287 A-Li Luo https://orcid.org/0000-0001-7865-2648

    人人妻人人看人人澡| 身体一侧抽搐| 免费观看a级毛片全部| 久久久久久久午夜电影| 欧美成人一区二区免费高清观看| 国产精品伦人一区二区| 麻豆成人av视频| 色哟哟哟哟哟哟| avwww免费| 天美传媒精品一区二区| 麻豆乱淫一区二区| 看片在线看免费视频| 熟女电影av网| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 国产黄色小视频在线观看| 桃色一区二区三区在线观看| kizo精华| 亚洲成人中文字幕在线播放| 18禁在线播放成人免费| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜添av毛片| 国产乱人视频| 中国国产av一级| 亚洲人与动物交配视频| 免费一级毛片在线播放高清视频| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 欧美zozozo另类| 亚洲精品456在线播放app| 少妇的逼水好多| 一区二区三区高清视频在线| 国产成人精品婷婷| 99在线视频只有这里精品首页| 观看免费一级毛片| 国产精品一区二区性色av| 深夜精品福利| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 亚洲欧洲日产国产| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 天天躁夜夜躁狠狠久久av| 哪里可以看免费的av片| 精品无人区乱码1区二区| 看片在线看免费视频| 中文字幕av成人在线电影| 国产成人福利小说| 日本撒尿小便嘘嘘汇集6| 在线播放无遮挡| 欧美又色又爽又黄视频| 成人漫画全彩无遮挡| 美女内射精品一级片tv| 男女边吃奶边做爰视频| 一本精品99久久精品77| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| 黄色日韩在线| 欧美日本亚洲视频在线播放| 精品国内亚洲2022精品成人| 亚洲国产精品合色在线| 国产成人91sexporn| 在线观看午夜福利视频| 联通29元200g的流量卡| 最好的美女福利视频网| 日本爱情动作片www.在线观看| 欧美丝袜亚洲另类| 内射极品少妇av片p| 国产精品无大码| 日韩成人av中文字幕在线观看| 久久久国产成人精品二区| 国产精品人妻久久久久久| 免费无遮挡裸体视频| 如何舔出高潮| 听说在线观看完整版免费高清| 97在线视频观看| 中文字幕熟女人妻在线| 国产精品久久久久久av不卡| 国产真实乱freesex| 国产单亲对白刺激| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 嫩草影院入口| 大又大粗又爽又黄少妇毛片口| 国内精品美女久久久久久| av又黄又爽大尺度在线免费看 | 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| av在线播放精品| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在 | 青春草亚洲视频在线观看| 久久久久性生活片| 黄色配什么色好看| 99久久精品热视频| 亚洲精品国产av成人精品| 国产大屁股一区二区在线视频| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 午夜福利在线观看免费完整高清在 | 亚洲精品乱码久久久v下载方式| 日韩欧美精品免费久久| 日本三级黄在线观看| 国产老妇女一区| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 亚洲无线观看免费| www.色视频.com| 精品欧美国产一区二区三| 成人欧美大片| 国产不卡一卡二| 一区二区三区免费毛片| 日韩一区二区视频免费看| 久久欧美精品欧美久久欧美| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 国产精品久久久久久久电影| 有码 亚洲区| 久久人人爽人人片av| 国产免费男女视频| 丰满人妻一区二区三区视频av| 久久久色成人| 国产免费男女视频| 国产一区亚洲一区在线观看| 一级黄片播放器| 国产探花极品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品人妻久久久影院| 国产精品一区www在线观看| 91精品一卡2卡3卡4卡| 免费观看a级毛片全部| 国模一区二区三区四区视频| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 99riav亚洲国产免费| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| 国产伦精品一区二区三区视频9| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 男的添女的下面高潮视频| 久久精品国产清高在天天线| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 日韩三级伦理在线观看| 国模一区二区三区四区视频| 精品久久久久久久末码| 久久精品夜色国产| 亚洲人成网站在线观看播放| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| 在线免费十八禁| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 91久久精品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| a级毛色黄片| 亚洲人成网站高清观看| 成年版毛片免费区| 99久久精品热视频| 一本久久中文字幕| 日韩欧美国产在线观看| 国产伦理片在线播放av一区 | 亚洲精品日韩在线中文字幕 | 夜夜看夜夜爽夜夜摸| 97在线视频观看| 中文字幕制服av| 日本三级黄在线观看| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 黄色欧美视频在线观看| 91av网一区二区| 禁无遮挡网站| 成人永久免费在线观看视频| 深夜精品福利| 高清毛片免费看| 久久热精品热| 丝袜美腿在线中文| kizo精华| 国产亚洲91精品色在线| 直男gayav资源| ponron亚洲| 狠狠狠狠99中文字幕| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 欧美人与善性xxx| 国产精品,欧美在线| 少妇熟女欧美另类| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 毛片女人毛片| 99久久九九国产精品国产免费| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 22中文网久久字幕| 日本一二三区视频观看| 老熟妇乱子伦视频在线观看| 成年女人永久免费观看视频| 内地一区二区视频在线| 又粗又爽又猛毛片免费看| 日韩av在线大香蕉| 91精品一卡2卡3卡4卡| 91麻豆精品激情在线观看国产| 人妻系列 视频| 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 级片在线观看| 村上凉子中文字幕在线| 国产老妇伦熟女老妇高清| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 国产一级毛片在线| 欧美又色又爽又黄视频| 能在线免费看毛片的网站| av在线亚洲专区| 日韩三级伦理在线观看| 国内久久婷婷六月综合欲色啪| 神马国产精品三级电影在线观看| 禁无遮挡网站| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 国内久久婷婷六月综合欲色啪| 久久99精品国语久久久| 能在线免费观看的黄片| 精品熟女少妇av免费看| 欧美激情在线99| 看片在线看免费视频| 久久久久久久久大av| 久久99热6这里只有精品| 寂寞人妻少妇视频99o| 国产高清有码在线观看视频| 国产在线男女| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 最好的美女福利视频网| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久丰满| 亚洲电影在线观看av| 国产黄a三级三级三级人| 日韩 亚洲 欧美在线| 尾随美女入室| 亚洲综合色惰| 国产美女午夜福利| 国产伦在线观看视频一区| 99久久精品热视频| 99在线视频只有这里精品首页| 久久久久久久久久成人| 国产精品av视频在线免费观看| а√天堂www在线а√下载| 国产av一区在线观看免费| 一级黄色大片毛片| 天堂√8在线中文| 国产真实乱freesex| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕| 边亲边吃奶的免费视频| 综合色av麻豆| 久久草成人影院| 在线a可以看的网站| 国产av不卡久久| 麻豆乱淫一区二区| 欧美激情久久久久久爽电影| 国产精品一区二区性色av| 99热6这里只有精品| 免费一级毛片在线播放高清视频| 久久亚洲国产成人精品v| 久久久午夜欧美精品| av在线播放精品| 久久久精品大字幕| 99热网站在线观看| 日韩 亚洲 欧美在线| 精品免费久久久久久久清纯| 国产成人精品一,二区 | 在线国产一区二区在线| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 人妻夜夜爽99麻豆av| 天美传媒精品一区二区| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 麻豆av噜噜一区二区三区| 国产精品一区二区性色av| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 国产精品av视频在线免费观看| 人妻系列 视频| 精品一区二区三区人妻视频| 国模一区二区三区四区视频| 亚洲国产精品合色在线| 亚洲av一区综合| av专区在线播放| 日日撸夜夜添| 直男gayav资源| 国产一区二区三区av在线 | 国产极品天堂在线| 久99久视频精品免费| 亚洲成人av在线免费| 在线观看美女被高潮喷水网站| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 亚洲av不卡在线观看| 此物有八面人人有两片| 可以在线观看的亚洲视频| 全区人妻精品视频| 久久午夜福利片| 国产探花极品一区二区| 免费看美女性在线毛片视频| 人人妻人人看人人澡| 亚洲18禁久久av| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 一级毛片我不卡| 国产毛片a区久久久久| 99九九线精品视频在线观看视频| 免费一级毛片在线播放高清视频| 麻豆国产97在线/欧美| 观看免费一级毛片| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 大香蕉久久网| 亚洲久久久久久中文字幕| 亚洲激情五月婷婷啪啪| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 亚洲va在线va天堂va国产| 婷婷亚洲欧美| 丝袜美腿在线中文| 婷婷亚洲欧美| 18禁在线无遮挡免费观看视频| 免费看光身美女| av在线天堂中文字幕| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 高清在线视频一区二区三区 | 国产真实伦视频高清在线观看| 简卡轻食公司| 免费观看在线日韩| 亚洲四区av| 99视频精品全部免费 在线| 免费搜索国产男女视频| 伦理电影大哥的女人| 精品免费久久久久久久清纯| 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 在线播放国产精品三级| 免费不卡的大黄色大毛片视频在线观看 | 波多野结衣高清无吗| 亚洲欧美中文字幕日韩二区| 91久久精品电影网| 一进一出抽搐动态| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 午夜福利在线在线| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 精华霜和精华液先用哪个| 久久精品国产99精品国产亚洲性色| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 亚洲精品乱码久久久久久按摩| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 成人av在线播放网站| 悠悠久久av| 国产真实乱freesex| 精品人妻偷拍中文字幕| 一级黄片播放器| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区 | 午夜精品在线福利| 12—13女人毛片做爰片一| 能在线免费观看的黄片| 久久99精品国语久久久| 国产单亲对白刺激| 久久精品久久久久久噜噜老黄 | 波野结衣二区三区在线| 性色avwww在线观看| 插逼视频在线观看| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 在线免费十八禁| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 亚洲精品日韩在线中文字幕 | 草草在线视频免费看| 高清毛片免费看| 99久久精品热视频| 又黄又爽又刺激的免费视频.| 亚洲av免费在线观看| 国产成人a区在线观看| 亚洲18禁久久av| 国产欧美日韩精品一区二区| 国产视频首页在线观看| 麻豆成人av视频| 一夜夜www| 久久鲁丝午夜福利片| 欧美zozozo另类| 国语自产精品视频在线第100页| 亚洲五月天丁香| 人体艺术视频欧美日本| 精品欧美国产一区二区三| 国产女主播在线喷水免费视频网站 | 久久精品影院6| 成人一区二区视频在线观看| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 日韩高清综合在线| 色哟哟哟哟哟哟| 少妇人妻精品综合一区二区 | 久久精品夜色国产| 亚洲乱码一区二区免费版| 免费看日本二区| 久久精品国产自在天天线| 亚洲国产精品久久男人天堂| 97超视频在线观看视频| 国产av麻豆久久久久久久| 日韩强制内射视频| 久久精品国产亚洲av涩爱 | 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说 | 激情 狠狠 欧美| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 免费人成在线观看视频色| 99热网站在线观看| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| 给我免费播放毛片高清在线观看| 婷婷亚洲欧美| 18禁在线播放成人免费| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 久久精品影院6| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 成人特级av手机在线观看| 91精品国产九色| 99久久久亚洲精品蜜臀av| 久久6这里有精品| 成人综合一区亚洲| 日韩欧美精品v在线| 国产成人影院久久av| 国产伦理片在线播放av一区 | 色综合站精品国产| 久久久久久久久久久丰满| av在线观看视频网站免费| 最后的刺客免费高清国语| 伦精品一区二区三区| 亚洲熟妇中文字幕五十中出| 成人亚洲精品av一区二区| 欧美精品一区二区大全| 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 国产精品永久免费网站| 波多野结衣高清作品| 国产成人午夜福利电影在线观看| av在线播放精品| 日本-黄色视频高清免费观看| 日韩 亚洲 欧美在线| 3wmmmm亚洲av在线观看| 国产色婷婷99| 一级毛片久久久久久久久女| 一级黄色大片毛片| 美女 人体艺术 gogo| 日韩精品有码人妻一区| 成人综合一区亚洲| 最近中文字幕高清免费大全6| 欧美区成人在线视频| 乱系列少妇在线播放| 亚洲国产精品sss在线观看| 最近最新中文字幕大全电影3| 亚洲国产欧美人成| 国内精品一区二区在线观看| 亚洲欧美日韩高清专用| 99国产极品粉嫩在线观看| 99久久人妻综合| 少妇的逼好多水| 成人高潮视频无遮挡免费网站| 一本久久精品| 久久99蜜桃精品久久| 国内久久婷婷六月综合欲色啪| 国国产精品蜜臀av免费| 国产黄片美女视频| 国产精品一区www在线观看| 成人三级黄色视频| 国产色爽女视频免费观看| 一级二级三级毛片免费看| 人体艺术视频欧美日本| 国产视频内射| 亚洲综合色惰| 国产午夜精品一二区理论片| 99久久无色码亚洲精品果冻| 国产高潮美女av| 午夜精品国产一区二区电影 | 国产在视频线在精品| 国产精品爽爽va在线观看网站| 国产精品1区2区在线观看.| 欧美xxxx性猛交bbbb| 26uuu在线亚洲综合色| 一级毛片aaaaaa免费看小| 欧美zozozo另类| 久久久久久九九精品二区国产| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 久久鲁丝午夜福利片| 国产淫片久久久久久久久| 黄片wwwwww| 黄色欧美视频在线观看| 亚洲av熟女| 悠悠久久av| 国产91av在线免费观看| 精品久久久久久久久av| 大香蕉久久网| 久久精品夜色国产| 亚洲av.av天堂| 91精品一卡2卡3卡4卡| 午夜福利在线观看吧| 日本五十路高清| av黄色大香蕉| 少妇裸体淫交视频免费看高清| 亚洲中文字幕日韩| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 欧美日本视频| 午夜免费激情av| 国产精品福利在线免费观看| 国产成人a区在线观看| av在线播放精品| 日本免费一区二区三区高清不卡| 精品久久久久久成人av| 97在线视频观看| h日本视频在线播放| 少妇熟女欧美另类| 99热网站在线观看| 亚洲,欧美,日韩| 日本欧美国产在线视频| av免费观看日本| 联通29元200g的流量卡| 欧美zozozo另类| 日韩精品青青久久久久久| 在线播放国产精品三级| 青青草视频在线视频观看| av在线蜜桃| 成人亚洲精品av一区二区| 久久久久久大精品| 国产老妇女一区| 国产亚洲欧美98| 国产成人精品婷婷| 国产精品一区二区三区四区免费观看| 午夜爱爱视频在线播放| 免费av毛片视频| 国产伦理片在线播放av一区 | 人体艺术视频欧美日本| 婷婷色av中文字幕| 又粗又硬又长又爽又黄的视频 | 乱人视频在线观看| 亚洲电影在线观看av| 一卡2卡三卡四卡精品乱码亚洲| 综合色av麻豆| 全区人妻精品视频| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 中文亚洲av片在线观看爽| 如何舔出高潮| a级毛片a级免费在线| 在线天堂最新版资源| 婷婷色av中文字幕| 亚洲国产欧美人成| 国产精品久久久久久久电影| 精品日产1卡2卡| 噜噜噜噜噜久久久久久91| 成人特级黄色片久久久久久久| 人妻久久中文字幕网| 嫩草影院精品99| 久久精品91蜜桃| 成熟少妇高潮喷水视频| 久久久精品94久久精品| 久久精品91蜜桃| 欧美高清性xxxxhd video| 久久久精品欧美日韩精品| 国产极品精品免费视频能看的|